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Abstract

We discuss reproducing kernel Hilbert space
(RKHS)-based measures of statistical depen-
dence, with emphasis on constrained covari-
ance (COCO), a novel criterion to test de-
pendence of random variables. We show
that COCO is a test for independence if and
only if the associated RKHSs are universal.
That said, no independence test exists that
can distinguish dependent and independent
random variables in all circumstances. De-
pendent random variables can result in a
COCO which is arbitrarily close to zero when
the source densities are highly non-smooth.
All current kernel-based independence tests
share this behaviour. We demonstrate ex-
ponential convergence between the popula-
tion and empirical COCO. Finally, we use
COCO as a measure of joint neural activ-
ity between voxels in MRI recordings of the
macaque monkey, and compare the results to
the mutual information and the correlation.
We also show the effect of removing breath-
ing artefacts from the MRI recording.

1 Introduction

Tests to determine the dependence or independence
of random variables are well established in statistical
analysis. Some approaches require density estimation
as an intermediate step ([13] is a classic study); while
others assume a parametric model of how the variables
were obtained from independent random variables, as
in blind source separation [12].

In this paper we propose a non-parametric indepen-
dence criterion, which relies on the fact that the ran-
dom variables' x,y are independent if and only if

Elf()IEy[9(y)] = Exy[f (¥)g(y)]- (1.1)

for bounded, continuous functions f, g (see for instance
[14, 19]). The proposed criterion works by maximis-
ing the discrepancy between the empirical estimates of

'We write random variables sans serif.

the LHS and RHS of (1.1) over pre-specified function
classes f € F and g € G, and comparing the discrep-
ancy to the amount of deviation that can be expected
from the fact that we are dealing with empirical esti-
mates rather than expectations. We call our criterion
the constrained covariance (COCO).2

The results presented here build on recent work pub-
lished on the subject of kernel based dependence mea-
sures. In particular, the canonical correlation between
functions in a reproducing kernel Hilbert space (KCC),
defined in [1] for a variety of kernels and in [15] for
splines, can be used as a test of independence. Indeed,
in the case of Gaussian kernels, Bach and Jordan show
the KCC to be zero if and only if its two arguments
are statistically independent. In Section 3, we charac-
terise all reproducing kernel Hilbert spaces (RKHSs)
for which this property holds (both for COCO and
KCC): these are required to be universal (the RKHS
must be dense in the space of continuous functions
[22]). Specifically, the Gaussian and Laplace kernels
are universal, as are many exponential-based kernels;
polynomial kernels, however, are not universal.

We next demonstrate in Section 4 that for a fixed-size,
finite sample of dependent random variables, there ex-
ists no test that can reliably detect that the random
variables are dependent. To clarify how this might af-
fect our criterion, we prove that the population COCO
can be made arbitrarily small when certain smoothness
assumptions on the density are violated, which makes
it difficult to detect dependence on the basis of a fi-
nite sample. This is also true of other related kernel
dependence measures, including the kernel mutual in-
formation (KMI) in [9], and kernel generalised variance
(KGV) in [1], both of which were shown in [9] to be
upper bounds near independence on the Parzen win-
dow estimate of the mutual information. Thus, as in
all dependence tests, any inference made is subject to
certain assumptions about the underlying generative
process - the present work describes these assumptions
explicitly for the first time, in the case of kernel-based
tests.

*In [9], this was called the kernel covariance (KC).



Next, we give two bounds, based on Rademacher aver-
ages, which describe exponential convergence between
the population and empirical COCO. The first assures
us that the population COCO is small when the empir-
ical COCO is small; the second shows that the popula-
tion COCO is large when the empirical COCO is large
(both statements apply with high probability). These
results are very interesting, in that they illustrate a
broader phenomenon: slow learning rates do not occur
in dependence testing, even though they are unavoid-
able in regression and classification [6, Ch. 7]. This
might appear surprising in the specific case of COCO,
since this criterion is optimised in the course of ker-
nelised PLS regression (assuming a kernelised output
space: see the discussion in [2]). Another important
consequence of the bounds is that any dependence be-
tween the random variables will be detected rapidly as
the sample size increases, even though perfect depen-
dence detection is impossible for fixed sample size.

Finally, we describe a neuroscience application where
our method can be used. A number of groups (e.g.
[3]) have begun examining the interactions between
neural systems using fMRI in humans. The recent
study of BOLD fMRI in the macaque monkey using
high field (4.7T & 7T) scanners [17, 16] has resulted
in substantial increases in spatial and temporal resolu-
tion, when measuring brain activity patterns resulting
from various stimuli. In Section 6, we apply COCO
to these high resolution data so as to detect depen-
dence between BOLD responses within the visual cor-
tex. In using COCO to detect regions of high depen-
dence, we follow [8], who maximise a kernel-based de-
pendence measure (in their case, the KGV) as a means
of variable selection. We also investigate how the mea-
sured dependence changes with the removal of breath-
ing artefacts, which is feasible due to the high temporal
resolution of our measurements.

2 Definitions and Background

Before presenting our main results, we begin our dis-
cussion with some relevant definitions and background
theory, covering both classical independence criteria
and RKHSs.? Let (Q, A, Py,) be a probability space.
Consider random variables x : (2, 4) — (U,U) and
y : (,4) = (V,V), where U and V are complete
metric spaces, and U and V their respective Borel o-
algebras. The covariance between x and y is defined
as follows.

Definition 1 (Covariance). The covariance of two
random variables x,y is given as

covix,y) i= Eoy byl — EXE L. (21)

For our purposes, the notion of independence of ran-
dom variables is best expressed using the following
characterisation:

3This exposition is necessarily dense: see [14] and [21]
for more detail.

Theorem 1 (Independence [14]). The random
variables x and y are independent if and only if

cov(f(x),g(y)) = 0 for each pair (f,g) of bounded,
continuous functions.

This theorem suggests the following definition as an
independence test.

Definition 2 (Constrained covariance). Given
function classes F, G containing subspaces F' € F and
G € G, we define the constrained covariance as

COCO(Pyy; F,G) :=  sup [cov(f(x),g(y))]-

feF,geG

(2.2)

(if F and G are unit balls in their respective spaces,
then this is just the norm of the covariance op-
erator mapping G to F: see [8] and references
therein). Given n independent observations z :=
((wlayl)a' ) (wnayn)) C (X X y)n, its empirical es-
timate is defined as

COCOemp(2; F,G) 1=

sup {% > o) - S 1w ig@j)} .

fEF,geCG =1 =1

It follows from Theorem 1 that if F,G are the
sets of continuous functions bounded by 1 we have
COCO(Py,; F,G) =0 if and only if x and y are inde-
pendent.* In other words, COCO and COCOem, are
criteria which can be tested directly without the need
for an intermediate density estimator (in general, the
distributions may not even have densities). It is also
clear, however, that unless F,G are restricted in fur-
ther ways, COCOemp will always be large, due to the
rich choice of functions available. A non-trivial depen-
dence measure is thus obtained using function classes
that do not give an everywhere-zero empirical average,
yet which still guarantee that COCO is zero if and
only if its arguments are independent. A tradeoff be-
tween the restrictiveness of these function classes and
the convergence of COCOepp to COCO can be accom-
plished using standard tools from uniform convergence
theory (see Section 5).

It turns out (Section 3) that unit-radius balls in uni-
versal reproducing kernel Hilbert spaces constitute
function classes that yield non-trivial dependence es-
timates. To demonstrate this, we will use certain
properties of these spaces [20]. A reproducing kernel
Hilbert space is a Hilbert space F for which at each
r € X, the point evaluation functional, §, : F — R,
which maps f € F to f(z) € R, is continuous. To each
reproducing kernel Hilbert space, there corresponds a
unique positive definite kernel £ : X' x X — R (the
reproducing kernel), which constitutes the inner prod-
uct on this space: this is guaranteed by the Moore-
Aronszajn theorem.

‘Here we set F = F and G =G.



In RKHSs the representer theorem [21] holds, stating
that the solution of an optimisation problem, depen-
dent only on the function evaluations on a set of ob-
servations and on RKHS norms, lies in the span of the
kernel functions evaluated on the observations. This
property is next used to specify an easily computed ex-
pression for COCOemp(2; F, G) where F' and G are re-
spectively unit balls in the reproducing kernel Hilbert
spaces F and G. The proof may be found in [9].

Lemma 1 (Value of COCOemp(2; F,G)). Denote by
F,G RKHSSs on the domains X and Y respectively and
let F,G be the unit balls in the corresponding RKHS.
Then

COCOemp(2; F,G) = % K K9], (2.3)

where K7 is the matriz obtained by the projection
KT = PK'P with projection operator Pj = 6;; — +
and Gram matriz Kl’; = ky(zi,x;). K9 is defined by
analogy using the kernel of G (which might be different
from that of F).

A second theorem which will be crucial in our proofs
is Mercer’s theorem, which provides a decomposition
of the kernel into eigenfunctions and eigenvalues.

Theorem 3 (Mercer’s theorem). Let k(-,:) €
Lo (X?) be a symmetric real valued function with an
associated positive definite integral operator with nor-
malised orthogonal eigenfunctions ¢, € La(X), sorted

such that the associated eigenvalues k, do not increase.
Then for almost all x; € X and x; € X, the series

k(zi,x5) = Y kpop(@:)pp ()

converges absolutely and uniformly. In addition, the
sum Y5, |ki| converges as p — oo.

Finally, we give kernel-dependent decay rates for the
coefficients used to expand functions in F in terms of
the set of basis functions {p;(-)} from Mercer’s theo-
rem.

Lemma 4 (Rate of decay of expansion coeffi-
cients). Let f € F, where f(z) = Y20, fipi(z).
Then as long as (k;)~' increases super-linearly with
i, (Ifi]) € €1 and there exists an ly € N such that for
all e >0 and all 1 > Iy, |fi| <e.

Proof. This holds since for any f € F, [|f||% =
-1
SR (k) <o O

The super-linearity requirement in Lemma 4 is sat-
isfied by many kernels, including the Gaussian (for
which the ((kn) ") increase as exp(m?)); see [21]. We
assume hereafter that our kernel satisfies the require-
ments of Lemma 4.

3 A Test for Independence

We now characterise the class of kernels for which
COCO is a non-trivial test of dependence. The main
result is given in Theorem 6, in which we demonstrate
that COCO constitutes such a test when F and G are
RKHSs with a universal kernel [22].

Definition 5 (Universal kernel). A continuous ker-
nel k(-,-) on a compact metric space (X,d) is called
universal if and only if the RKHS F induced by the
kernel is dense in C'(X) with respect to the topology
induced by the infinity norm [|f — g|| . -

For instance, [22] shows the following two kernels are
universal on compact subsets of R¢:

k(z,2") = exp (= ||z — 2'|]*) and
k(z,z') = exp (= A||z — z'||) for A > 0.

We now state our main result for this section.

Theorem 6 (COCO is only zero at indepen-
dence for universal kernels). Denote by F,G
RKHSs with universal kernels k¢, ky, on the compact
domains X and )Y respectively and let F,G be the unit
balls in the corresponding RKHSs. We assume without
loss of generality that || fllco <1 and ||g|lco < 1 for all
feF and g€ G. Then COCO(Pyy; F,G) = 0 if and
only if x,y are independent.

Proof. It is clear that COCO(Py,; F,G) is zero if
x and y are independent. We prove the con-
verse by contradiction, using the starting assumptions
COCO(Py,; B(X),B(Y)) = c for some ¢ > 0 (here
B(X) denotes the subset of C'(X) of continuous func-
tions bounded by 1 in the Lo, (X'), and B()) is defined
in an analogous manner) and COCO(Py; F,G) = 0.
There exist two sequences of functions f,, € C(X) and
gn € C(Y), satisfying [|fallc < 1,[lgnllc < 1, for
which

lim cov(f,(x),gn(y)) =c.

n—o0

More to the point, there exists an n* for which
cov(fnx, (X)gn=(y)) > ¢/2. We know that F and G are
respectively dense in C(X') and C'(Y): this means that
for all 1/3 > € > 0, we can find some f* € F (and an
analogous g* € G) satisfying ||f* — fu-|lo < € = 57
Writing as f(x) := f*(x) — fn+(x) 4+ fa-(x) (with an
analogous g(y) definition), we obtain

cov(f*(x), 97 (y))

¢ ¢ ¢
——6—=->0
=37 %117
This contradicts the assumption that

cov(f*(x),g*(y)) = 0, and completes the proof. O



The kernel dependence tests (COCO, KMI, KGV, and
KCC) are generalised in [9, 1] to a greater number of
random variables, providing tests of pairwise indepen-
dence.

4 Limitations of Independence Tests

4.1 General independence tests

In this section, we illustrate with a simple example
that for a finite sample, there exists no test of inde-
pendence which can reliably (i.e. with high probabil-
ity) distinguish dependence from independence. This
discussion is intended as a complement to the next sec-
tion, where we explicitly construct dependent random
variables which are difficult for the empirical COCO
to distinguish from independence. We illustrate the
case where X is countable, but our reasoning applies
equally to continuous spaces.

We begin with some notation. Consider a set P of
probability distributions Py, where x contains m en-
tries. The set P is split into two subsets: P; con-
tains distributions P,((i) of mutually independent ran-

dom variables P,((i) = H;nzl P,,, and Py contains dis-
tributions P{Y of dependent random variables. We
next introduce a test A(x), which takes a data set®

x ~ Pyx~», and returns

Alx)=1 ::cNP,((n), A(:c)zO::cNP,((in)

Given that the test sees only a finite sample, it cannot
determine with complete certainty whether the data
are drawn from P,(ﬁ) or P,((Q We call A an a-test when

sup E,_po(A(@) =1) < as

P,((i)E'Pi
in other words « upper bounds the probability of a
Type I error. Our theorem is as follows:

Theorem 7 (Universal limit on dependence
tests ). For any a-test, some fized n € N, and any
1—a>e>0, there exists Py & P; such that

Pep.(Alx)=0)>1—a—g¢

in other words, a dependence test with a low Type I
error can have a severe Type II error.

Proof. We introduce a distribution P,(ﬂ) = 7P,(f) +(1-
7)P,((d), where 0 < 7 < 1. Clearly, random variables

drawn from P,((V) are dependent. The probability of a
Type II error for this mixture is then

Pop) (A(z) = 0) Z Py (@

Z H ') la@=0 = > H VPO (xk) LA () =0

x k=1
= wap(g (A@)=0)  ="(1-a)
®We denote by & ~ Pxn the drawing of n i.i.d. samples
x:= (x1,...,%Xp) from Py.

where the sum following (a) is over all possible draws

of  from P,((Z), and [ 4 is the indicator function for
event A. Taking ~ very close to 1 (i.e. making the
dependent distribution very unlikely in the mixture)
proves the theorem. O

4.2 Kernel independence tests

We prove the existence of a dependent probability dis-
tribution for which COCO is small, but with a large
covariance between certain functions in F and G; we
then demonstrate that this also holds for the KCC,
KMI, and KGV. Although the population COCO is
not zero for this density, its small size will make this
dependence hard to detect unless a large data sam-
ple is available. We illustrate this phenomenon by
specifying a particular joint density f., (with distri-
bution Py ) chosen such that cov(p;(x), ¢i(y)) is large
for some large [ (meaning x,y have a non-trivial de-
pendence), but COCO(Pyy; F,G) is small. The intu-
ition behind our argument is made clear by re-writing

COCO for RKHSs as

cov (f(x),9(y))
1£ll=llgllg

This will obviously be small when the RKHS norms in
the denominator are much larger than the covariance
in the numerator: we will see that this motivates our
choice of density. More specifically, high order eigen-
functions of the kernel® (¢;(z) and ¢;(y) for large I)
have large RKHS norms, a fact widely exploited in
regression as a roughness penalty [21]. Thus, if the
high order eigenfunctions are prominent in f,, (i.e.,
for highly non-smooth densities), we expect COCO
to be small even when there exists an [ for which
cov(i1(x), pi(y)) is large.”

Theorem 8 (Dependent random variables can
have small COCO). There exists a density fy,
for which cov (pi(x),pi(y)) > B — € for non-trivial
B and arbitrarily small € > 0, yet for which
COCO(Py,; F,G) < v for an arbitrarily small v > 0.

COCO (Pyy; F,G) = sup
feF,geg

(4.1)

Proof. The proof is a sketch only: further detail is
given in [10]. We begin by constructing a density for
which cov (¢;(x), ¢i(y)) >  — €. This is written

fx,y(xa y) =+ B@l (J,')(p[ (y) (42)

where f,y(z,y) > 0 and [, (2,y)dedy = 1. The
first constraint requires oy — S min, , (i ()1 (y)) > 0,

See Theorem 3 for a definition of the eigenfunctions.
Note that the kernels in F and G may not be identical,
and the eigenfunctions ;(z) and ¢, (y) might therefore be
different. We use the arguments of the eigenfunctions to
distinguish between them, since this is unambiguous and
avoids messy notation.

"This reasoning can be extended to motivate kernel
choice for the detection of particular dependencies, al-
though this is beyond the scope of the present study. Note
also that an alternative Parzen-window based interpreta-
tion of kernel choice is given in [9].



which can be satisfied as long as the ¢;(z) and ¢;(y)
are absolutely bounded.® The second constraint af-
fects the covariance between kernel eigenfunctions,

(4.3)
i())Ey (5 (y))-

Indeed, this constraint causes C to have i, jth entries

Cij = cov(pi(®),9;(y))
== Exy(pi(x)p;(y)) — Ex(¢

Ciztjt =€, Cup =B+ e, (4.4)
where €;; denotes a quantity with absolute value ar-
bitrarily small for large enough ! (the proof requires
some tedious algebra, but is not difficult: notably, it

makes use of the decay result in Lemma 4).

We next expand the functions f and ¢ which de-
fine COCO (i.e. elements of the respective RKHSs
at which the supremum is attained) as f(z) =
e fipi(x) and g(y) = X272, G5 (y) (the expan-
sion coefficients are written as vectors f, g). Us-
ing these expansions, the numerator of (4.1) becomes

cov(f(x),9(y)) = £ Cg, and

oo o0

SO Ifillgsle+ 1fil lal 8

i=1 j=1

= |Illv 1glls e + /2l 131 B,

f'Cg <

where we replace all entries in C with their expressions
n (4.4), and e is the €;; with largest absolute value.
Lemma 4 ensures that ||f]|; and ||g]|; both converge.

In the case of the remaining term |f;||g]| 3, we divide
through by the norms in the denominator of COCO to

get
s (S0, 72 (#)7) (S ()7)
< Bk K,

and the right hand side approaches zero as [ — oo
thanks to Theorem 3.° O

We now address how the KCC [1] has the same limi-
tation, being upper bounded by a constant multiple of

8This condition is not satisfied for all Mercer kernels:
see [21, Exercise 2.24]. The assumption holds in most ev-
eryday cases we encounter (e.g. the Fourier basis), how-
ever, so it is reasonable in this context.

90On the basis of this proof, we might suppose that using
an RBF kernel with small width (and thus with a slow

decay of the coefficients l}f and l}f) would make COCO

larger when dependence takes the form (4.2) above, with
high order eigenfunctions ¢;(z), pi(y). While this is true,
the empirical estimate of COCO will become inaccurate
if the spacing between samples significantly exceeds the
kernel width: thus, there is a practical limit on how small
we can make the kernel.

=

COCO. The KCC is defined as
jn (Px,y; f: g)

o cov (£, g1v)
= p
FeF,9€G |\ /var (f (x)) + & f]|2 \/var

sHIFE g ||g cov (f*(x),9"(y))
k' COCO (Pyy; F,G),

) + llgllg
<
<

where f*, g* attain the supremum in the first line, and
we assume f and g to be bounded.

Finally, we demonstrate that the KMI [9] and KGV
[1], which are respectively extensions to COCO and
the KCC, have the same property. This follows since
the KMI can be written as —1ilog([" (1 — p?)),
where |p;| are upper bounded by COCO, and the
KGV as —1log([];, (1 —~7)), where the |v;| are up-
per bounded by the KCC. Small COCO will there-
fore cause small KMI, and small KCC will cause small
KGV.

5 Bounds

We give two convergence bounds in this section.
The first (and simplest) guarantees small population
COCO when the empirical COCO is small; the second,
which has a more involved derivation, guarantees that
if the empirical COCO is large, then the population
COCO is also large. The proofs are given in sketch
form only; rigorous derivations are provided in [10].
A consequence of these bounds is that the empirical
COCO converges to the population COCO at speed
1/y/n. This means that if we define the independence
test A(z) (Section 4.1) as the indicator that COCO is
larger than a term of the form Cy/log(1/a)/n with C
a constant, then A(z) is an a-test with type II error
upper bounded by a term approaching zero as 1/+/n.

Our first bound makes use of the following theorem,
which applies to U-statistics of the kind we encounter
in calculating covariances.

Theorem 9 (Positive deviation bound for one
sample U-statistics [11, p. 25]). Consider a col-
lection of n i.i.d. random variables (z1,...,z,). We
define the U-statistic
: 3 iyt i 170
i1 seensin \Zi1 o s+ 5 Ziy )
(n —r + 1) = 1oyeeesly 1 i

u:i=

nn—1)...

where the index set i} is the set of all r-tuples drawn
without replacement from {1,...,n}, and the function
h is called the kernel of the U-statistic. If a < h <b,

—2t2[n/r] ) '

Pu(u—Ey(u) > 1) <exp < (b—a)?

We now state the bound.

Theorem 10 (Upper bound on population
COCO). Assume that functions in F and G are



bounded a.s. by 1. Then for n > 1 and all § > 0,
with probability at least 1 — 4,

sup cov(f(x),g(y)) < sup cov(f(z),g(y)) + A.

fEF,geG fEF,geG

_  [2log(2/9) i
where A = (Va1 and we denote the empirical
covariance based on the sample z as

Z figi —

l#]
where f; == f(x;) and g; := g(y;).

cov(f(x),9(y)) :

n
Z fzgz)
i:l

Proof. First, we rearrange

sup cov(f(x),g(y)) — sup cov(f(z),g(y)) <
JEF,gEG fEF,geG

sup  (cov(f(x),g(y)) — cov(f(x), g(y))) -

feF,geG&

We can therefore ignore the suprema, and treat only
the random variables f := f(x) and g := g(y). To
complete the bound, we make the split

Pen gn (cov(f,g) —Cov(f,g9) > 1) <
Pf"vg" <__ Zflgl + E¢ g(fg) (1 - Oz)t> +

i=1

Pin gn

Z fig; —

z#]

E;(g) > at

The first term is bounded straightforwardly using Ho-
effding’s inequality [11]. To bound the second term
in the sum, we define the random vector z; := (f;, g;),
and the kernel h; ;(z;,z;) := f;g;. It is clear that The-
orem 9 then applies. We complete the proof by setting
a=2-V2 O

A lower bound on the population COCO is harder to
compute, since we have to deal with the suprema.
Theorem 11 (Lower bound on population
COCO). Assume functions in F' and G are bounded
a.s. by 1, and that the functions ky(z,x) < 1 and
ky(y,y) <1 forallz € X andy € Y. Then forn >1
and all 6 > 0, with probability at least 1 — 4,

sup cov(f,g) < sup
JEFgEG

Proof. We begin with a rearrangement of the suprema;

The first term is bounded using McDiarmid [18] and
symmetrisation in the usual way. In the case of the
second term, we begin with McDiarmid to get

Py yn su E >
X™ .y feFfeG TL n— 1 ;fzg] E.f vg | 2
E,» yn sup Z fzgg xnyg +1

fEF, gEG n z;ﬁ]
(a)
—nt?
< o7

We cannot symmetrise this expression directly: in-
stead, we first apply the Hoeffding decomposition and
then decouple, following [5]. This yields an upper
bound on the expectation (a) that we can symmetrise.
We do not go into detail, but the idea is to replace
certain of the random variables by independent copies.
After decoupling and symmetrisation, we obtain

zza, ( o)

i=1 i#£j

< 32E
(a) < 32E sup (n

f.9
—fx)g(yy) — fF(xi)g(y;) + f(XQ)g(y;’)>>

—|—4ESUPZ sz Xz (Yz)) (b))

fgil

where the o; are Rademacher random variables that
take values in {—1,1} with equal probability, o} are
1ndependent coples of i, X, xi are independent copies
of x;, and y}, y}' are independent copies of y;. To con-
clude the proof, it turns out that we do not need to
explicitly deal with these additional copies: instead,
we apply a simple additional bound (see [10]) to get

128

i#j

y“yz)

4 n
+_Ex" y'n Zkf(xuxl)kg(y;ayg)a

134 [181og2/s no Y| 4
cov(f,g) + o2 4 1210820 =
fEF,geG \/ﬁ n

and then substitute ky(z,z) < 1and k,(y,y) <1. O

sup  cov(f(z),g(y)) — sup covey(f(x),g(y)) © Experiments and discussion

fEF,geG fEF g€
n
< sup f(x
feF,96G< o ; )
sup Zf (zi)9(y;) — Exf(x)Eyg(y)

F,geG TL
fEF, g€ Z;é]

We previously applied COCO in the context of inde-
pendent component analysis (ICA) [9], where it per-
formed similarly to the kernel canonical correlation [1].
Thus, COCO has been established in practice as a
useful test of independence. In the present study, we
give preliminary results obtained when using COCO
to determine regions that show high dependence in



the macaque primary visual cortex. We are able to
monitor neural activity in three different ways: (a)
electrophysiology only with large electrode arrays, (b)
fMRI only, and (c) combined electrode and fMRI mea-
surements. The present section deals only with de-
pendence measures on the fMRI signals, but we are
currently expanding this analysis to cover a broader
range of acquisition techniques [17], so as to com-
pare the dependence found for these different types
of measurement. Our fMRI readings were taken us-
ing a 4.7T scanner with a sampling frequency of 4Hz
and a 96mmx96mm field of view (FOV), with resolu-
tion 256x256 and 0.5mm slice thickness, in accordance
with the procedure in [16]. The stimulus used was a
clip from “Star Wars”, which was chosen so as to ex-
cite a broad range of activity within the visual cortex.
Dependence was investigated for voxels in the primary
visual area (V1) for a total of 250 voxels, and the sig-
nal duration during stimulus was 250 seconds (1000
samples). The results obtained are an aggregate over
35 such experiments.

The observed fMRI signals were contaminated with
a breathing component. Since the macaque monkey
was under general anaesthetic during data acquisition,
breathing was mechanically assisted, and had a con-
stant frequency of approximately 0.4Hz. We modelled
this breathing as being of constant amplitude and lin-
early superposed on the haemodynamic response. This
model is motivated by the narrowness of the spec-
tral peaks at the breathing frequency and harmonics,
which suggests that any amplitude modulation of the
breathing signal is of very low frequency, and can be
assumed effectively constant. Thus, while we could
not directly recover the true breathing contamination
at each voxel, we were able to use the decrease in
the spectral peak at the breathing frequency, averaged
across all voxels, as a measure of success in removing
the breathing artefacts. Harmonics at integer multi-
ples of the fundamental frequency were modelled in the
same way. The exact frequency of the breathing signal
was found by averaging the spectrum over all voxels,
and the phase at each voxel was chosen to maximise
the projection in the time domain of the breathing si-
nusoid. Only voxels near large blood vessels were con-
taminated by the breathing signal, and thus a thresh-
old test was applied to the spectrum at each voxel, to
test whether a substantial breathing component was
visible. Where breathing was present, a sinusoid of
corresponding frequency and phase was projected out
in the time domain (thus also removing the associated
frequency domain sidelobes caused by finite signal du-
ration). The same procedure was used to remove the
first two harmonics. We did not band-pass filter the
signal to remove the breathing, as this would have
eliminated a greater portion of the spectral compo-
nents due to the haemodynamic activity.

As dependence measures between pairs of voxels, we
applied cross correlation between voxels, the mutual

information (MI) (computed using the method in [4]),
and COCO (using RKHSs with Gaussian kernels).
The variation in dependence between voxels was stud-
ied with all three methods, as a function of average
distance between voxels (in other words, we grouped
together all pairs of voxels an equal distance from each
other; we then clustered these pairs so as to draw to-
gether voxel pairs with similar distances). The regions
of interest (ROI) were constrained to be convex sets
so as to avoid incorrect distance estimates. Specifi-
cally, Euclidean distances at the image level may sig-
nificantly differ from the actual axonic distances con-
necting neural sites. We subtracted a baseline depen-
dence from each of the dependence measures, which
was obtained by averaging the dependence between
the V1 region and a test region of the brain, the latter
being unrelated to visual processing. The dependence
amplitudes were then divided by the standard devia-
tion in the average dependence between V1 and this
test region. Results are plotted in Figure 6.1.

Comparing the dependence measures before and af-
ter breathing removal shows significant effects of res-
piratory artefacts on the high order'® dependence vs.
distance curves (COCO and MI): this finding sug-
gests extreme caution for studies in humans, in which
respiration-induced signals cannot easily be modelled
due to low temporal sampling rates, as well as variable
respiration frequency and amplitude. Prior to breath-
ing removal, COCO and the MI overestimate the de-
pendence between voxels (the breathing artefacts be-
ing a source of considerable similarity), as does the
correlation, though to a lesser extent. This can be
explained by phase shifts between the breathing con-
tamination observed at different voxels, which reduce
the correlation but have less effect on more general
measures of dependence. The high order dependence
curves also flatten out at about 5mm once breathing
is removed, but continue to decay with distance when
breathing is present. By contrast, the correlation prior
to breathing removal is constant (to within observa-
tional uncertainty) after about 2mm; following breath-
ing removal, however, the point at which it flattens out
is more difficult to determine. Finally, compared with
the MI, COCO at short distances is a larger multiple
of the standard deviation in test region dependence,
which might make COCO a more reliable measure of
such short range dependencies. On the other hand,
both the MI and the correlation fall to a baseline level
of activity greater than that in the test region, which
COCO does not detect. Additional experiments on a
greater number of subjects and stimuli will be used to
verify these observations.

Further work will focus on the construction of
dependence-distance functions, using for instance the
well developed mathematical framework of flat brain-

0The correlation takes into account only second order
dependence, whereas COCO and the MI can detect depen-
dence of any order.
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Figure 6.1: Results before (black) and after (red) breathing removal, for COCO, the mutual information (MI),
and the correlation. The offset and scaling of the dependence is described in the main body of the text. The
horizontal axis displays the average distance between voxel pairs.

map generation [7]. Dependence tests that take into
account the fact that the signals are not i.i.d. will also
be compared with the present approaches. In addi-
tion, it is of interest to develop kernel-based depen-
dence measures for non-i.i.d. time series.
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