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Abstract

Consider a case where cause-effect relation-
ships among variables can be described as
a directed acyclic graph model. The instru-
mental variable (IV) method is well known as
a powerful tool for inferring the total effect of
a treatment variable X on a response variable
Y, even if there exist unobserved confounders
between X and Y. This paper proposes a cri-
terion to search for covariates which satisfy
the IV conditions in linear structural equa-
tion models. In addition, it is shown that
our criterion is applicable to the case where
all variables in a directed acyclic graph are
discrete. The results of this paper provide
a statistical justification for testing whether
the statistical data is generated by a model
involving IVs.

1 INTRODUCTION

Estimating total effects is an important problem in
many scientific domains. The back door criterion
(e.g. Pearl, 2000) and the instrumental variable (IV)
method (e.g. Bowden and Turkington, 1984) are two
main powerful tools to estimate total effects. How-
ever, in the case where unobserved confounders exist,
it may be difficult to apply the back door criterion
to estimating total effects. Under such circumstances,
it is beneficial to utilize the IV method. Here, a to-
tal effect 7,, of X on Y is a measure for evaluating
causal effects, and can be interpreted as the change of
the mean of a response variable Y when a treatment
variable X is changed by one unit through an external
intervention.

The IV method is well known as a powerful tool to
estimate total effects from observational data, in case
where unobserved confounders are at presence. There-
fore, the IV method has been studied by many re-
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searchers in practical sciences (e.g. Angrist et al, 1996;
Bowden and Turkington, 1984; Greenland, 2000). Tt is
also one of current hot topics in artificial intelligence
and statistics (e.g. Bollen and Bauer, 2004; Brito and
Pearl, 2002; Chu et al., 2001; Kuroki and Cai, 2004;
Lauritzen, 2004; Pearl, 2004; Scheines et al., 2001). In
the IV method, when we consider a linear regression
model Y = 7,, X 4+ U in the case where an unobserved
confounder U is correlated with X, the total effect
Tyz can be estimated through an observed variable Z
(called an TV) which is correlated with X but not with
U, and is given by o,./0,.. Here, 0. and 0,. are a
covariance between Y and Z and a covariance between
X and Z, respectively.

As many researchers have pointed out, a serious prob-
lem of the IV method is that it is difficult to test
whether a covariate satisfies the IV conditions from
observational data, since U is an unobserved variable.
In order to solve this problem, Pearl (1995) provided
the instrumental inequality as a necessary condition to
test whether a variable Z is an TV relative to (X,Y),
in the case where X is a discrete variable. However,
there is no testing method for IVs when X is con-
tinuous. Considering that there are many applications
regarding the IV methods in linear structural equation
models, it is necessary to develop a testing criterion in
this framework.

In this paper, we first introduce the tetrad difference
which has been used to test whether statistical depen-
dencies among observed variables are due to a single
common factor in factor analysis. It is shown that
the tetrad difference can be applied to linear case as
well as discrete case. Although searching for one la-
tent common factor is quite different from searching
for an IV, we will show that similar consideration is
helpful to provide a criterion to search for covariates
which satisfy the IV conditions. Pearl (1995) provided
an inequality to search for one instrumental variable,
while we propose an equation to search for two or more
IVs. Hence, our method may provide a tighter condi-



tion than Pearl (1995). Since it is the usual case in
practical science that there exist many observed co-
variates as well as unobserved confounders, if we can
find two or more covariates satisfying the IV condi-
tions, it is possible to apply IV method to estimating
total effects, whether such covariates are continuous or
discrete.

This paper is arranged as follows. In the next sec-
tion, basic graph terminologies are given. Section 3
describes previous studies about the tetrad difference,
and then we show that tetrad difference is applicable
to discrete case. On the basis of similar consideration,
section 4 provides testing criteria for conditional IVs
(Brito and Pearl, 2002) in both continuous case and
discrete case. Section 5 illustrates our results with an
example. Some further topics are presented in the final
section.

2 PRELIMINARIES

2.1 GRAPHS

A directed graph is a pair G = (V, E), where V is
a finite set of vertices and the set E of arrows is a
subset V' xV of ordered pairs of distinct vertices. An
arrow pointing from a vertex a to a vertex b indicates
(a,b)€E and (b,a) € E. The arrow is said to emerge
from a or point to b. If there is an arrow pointing from
a to b, a is said to be a parent of b, and b a child of a.
The set of parents of b is denoted as pa(b), and the set
of children of a as ch(a).

A path between a and b is a sequence a = ag, aq,
-+-, b= a, of distinct vertices such as (a;_1,a;)€FE or
(aj,a;—1)€E for all i = 1,2,---,n. A directed path
from a to b is a sequence a = aqg, ai, -+, b = a, of
distinct vertices such as (a;—1,a;)€F and (a;,a;—1)EE
for all ¢+ = 1,---,n. If there exists a directed path
from a to b, a is said to be an ancestor of b and b
a descendant of a. When the set of descendants of
a is denoted as de(a), the vertices in V'\(de(a)U{a})
are said to be the nondescendants of a. A directed
cycle is a sequence ag, a1, - - -, a,—1 of distinct vertices
such as (1) (a;_1,a;)€E and (a;,a,_1) €FE for all i =
1,---,n—1, and (2) (an_1,a0)€E.

If a directed graph has no directed cycles, then the
graph is said to be a directed acyclic graph.

2.2 BAYESIAN NETWORKS

..., be a strictly positive joint distribution of
vV ={V,--.,V,} and p,,,, the conditional distribu-
tion of V; given V;. Similar notations are used for other
distributions. Then, a graphical representation of the
conditional independencies among Vi, -+, V,, in form

of a directed acyclic graph is given in the following
way:

DEFINITION 1 (BAYESIAN NETWORK)
Suppose that a set of variables V' = {V;,...,V,,} and
a directed acyclic graph G = (V, E) are given. When
the joint distribution of V is factorized recursively ac-
cording to the graph G as the following equation, the
graph is called a Bayesian network.

Pyy v, = zl;[l p'v,-‘pa('v,-)7 (1)
When pa(V;) is an empty set, D, |pa(s,) is the marginal
distribution of v;. O

If a joint distribution is factorized recursively accord-
ing to the graph G, the conditional independencies im-
plied by the factorization (1) can be obtained from the
graph G according to the following criterion (Pearl,
1988):

DEFINITION 2 (D-SEPARATION)

Let X, Y, and Z be three disjoint subsets of vertices in
a Bayesian network G. Then Z is said to d-separate
X from Y, if along every path between a vertex in
X and a vertex in Y there exists a vertex w which
satisfies one of the following three conditions:

1. wisin Z, and one arrow on the path points to w
and the other arrow on the path emerges from w.

2. w is in Z, and two arrows on the path emerge
from w.

3. Neither w nor any descendant of w is in Z, but
two arrows on the path point to w.

If a path satisfies one of the conditions above, the path
is said to be blocked by Z. O

It can be shown that if Z d-separates X from Y in
a Bayesian network G then X is conditionally inde-
pendent of Y given Z in the corresponding recursive
factorization (1) (Geiger et al., 1990).

2.3 LINEAR STRUCTURAL EQUATION
MODEL

In the case where variables in V' are normally dis-
tributed, equation (1) provides a linear structural
equation model

Z 0, Vi + €,
Vjepa(Vi)

V; = i=1,...,n, (2

where av,,,; (720) is called a path coefficient. In the lin-
ear structural equation models discussed in this paper,
it is assumed that each variable in V' has mean 0, and



that random disturbances €,,, - -, €, are independent
and normally distributed. For further details of linear
structural equation models, see Bollen (1989).

Let 04y.. and (3y,.. be the conditional covariance of X
and Y given Z and the regression coefficient of z in the
regression model of Y on x and z, respectively. pgy.-
is a partial correlation coefficient of X and Y given Z,
and oy,.. is a conditional variance of V" given Z. In
the case where Z is an empty set, 0,4 and 3, are the
covariance of X and Y and the regression coefficient
of z in the regression model of Y on z, respectively. In
addition, p,, and oy, are the correlation coefficient of
X and Y and the variance of Y, respectively. Similar
notations are used for other parameters.

When a linear structural equation model is given ac-
cording to the graph G, if Z d-separates X from Y,
then 04y, = Byz-» = 0 (e.g. Spirtes et al., 1993).

3 TETRAD DIFFERENCE

3.1 LINEAR CASE

We consider the directed acyclic graph shown in
Fig.1 and the corresponding linear structural equation

model.
//U\\
X, o X X L X,

Fig.1: Directed acyclic graph (1)
As shown in Fig.1, U is a parent of each element of
X = (Xy,---,X,) and d-separates any two elements
of X. The covariance structure corresponding to Fig.1
can be described as

1
!
O-’LLU
where ¥,, and X_,., is a covariance matrix of X and
a conditional covariance matrix of X given U, respec-
tively. In addition, X, is a covariance matrix between
X and U. Similar notations are used for other matri-
ces.

Then, it can be understood that

1) ¥, is a positive diagonal matrix which satisfies
rank(X,, — Y,p) = 1 and X, — X, Is a positive
semidefinite matrix, and

2) Since 04,2,02,0; = (02;u02;u/0uu) (O uleiu/Oun)
= o-z,-zko-z]-zla

Uzizjo-zkzl - o-zizko-zjzl = 0 (4)

can be obtained.

For any distinct variables X;, X;, X, X;€ X (CV),
Spearman (1904, 1928) defined the tetrad difference
as the left hand side of equation (4). When the tetrad
difference is equal to zero, it is called a vanishing tetrad
difference. It is stated that the vanishing tetrad dif-
ference implies that the observed statistical dependen-
cies can be well explained by a single factor model
Xi =A\NU+e,, (i=1,---,p), where )\; is a constant
value and €, -+, €,, are independent.

The tetrad difference has been studied by many re-
searchers for decades. Bekker and de Leeuw (1987)
summarized the previous results into a single compre-
hensive theorem. To present this theorem, the fol-
lowing preliminaries are required. When there ex-
ists such a positive semidefinite diagonal matrix 2
that ¥,, — Q is a positive semidefinite matrix and
rank(X,, — Q) =1, ¥,, is said to be a Spearman ma-
trix, which provides statistical evidence that the ob-
served statistical dependencies can be well explained
by a single factor model (Bekker and de Leeuw, 1987).
In addition, any element of X,, is assumed to be
nonzero. With this preparation, Bekker and de Leeuw
(1987) provided the following theorem:

THEOREM 1 (Bekker and de Leeuw, 1987)
A covariance matrix Y., = (04,,,) of a set X includ-
ing four or more variables is a Spearman matrix if, and
only if, after sign changes of rows and corresponding
columns, all its elements are positive and such that

Oziz;0zpa; — Oz, Oxjz; — 0 (5)
and oo
Ll <Oz (6)
o-z]zk
for any distinct variables X;, X;, X, X;€X. O

If Theorem 1 holds true, then we can justify the as-
sumption that the observed statistical dependencies
can be generated by a single common factor. Regard-
ing the further discussion of models implied by Theo-
rem 1, see Bollen and Ting (2000), Spirtes et al. (1993)
and Xu and Pear] (1987).

3.2 DISCRETE CASE

In this section, we show that the similar result of The-
orem 1 holds true in the case where all variables in a
directed acyclic graph are dichotomous variables.

For dichotomous variables X,Y €V (a,b€{0,1}), let
Px—a,vy—p be a joint probability of X = a and ¥ = b,
and px—, a marginal probability of X = a. In addi-
tion, px—qy=s is a conditional probability of X = a
given Y = b (a,b€{0,1}). Similar notations are used
for other parameters.



Letting 04,., = Po,=1,2;,=1 ~ Pa,=1P2,=1 and 04,2, =
Paz;—1(1—=D,,—1) (These are correspondent to a covari-
ance between X; and X; and a variance of X;, respec-
tively), based on the Bayesian network shown in Fig.1,
since

(pzizl‘u:O - pzi:1|u:1)

O-ziz]-
X (pz]-:1|u:0 - pz]-::[luzl)pu:opuzl

for any X; and X;, we can obtain

Y2 = Diaglwiy, -, wpp]
Pzi=1ju=0 = Pz,=1ju=1
+pu=0pu=1 :
Pz, =1ju=0 — Pz,=1|u=1
><(pa01=1|u=0 - pau:l\u:la e

Here,

_ 2
Wi = Og,2; — (Pxi:uuzo - pzi=1|u=1) Pu=0Pu=1

fori=1,2,---,p. Then, since

Wii = pu:O(pzi:Hu:O - pii:Hu:O)
+pu:1(pzi:1‘u:1 - pii:1|u:1)20

for any X;, we can understand that Y., can be also
expressed as the form of Q4+ A\, where Q is a positive
definite diagonal matrix and A is a vector.

Thus, based on the consideration above, it is shown
that the same result as Theorem 1 holds true in the
case where all variables in a directed acyclic graph are
dichotomous. Regarding the further discussion, see
Pear] and Tarci (1986).

4 INSTRUMENTAL VARIABLE
(IV) METHOD

4.1 IDENTIFICATION

In this section, we introduce the conditional instru-
mental variable (IV) method (Brito and Pearl, 2002)
as the identifiability criterion for total effects. Here,
a total effect 7,, of X on Y is defined as the total
sum of the products of the path coefficients on the se-
quence of arrows along all directed paths from X to
Y. When a total effect can be determined uniquely
from the correlation parameters of observed variables,
it is said to be identifiable, that is, it can be estimated
consistently. Let G x be the graph obtained by delet-
ing from a graph G all arrows emerging from vertices
in X.

DEFINITION 3 (CONDITIONAL 1V)
If a set WU{Z} of variables satisfies the following con-
ditions relative to an ordered pair (X,Y") of variables

9 pxpzl\u:(] - pzpzl\u=1

in a directed acyclic graph G, then Z is said to be a
conditional instrumental variable (IV) given W rela-
tive to (X, Y).

1. A set W of variables is a subset of nondescendants
of X and Y in G, and

2. W d-separates Z from Y but not from X in Gx.
O

In linear structural equation models, if an observed
variable Z is a conditional IV given a set W of ob-
served variables relative to (X,Y), then the total ef-
fect 7y, of X on Y is identifiable, and is given by
Oyzw/0zzw (Brito and Pearl, 2002). When W is an
empty set in Definition 3, Z is called an instrumental

).variable (IV) (Bowden and Turkington, 1984).

When the sample conditional covariances 7,..,, and
Gz--w Of the conditional covariances .., and 0,4
are used to estimate the total effect 7,,, by the delta
method (Anderson, 1986), the asymptotic variance of
Gyzow|Oazaw 18 given by

N 2

Oyzw Uyy-w/azz-w - 2ﬁyz-w7—yz + Tyz

a.var = = B
NP%2w

(e.g. Kuroki and Cai, 2004), where n is the sample
size, and p,..,, is a partial correlation coefficient of X
and Z given W. Clearly, for a given W, the smaller
the value of the p2, , is, the larger the asymptotic vari-
ance of G454/ 0pz 1s. This fact provides an IV selec-
tion criterion for estimating total effects (e.g. Kuroki
and Cai, 2004).

(7)

axz-w

4.2 LINEAR CASE
In this section, we propose a criterion for testing
whether statistical data is generated by a model in-

volving IVs. For this purpose, consider the directed
acyclic graph shown in Fig.2.

I

Fig.2: Directed acyclic graph (2)

Y

Fig.2 shows that Z;, Z, and Z3 are conditional IVs
given W relative to (X,Y"). In addition, Z; || Z;|W
holds true (7,7 = 1,2,3(i*j)). Then, the following
conditional covariances can be obtained:

. (1,3 = 1,2,3(i # 7))

O-Z'Z'UJO- Tr-w .
Oy — — YT (i=1,2,3).
azx-w

o-ziac-wo'z]-z-w

o'zizj-zw -

Ozy-zw



Here, by Tyz = 0yz; /022w (i = 1,2,3), we can ob-
tained
Oziy-aw = o-a:z,--w(Tya: - ﬂyww)

Hence, letting Z = {Z,Z2,Z3}, the conditional co-
variance matrix of S = ZU{Y'} given X and W can
be provided as

ESS'Z}’LU

_ Ezz-w 0
B 0/ U'yy-mw + Oxx-w (Tyx - ﬂym-w)2

sz-w
- < Ozz-w >
Y Uzz~w(Tyz - ﬂyzw)
EI

x (\/%’ “V0ea-w(Tye = Bya-w))
= Q-2AX, (8)
where X! _ . is a conditional covariance vector of X

and Z given W. Similar notations are used for other
vectors. That is, a necessary condition that Z;, Z,
and Z3 are conditional IVs given W relative to (X,Y)
is that X4, can be reformulated as equation (8)
through a positive diagonal matrix €2 and a vector A.
This necessary condition, which is testable by obser-
vational data, holds true when there exist two or more
covariates which satisfy the IV conditions. In addition,
from equation (8), it can be understood that

1) Uzlzgmwo-z:gymw = Uzlz3~zw022y~zw = 02223-zw021y~zw
hold true in Fig.2, which is similar to the vanishing
tetrad differences.

2) when the (4, j) component of ¥4..,, in equation (8)
is positive, letting @ be the matrix obtained from the
unit matrix by multiplying the ¢ th or j th diagonal
component with —1, we can obtain

sts-wal = QQQI - (Q)‘)(Q)‘)I

That is, by sign changes of rows and corresponding
columns, all the off-diagonal elements of ;... in
equation (8) can become negative, since multiplica-
tions of the column vector A with @ finally turn all
the elements of QA into positive.

3) Yseaw — () is a negative semidefinite matrix and
rank (X0 — Q) = 1.

4) the (i,1) component of Q is equal to the conditional
variance of Z; given W (i = 1,2, 3) but the (4,4) com-
ponent of 2 is not equal to the conditional variance of
Y given W.

5) When 1., = By..., holds true, the last component
corresponding to Y in A is equal to zero. This occurs
in the case where W satisfies ”the back door criterion”
relative to (X,Y) (for "the back door criterion”, refer
to Pearl (2000)).

On the basis of the considerations above, when any
element of ¥4;.,,, is assumed to be nonzero and Sy,
is not consistent with 7,,, the following theorem can
be obtained:

THEOREM 2

For a covariance matrix Y,..., of a set § =
{Z1,---,Z,} (here, letting Z, = Y) including four or
more variables, after sign changes of rows and corre-
sponding columns of Y,,..., all its off-diagonal ele-
ments are negative and such that

o-z,-z]-zwo-zkzl-zw = o-z,-zk-zwo-z]-zlmw (9)

and o o

oS So-zz'zz'-zw (10)
az]- Zg - TWw

for any distinct variables Z;, Z;, Zy, Z;€S if, and only

if, there exist a positive definite diagonal matrix 2 and

a vector A satisfying that
Yesaw = 0 — AN, (11)
O

PROOF OF THEOREM 2

First, suppose that there exist a positive definite diag-
onal matrix €2 and a vector A, which satisfies equation
(11). Then, from the consideration 2) stated above,
it is trivial that all its off-diagonal elements can be
negative after sign changes of rows and corresponding
columns of ¥4;..,. In addition, since Oziziaw = —Aij
holds true for any Z; and Z;, we can obtain

Ozizj-2wO0zpzaw = (_/\iAj)(_/\k/\l)

= azizkmwozlzj-zw = o'zizyzwo'zkzj-zw

and

T2, zj 2wz zp 2w
Ozizizw — —
Uz]zk-zw
(=Xidj) (= Xidk)
(=AjAr)

= Ozz2w + )\? > 0.

- Uzizi-zw -

Thus, equations (9) and (10) can be obtained from

ESS'E’LU‘

Next, as we can assume that all off-diagonal elements
of Y520 are negative, by sign changes of rows and
corresponding columns of ¥ ;5. .., it will be shown that
a p dimensional vector X' = (\,---,),) exists such
that Y.s.0+AN is a positive diagonal matrix. Each
element of 0.,.,..0 (Zi7#Z;) can be described as

)

o-z,-z]-acw -

- |

= _)\i)\j-

Oz; zk~szZj zZprzw
Oz z1-zw

Uzizk-zwo-z,-z]-zw o-z]-zkmwo-z,-z]-zw

>1/2

Uz]zk-xw Oziz 2w



Here, from equation (9), it is noted that X\; =
(T2 — az].zk.M,Dl/2 takes the same value

regardless of the choice of Z; and Z,,, since
Uz,-zk-zwo-ziz]--xw

- Oziziaw0z;zj-aw _ Ozizpaw0zizp 2w

Uz]-zk-zw Uz]zl-zw Oz zy-zw

(Zi,Z;,Zy,7Z; and Z,, are distinct). On the other
hand, noting that equation (10) is automatically sat-
isfied since all off-diagonal elements of ¥.,,, are neg-
ative,

Ozizp-2w0zzj-2w

(Uz,-z,-~zw + )

Ozizijaw =

Oz -aw

Oz 21 -2w0 z; zj W

Uz]-zk-zw

= (Ouizyozw + A7) = A2

Therefore, the covariance structure of ¥,;...,, can be
described as Q = ¥,,.., + AN, Here, Q is a positive
diagonal matrix. Q.E.D.

4.3 DISCRETE CASE

In this section, we show that the similar result of
Theorem 2 holds true in the case where all vari-
ables in a directed acyclic graph are dichotomous vari-
ables. For this purpose, based on the directed acyclic
graph shown in Fig.2, suppose that py,—y ,—q w—p —
Py|e=0,u=a,w=b = Tye fOr any value aUb in a set UUW,,
that is, 7,, is constant regardless of aUb. Here, U
represents a set of unobserved confounders, and W
represents a set of observed covariates. In addition,
let Ozyw = pz:Ly:l‘w:b - pz:1|w:bpy:1|w:b for any
b. Similar notations are used for other parameters.
Then, for Zy, Zs, Z3, it is trivial that o.,.,.., = 0 holds
true from Fig.2. In addition,

py:l‘z,-:Lw:b - py:1|zi:0,w:b
= E (py:1|z:17u:a7w:b - py:l|z:0,u:a,w:b>
a
X (pgg:1|zi:1,u:a,w=b - px:l\z,-:O,u:a,w:b)pr:b
= Tyz (pz:llzizl’w:b - px:1|zi:0,w:b)' (12)

By using py—iju—s =
Pzi=1|w=b Pa=1|z;=1,w=b>

pz,-:0|w:bpz:1\zi:0,w:b +

Oxz;-w (pzzl\zi:Lw:b - pz:1|w:b)pz,-:1|w:b
= (pz:l‘zizl’w:b - pz:1|z,-:0,w:b)
XPz;=0]w=bPz;=1|w=b (13)
Furthermore, by using Py=1|w=b Py=1]2;,=0,w=b

szi=0|w=b + Py=1|z;=1,w=bPz;=1]w=b and equations
(12) and (13),

Oyz;-w

(py:1|zi:1,w:b - px|w:b)pzi:1\w:b

(py|zi:1,w:b - py:l‘zi:O,w:b)pzi:O|w:bpzi:1|w:b

TyaOaz;w-

Therefore, letting
Zss-zw = < lez-w Zzy-u; )
Ezy-u) Uyy.w
1 ZZZ"LU !
_Uzz.w < Oyz-w >(Zzw-waayx-w),

we can obtain the same formulation as equation (8) by

setting
Y , 0
0= < 0 oyyw— Ziz;’j + 0pzw(Tye — gzzjz)z )
and
DI

A= VOzz-w
vV Uococ-w(Tyz -

Thus, based on the consideration above, it can be un-
derstood that the same result as Theorem 2 holds true
in the case where all variables in a directed acyclic
graph are dichotomous.

amy.w)
Uxm-w

The instrumental inequality (Pearl, 1995) is well
known as a necessary condition for testing whether
a variable Z is an IV relative to (X,Y) in case where
any element of V is discrete in a Bayesian network.
This paper provides another testing criterion in dis-
crete case in addition to Pearl’s instrumental inequal-

ity.
5 APPLICATION

The above results are applicable to analyze the data
obtained from a study on setting up painting condi-
tions of car bodies, reported by Okuno et al. (1986).
The data was collected with the purpose of setting up
the process conditions, in order to increase transfer ef-
ficiency. The size of the sample is 38 and the variables
of interest, each of which has zero mean and variance
one, are the following:

Painting Condition : Dilution Ratio (X7),
Degree of Viscosity (Xs), Painting Temperature (Xg)

Spraying Condition : Gun Speed (X3),
Spray Distance (X4), Atomizing Air Pressure (X3),
Pattern Width (Xg), Fluid Output (X7)

Environment Condition : Temperature (Xg),
Degree of Moisture (X1g)

Response: Transfer Efficiency (V)

Concerning this process, Kuroki et al. (2003) pre-
sented the directed acyclic graph shown in Fig.3.



Fig.3 : Directed acyclic graph (3) (Kuroki et al., 2003)

Table 1 : The estimated correlation matrix based on Fig.3 (Kuroki et al., 2003)
X1 Xa X3 X4 X5 Xg X7 X3 Xo X10 Y
X; | 1.000 | 0.736 | -0.152 | 0.148 | 0.028 | -0.042 | 0.324 | 0.216 | 0.283 | -0.496 | -0.091
X, | 0736 | 1.000 | 0.210 | -0.331 | -0.063 | 0.095 | -0.479 | -0.684 | -0.635 | 0.684 | 0.326
X5 | 0.152 | 0.210 | 1.000 | -0.091 | -0.017 | 0.026 | 0.195 | -0.134 | -0.175 | 0.307 | 0.134
X4 | 0.148 | -0.331 | -0.091 | 1.000 | 0.191 | -0.286 | 0.184 | 0.397 | 0.521 | -0.298 | -0.614
X5 | 0.028 | -0.063 | -0.017 | 0.191 | 1.000 | 0.201 | 0.035 | 0.076 | 0.099 | -0.057 | -0.277
X | 0.042 | 0.095 | 0.026 | -0.286 | 0.201 | 1.000 | -0.053 | -0.114 | -0.149 | 0.085 | -0.250
X+ | 0.324 | 0.479 | 0.195 | 0.184 | 0.035 | -0.053 | 1.000 | 0.396 | 0.353 | -0.146 | -0.044
Xs | 0.216 | -0.684 | -0.134 | 0.397 | 0.076 | -0.114 | 0.396 | 1.000 | 0.761 | -0.435 | -0.493
X, | 0.283 | 0.635 | -0.175 | 0.521 | 0.099 | -0.149 | 0.353 | 0.761 | 1.000 | -0.571 | -0.475
X10 | -0.496 | 0.684 | 0.307 | -0.298 | -0.057 | 0.085 | -0.146 | -0.435 | -0.571 | 1.000 | 0.283
Y | -0.091 | 0.326 | 0.134 | -0.614 | -0.277 | -0.250 | -0.044 | -0.493 | -0.475 | 0.283 | 1.000

Based on the directed acyclic graph, Kuroki et al.
(2003) presented the estimated correlation matrix
shown in Table 1.

In order to estimate the effect of X; on Y,
since both X; and X3 are conditional IVs given
{X9,X10}, Tya, is identifiable through the observa-
tion of {Xl,X'y,Xg,Xlo,Y} or {XS,X7,X9,X10,Y},
and is given by Tyz, = Oya; womre/Tare; wore = 0-195
(1 = 1,3). In addition, X; || X5|{X9, X0} holds true.

Here, letting S = {X1, X3,Y}, from Table 1, we can
obtain

0.682 —0.069 0.0134
Seseragee = | —0.069  0.840  0.0130
0.0134 0.0130 0.756
0.754 0.000 0.000
= | 0.000 0.906 0.000
0.000 0.000 0.756
0.268
—[ 0257 | (0.268,0.257,—0.051), (14)
—0.051

which is consistent with the form of equation (8). In
addition, all the off-diagonal elements of X s...z0a1,
are negative after sign changes of the third rows
and the third columns. Furthermore, we can obtain
Ouiaq-zorry = 0.704 and Ouazq.20210 = 0.906 from Ta-
ble 1, which are consistent with the (1,1) and the (2,2)
components of diagonal matrix in equation (14), re-
spectively. However, the (3,3) component is not equal
t0 Oyy.29a21,- This result indicates that both X; and
X3 can be regarded as conditional IVs given {Xg, X710}
relative to (X7,Y).

Here, noting that the numerator of equation (7) is not
dependent on the selection of the IVs, we can obtain
from Table 1,

Oyay-
Yz1-T9T1Q
a.var <—A > 2 0.270
Oziz7-w9x10 p1317'19110 _ = 0.870
= = u. s

A 2 -
a.var < 0y13'19110 > p1117~19110 0310

63337'I9310
which indicates that X provides a smaller asymptotic
variance of the total effect than X3.

6 CONCLUSION

Instrumental variable method is a powerful tool to es-
timate total effects when unobserved variables are at
presence. In order to identify covariates which satisfy
the IV conditions, this paper proposed a method to
test whether statistical data is generated by a model
involving IVs. We showed that this method is appli-
cable to both continuous case and discrete case. Thus,
the results of this paper enable us apply the IV method
to wider situations than before.

Finally, we would like to give some further topics.
First, as we pointed out in section 1, our method may
provide a tighter condition for IVs than Pearl’s in-
strumental inequality. However, we did not provide
the detailed discussion because of lack of space. In
our opinion, a combination of Pearl’s instrumental in-
equality and our criterion can provide tighter condi-
tions than each of them. This requires further discus-
sion. Second, when two or more covariates satisfy the
IV conditions, two important problems occur: one is



the IV selection problem, and the other is the robust
problem of causal claims through IVs (Pearl, 2004).
Although the result of Kuroki and Cai (2004) can be
used to solve the former problem, we leave the detailed
discussion of applying our results to the latter problem
for future research.
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