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Abstract

We introduce a general concept of proba-
bilistic interventions in Bayesian networks.
This generalizes deterministic interventions,
which fix nodes to certain states. We pro-
pose “pushing” variables in the direction of
target states without fixing them. We formal-
ize this idea in a Bayesian framework based
on Conditional Gaussian networks.

1 Introduction

In modern biology, the key to infering gene function
and regulatory pathways are experiments with inter-
ventions into the normal course of action in a cell. A
common technique is to perturb a gene of interest ex-
perimentally and to study which other genes’ activity
or phenotypic features are effected. Bayesian networks
present a prominent approach to derive a theoretical
model from these experiments (Pe’er et al., 2001; Yoo
et al., 2002; Friedman, 2004): genes are represented by
vertices of a network and the task is to find a topol-
ogy, which explains dependencies between the genes.
When learning from observational data only, groups of
Bayesian networks may be statistically indistinguish-
able (Verma and Pearl, 1990). Information about ef-
fects of an intervention helps to resolve such equiva-
lence classes by including causal knowledge into the
model (Tian and Pearl, 2001). The final goal is to
learn a graph structure which not only represents sta-
tistical dependencies, but also causal relations between
genes.

Manipulating the expression level of a gene can be
done in a variety of ways (Alberts et al., 2002). A
gene’s expression level can be down-regulated by sev-
eral techniques including
1. creating animals or cell lines in which the gene is

non-functional. This is called a knockout.

2. exposing a cell or animal to environmental stress
to inhibit the function of certain genes or proteins.

3. partially destroying the RNA transcribed from the
gene which itself is left intact. This is the recently
introduced method of RNA interference (RNAi).

All three examples have in common that the gene’s
expression level is pushed towards a “no expression”
state. Only in the first example, however, the inter-
vention leads to a completely unfunctional gene. In
RNAi the gene is still active, but silenced. It is less
active than normal due to human intervention. Hence,
we do not fix the state of the gene, but push it towards
lower activities. In addition this pushing is random-
ized to some extent: the experimentalist knows that
he has silenced the gene, but he can not say exactly
by how much.

It is crucial that models reflect the way data was gen-
erated in the perturbation experiments. In Bayesian
structure learning, Tian and Pearl (2001) show that
interventions can be modeled by imposing different pa-
rameter priors when the gene is actively perturbed or
passively observed. They only distinguish between two
kinds of interventions: most generally, interventions
that change the local probability distribution of the
node within a given family of distributions, and as a
special case, interventions that fix the state of the vari-
able deterministically. The first is called a mechanism
change; it does not assume any prior information on
how the local probability distribution changes. The
second type of intervention, which fixes the state of
the variable, is called a do-operation and is treated
in detail in (Pearl, 2000; Spirtes et al., 2000). A do-
operation is used in almost all applications of inter-
ventional learning in Bayesian networks (e.g. Yoo and
Cooper, 2003; Yoo et al., 2002; Steck and Jaakkola,
2002; Tong and Koller, 2001; Pe’er at al., 2001; Mur-
phy, 2001; Cooper, 2000; Cooper and Yoo, 1999).

To model biological experiments as described above
we focus on interventions, which specifically concen-



trate the local distribution at a certain node around
some target state. We will call them pushing interven-
tions, they are examples of mechanism changes with
prior knowledge. The do-operator is a special case of
a pushing intervention, which we call a hard interven-
tion. In this paper, we generalize hard interventions to
soft interventions: The local probability distribution
only centers more around the target value without be-
ing fixed. This generalization is necessary to cope with
experiments as in the gene perturbation examples 2
and 3 above. If we treat them as unfocussed mecha-
nism changes we lose valuable information about what
kind of intervention was performed. Thus, we need a
concept of interventions, which is more directed than
general mechanism changes, but still softer than de-
terministic fixing of variables.

The goal of the paper is to develop a theory for learning
a Bayesian network when data from different (hard or
soft) pushing interventions of the network is available.
We first explain how soft interventions can be modeled
by changing the prior distribution in Section 2. A soft
intervention can be realized by introducing a “push-
ing parameter”, which captures the pushing strength.
We propose a concrete parametrization of the pushing
parameter in the classical cases of discrete and Gaus-
sian networks. Hard interventions, which have been
formally described by choosing a Dirac prior in (Tian
and Pearl, 2001), can then be interpreted as infinite
pushing.

Section 3 summarizes the results in the general setting
of Conditional Gaussian networks. This extends the
existing theory on learning with hard interventions in
discrete networks to learning with soft interventions in
networks containing discrete and Gaussian variables.

The concluding Section 4 deals with probabilistic soft
interventions: in this set-up the pushing parameter
becomes a random variable and we assign a hyperprior
to it. Hence, we account for the experimentalists lack
of knowledge on the actual strength of intervention by
weighted averaging over all possible values.

2 Pushing interventions in Bayesian
networks

A Bayesian network is a graphical representation of
the dependency structure between the components of a
random vector X. The individual random variables are
associated with the vertices of a directed acyclic graph
(DAG) D, which describes the dependency structure.
Once the states of its parents are given, the proba-
bility distribution of a given node is fixed. Thus, the
Bayesian network is completely specified by the DAG
and the local probability distributions (LPDs).

Although this definition is quite general, there are ba-
sically three types of Bayesian networks which are used
in practice: discrete, Gaussian and Conditional Gaus-
sian (CG) networks. CG networks are a combination
of the former two and will be treated in more detail
in Section 3, for the rest of this section we focus on
discrete and Gaussian networks.

In discrete and Gaussian networks, LPDs are taken
from the family of the multinomial and normal distri-
bution, respectively. In the theory of Bayesian struc-
ture learning, the parameters of these distributions are
not fixed, but instead a prior distribution is assumed
(Cooper and Herskovits, 1992; Geiger and Heckerman,
1994; Bøttcher, 2004). The priors usually chosen be-
cause of conjugacy are the Dirichlet distribution in the
discrete case and the Normal-inverse-χ2 distribution in
the Gaussian case. Averaging the likelihood over these
priors yields the marginal likelihood – the key quantity
in structure learning (see Section 3).

An intervention at a certain node in the network can in
this setting easily be modeled by a change in the LPDs’
prior. When focusing on (soft) pushing interventions,
this change should result in an increased concentration
of the node’s LPD around the target value. We model
this concentration by introducing a pushing parame-
ter w which is meant to measure the strength of the
pushing — a higher value of w results in a stronger con-
centration of the LPD. We now explain in more detail
how this is done for discrete and Gaussian networks.
Since the joint distribution p(x) in a Bayesian network
factors according to the DAG structure in terms only
involving a single node and its parents, it will suffice
to concentrate on one such family of nodes.

2.1 Pushing by Dirichlet priors

We denote the set of discrete nodes by ∆ and a dis-
crete random variable at node δ ∈ ∆ by Iδ. The set of
possible states of Iδ is Iδ. The parametrization of the
discrete LPD at node δ is called θδ. For every configu-
ration ipa(δ) of parents, θδ contains a vector of proba-
bilities for each state iδ ∈ Iδ. Realizations of discrete
random variables are multinomially distributed with
parameters depending on the state of discrete parents.
The conjugate prior is Dirichlet with parameters also
depending on the state of discrete parents:

Iδ | ipa(δ), θδ ∼ Multin(1, θδ|ipa(δ)
),

θδ|ipa(δ)
∼ Dirichlet(αδ|ipa(δ)

).
(1)

We assume that the αδ|ipa(δ)
are chosen to respect like-

lihood equivalence as in (Heckerman et al., 1995). Do-
ing a pushing intervention at node δ amounts to chang-
ing the prior parameters such that the multinomial
density concentrates at some target value j. We for-



Figure 1: Examples of pushing a discrete variable with
three states. Each triangle represents the sample space
of the three-dimensional Dirichlet distribution (which
is the parameter space of the multinomial likelihood of
the node). The left plot shows a uniform distribution
with Dirichlet parameter α = (1, 1, 1). The other two
plots show effects of pushing with increasing weight:
w = 3 in the middle and w = 10 at the right. In each
plot 1000 points were sampled.

malize this by introducing a pushing operator P de-
fined by

P(αδ|ipa(δ)
, wδ, j) = αδ|ipa(δ)

+ wδ · 1j , (2)

where 1j is a vector of length |Iδ| with all entries zero
except for a single 1 at state j. The pushing parame-
ter wδ ∈ [0,∞] determines the strength of intervention
at node δ: if wδ = 0 the prior remains unchanged, if
wδ = ∞ the Dirichlet prior degenerates to a Dirac dis-
tribution and fixes the LPD to the target state j. Fig-
ure 1 shows a three-dimensional example of increasing
pushing strength wδ.

2.2 Pushing by Normal-inverse-χ2 priors

The set of Gaussian nodes will be called Γ and we de-
note a Gaussian random variable at node γ ∈ Γ by Yγ .
In the purely Gaussian case it depends on the values
of parents Ypa(γ) via a vector of regression coefficients
βγ . If we assume that βγ contains a first entry β

(0)
γ ,

the parent-independent contribution of Yγ , and attach
to Ypa(γ) a leading 1, we can write for Yγ the standard
regression model (Bøttcher, 2004):

Yγ | βγ , σ2
γ ∼ N(Y>

pa(γ)βγ , σ2
γ),

βγ | σ2
γ ∼ N(m, σ2

γM
−1),

σ2
γ ∼ Inv-χ2(ν, s2).

(3)

We assume that the prior parameters m,M, ν, s2 are
chosen as in (Bøttcher, 2004). To push Yγ to a value k

we exchange m and s2 by (m′, s′
2) = P((m, s2), wγ , k)

defined by

m′ = e−wγ ·m + (1− e−wγ ) · k11,

s′
2 = s2/(wγ + 1),

(4)

where k11 is a vector of length |ipa(γ)| + 1 with all
entries zero except the first, which is k. We use P for

the pushing operator as in the case of discrete nodes;
which one to use will be clear from the context. Again
wγ ∈ [0,∞] represents intervention strength.

The exponential function maps the real valued w into
the interval [0, 1]. The exponential decay towards 0
ensures that by increasing w interventions quickly gain
in strength. The interventional prior mean m′ is a
convex combination of the original mean m with a
“pushing” represented by k11. If w = 0 the mean of
the normal prior and the scale of the inverse-χ2 prior
remain unchanged. As w → ∞ the scale s′

2 goes to
0, so the prior for σ2 tightens at 0. At the same time,
the regression coefficients of the parents converge to 0
and β0 goes to value k. All in all, with increasing w
the distribution of Yγ peaks more and more sharply at
Yγ = k.

Note that the discrete pushing parameter wδ and the
Gaussian pushing parameter wγ live on different scales
and will need to be calibrated individually.

2.3 Hard pushing

Hard pushing means to make sure that a certain node’s
LPD produces almost surely a certain target value. It
has been proposed by Tian and Pearl (2001) to model
this by imposing a Dirac prior on the LPD of the node.
Although the Dirac prior is no direct member of nei-
ther the Dirichlet nor the Normal-inverse-χ2 family of
distributions it arises for both of them when taking
the limit w → ∞ for the pushing strength. Tian and
Pearl (2001) give an example for discrete networks,
which can easily be extended to Gaussian networks by

p(βγ , σ2
γ | do(Yγ = k)) =

d(β(0)
γ − k)

∏
i∈pa(γ)

d(β(i)
γ ) · d(σ2

γ). (5)

Here, d(·) is the Dirac function. Averaging over this
prior sets the variance and the regression coefficients
to zero, while β

(0)
γ is set to k. Thus, the marginal

distribution of Yγ is fixed to state k with probability
one.

2.4 Modeling interventions by policy
variables

Hard interventions can be modeled by introducing a
policy variable as an additional parent node of the vari-
able at which the intervention is occuring (Pearl, 2000;
Spirtes et al., 2000; Lauritzen, 2000). In the same way
we can use policy variables to incorporate soft inter-
ventions. For each node v, we introduce an additional
parent node Fv (“F” for “force”), which is keeping
track of whether an intervention was performed at Xv

or not, and if yes, what the target state was. For a



discrete variable Iδ, the policy variable Fδ has state
space Iδ ∪ ∅ and we can write

p(θδ|ipa(δ),fδ
) =

=

{
Dirichlet(αδ|ipa(δ)

) if Fδ = ∅,
Dirichlet(α′δ|ipa(δ)

) if Fδ = j,

(6)

where α′δ|ipa(δ)
= P(αδ|ipa(δ)

, wδ, j) is derived from
αδ|ipa(δ)

as defined in Eq. 2. For a continuous vari-
able Yγ , the policy variable Fγ has state space IR ∪ ∅
and we can write

p(βγ|fγ
, σ2

γ|fγ
) =

=

{
N(m,M) · Inv-χ2(ν, s2) if Fγ = ∅,
N(m′,M) · Inv-χ2(ν, s′2) if Fγ = k,

(7)

where (m′, s′
2) = P((m, s2), wγ , k) as defined in Eq. 4.

Equations 6 and 7 will be used in section 3.2 to
compute the marginal likelihood of Conditional Gaus-
sian networks from a mix of interventional and non-
interventional data.

3 Pushing in Conditional Gaussian
networks

In this section we summarize the results in the gen-
eral framework of Conditional Gaussian networks and
compute a scoring metric for learning from soft inter-
ventions.

3.1 Conditional Gaussian networks

Conditional Gaussian (CG) networks are Bayesian net-
works encoding a joint distribution over discrete and
continuous variables. We consider a random vector X
splitting into two subsets: I containing discrete vari-
ables and Y containing continuous ones. The depen-
dencies between individual variables in X can be repre-
sented by a directed acyclic graph (DAG) D with node
set V and edge set E. The node set V is partitioned as
V = ∆ ∪ Γ into nodes of discrete (∆) and continuous
(Γ) type. Each discrete variable corresponds to a node
in ∆ and each continuous variable to a node in Γ. The
distribution of a variable Xv at node v only depends
on variables Xpa(v) at parent nodes pa(v). Thus, the
joint density p(x) decomposes as

p(x) = p(i,y) = p(i)p(y|i)

=
∏
δ∈∆

p(iδ|ipa(δ)) ·
∏
γ∈Γ

p(yγ |ypa(γ), ipa(γ)). (8)

The discrete part, p(i), is given by an unrestricted
discrete distribution. The distribution of continuous
random variables given discrete variables, p(y|i), is

multivariate normal with mean and covariance matrix
depending on the configuration of discrete variables.
Since discrete variables do not depend on continuous
variables, the DAG D contains no edges from nodes in
Γ to nodes in ∆.

For discrete nodes, the situation in CG networks is
exactly the same as in the pure case discussed in Sec-
tion 2: The distribution of Iδ|ipa(δ) is multinomial and
parametrized by θδ. Compared to the purely Gaussian
case treated in Section 2, we have for Gaussian nodes
in CG networks an additional dependency on discrete
parents. This dependency shows in the regression co-
efficients and the variance, which now not only depend
on the node, but also on the state of the discrete par-
ents:

Yγ | βipa(γ) , σ
2
ipa(γ)

∼ N(Y>
pa(γ)βipa(γ) , σ2

ipa(γ)
). (9)

As a prior distribution we again take the conjugate
normal-inverse-χ2 distribution as in Eq. 3. For further
details on CG networks we refer to (Lauritzen, 1996;
Bøttcher, 2004).

3.2 Learning from interventional and
non-interventional data

Assuming an uniform prior over network structures D,
the central quantity to be calculated is the marginal
likelihood p(d|D) (Heckerman et al., 1995). In the case
of only one type of data it can be written as

p(d|D) =
∫

Θ

p(d|D, θ)p(θ|D) dθ. (10)

Here p(θ|D) is the prior on the parameters θ of the
LPDs. If the dataset contains both interventional and
non-interventional cases, the basic idea is to choose pa-
rameter priors locally for each node as in Eq. 6 and 7
according to whether a variable was intervened in a
certain case or not. We will see that this strategy ef-
fectively leads to a local split of the marginal likelihood
into an interventional and a non-interventional part.

3.2.1 A family-wise view of marginal
likelihood

To compute the marginal likelihood of CG networks on
interventional and non-interventional data, we rewrite
Eq. 10 in terms of single nodes such that the theory
of (soft) pushing from Section 2 can be used. In the
computation we will use the following technical utili-
ties:

1. The dataset d consists of N cases x1, . . . ,xN ,
which are sampled independently. Thus we can
write p(d|D, θ) as a product over all single case
likelihoods p(xc|D, θ), c = 1, . . . , N .



2. The joint density p(x) factors according to the
DAG D as in Eq. 8. Thus for each case xc we can
write p(xc|D, θ) as a product over node contribu-
tions p(xc

v|xc
pa(v), θv) for all v ∈ V .

3. We assume parameter independence: the param-
eters associated with one variable are indepen-
dent of the parameters associated with other vari-
ables, and the parameters are independent for
each configuration of the discrete parents (Heck-
erman et al., 1995) This allows us to decompose
the prior p(θ|D) in Eq. 10 into node-wise pri-
ors p(θv|ipa(v)

|D) for a given parent configuration
ipa(v).

4. All interventions are soft pushing. For a given
node, intervention strength and target state stay
the same in all cases in the data, but of course dif-
ferent nodes may have different pushing strengths
and target values. This constraint just helps us to
keep the following formulas simple and can easily
be dropped.

These four assumptions allow a family-wise view of the
marginal likelihood. Before we present it in a formula,
it will be helpful to introduce a batch notation. In
CG networks, the parameters of the LPD at a certain
node depend only on the configuration of discrete par-
ents. This holds for both discrete and Gaussian nodes.
Thus, when evaluating the likelihood of data at a cer-
tain node, it is reasonable to collect all cases in a batch,
which correspond to the same parent configuration:

p(d|D, θ)

=
∏
c∈d

p(xc|D, θ) =
∏
c∈d

∏
v∈V

p(xc
v|xc

pa(v), θv)

=
∏
v∈V

∏
ipa(v)

∏
c:ic

pa(v)=ipa(v)

p(xc
v|icpa(v),ypa(v), θv)

(11)

The last formula is somewhat technical: If the node v
is discrete, then ypa(v) will be empty, and usually not
all parent configuration ipa(v) are found in the data, so
some terms of the product will be missing.

For each node we will denote the cases with the same
joint parent state by Bipa(v) . When learning with inter-
ventional data, we have to distinguish further between
observations of a variable which were obtained pas-
sively and those that are result of intervention. Thus,
for each node v we split the batch Bipa(v) into one con-
taining all observational cases and one containing the
interventional cases:

Bobs
ipa(v)

= {c ∈ d : icpa(v) = ipa(v)

and no intervention at v},
Bint

ipa(v)
= {c ∈ d : icpa(v) = ipa(v)

and intervention at v}.

If there is more than one type of intervention applied
to node v, the batch containing interventional cases
has to be split accordingly. Using this notation we
can now write down the marginal likelihood for CG
networks in terms of single nodes and parents:

p(d|D) =∏
v∈V

∏
ipa(v)

∫
Θ

∏
Bobs

ipa(v)

p(xo
v|ipa(v),yo

pa(v), θv)p′(θv|D) dθv ×

∏
v∈V

∏
ipa(v)

∫
Θ

∏
Bint

ipa(v)

p(xe
v|ipa(v),ye

pa(v), θv)p′′(θv|D,wv) dθv.

(12)

At each node, we use distributions and priors as de-
fined in Eq. 6 for discrete nodes and Eq. 7 for Gaussian
nodes. The non-interventional prior p′ corresponds to
Fv = ∅ and the interventional prior p′′ corresponds to
Fv equalling some target value. We denoted the in-
tervention strength explicitly in the formula, since we
will focus on it further when discussing probabilistic
soft interventions in Section 4.

Equation 12 consists of an observational and an inter-
ventional part. Both can further be split into a discrete
and a Gaussian part, so we end up with four terms to
consider.

3.2.2 Discrete observational part

To write down the marginal likelihood of discrete ob-
servational data, we denote by niδ|ipa(δ)

the number of
times we passively observe Iδ = iδ in batch Bobs

ipa(δ)
, and

by αiδ|ipa(δ)
the corresponding pseudo-counts of the

Dirichlet prior. Summation of αiδ|ipa(δ)
and niδ|ipa(δ)

over all iδ ∈ Iδ is abbreviated by αipa(δ) and nipa(δ) ,
respectively. Then, the marginal likelihood of the dis-
crete data d∆ can be written as

p(d∆ | D) =
∏
δ∈∆

∏
ipa(δ)

(
Γ(αipa(δ))

Γ(αipa(δ) + nipa(δ))
×

∏
iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ|ipa(δ)

)
Γ(αiδ|ipa(δ)

)

)
,

(13)

This result was first obtained by Cooper and Her-
skovits (1992) and is further discussed in (Heckerman
et al., 1995).

3.2.3 Discrete interventional part

Since interventions are just changes in the prior, the
marginal likelihood of the interventional part of dis-
crete data is of the same form as Eq. 13. The prior
parameters αiδ|ipa(δ)

are exchanged by α′iδ|ipa(δ)
=



P(αiδ|ipa(δ)
, wδ, j) as given by Eq. 2, and the counts

niδ|ipa(δ)
are exchanged by n′iδ|ipa(δ)

taken from batch
Bint

ipa(δ)
.

In the limit wδ → ∞ this part converges to one and
vanishs from the overall marginal likelihood p(d|D).
This special case was already shown in (Cooper and
Yoo, 1999; Tian and Pearl, 2001).

3.2.4 Gaussian observational part

All cases yγ in batch Bobs
ipa(γ)

are sampled independently
from a normal distribution with fixed parameters. If
we gather them in a vector yγ and the corresponding
states of continuous parents as rows in a matrix Pγ ,
we yield the standard regression scenario

yγ ∼ N(Pγβγ , σ2
γI), (14)

where I is the identity matrix. As a prior distribu-
tion we choose normal-inverse-χ2 as shown in Eq. 3.
Marginalizing with respect to βγ and σ2

γ yields a multi-
variate t-distribution of dimension |Bobs

ipa(γ)
|, with loca-

tion vector Pm, scale matrix s(I + PM−1P>), and ν
degrees of freedom. The density function can be found
in many textbooks (e.g. Gelman et al., 1996).

When using data from different batches, every parame-
ter above carries an index “ipa(γ)” indicating that it de-
pends on the state of the discrete parents of the Gaus-
sian node γ. Multiplying t-densities for all nodes and
configurations of discrete parents—the outer double-
product in Eq. (12)—yields the marginal likelihood of
the Gaussian part. See Bøttcher (2004) for details.

3.2.5 Gaussian interventional part

Here we consider cases yγ in batch Bint
ipa(γ)

. We col-
lect them in a vector and can again write a regression
model like in Eq. 14. The difference to the observa-
tional Gaussian case lies in the prior parameters. They
are now given by Eq. 4. The result of marginaliza-
tion is again a t-density with parameters as above, just
m, s are exchanged by (m′, s′) = P((m, s), wγ , k). The
Gaussian interventional part is then given by a prod-
uct of such t-densities over nodes and discrete parent
configurations.

If we use the hard intervention prior in Eq. 5 instead,
the Gaussian interventional part integrates to one and
vanishs from the marginal likelihood in Eq. (12). This
is the extension of the results in (Cooper and Yoo,
1999) to Gaussian networks.

4 Probabilistic soft interventions

In Section 2 we introduced the pushing operator
P(·, wv, tv) to model a soft intervention at a discrete

or Gaussian node v. The intervention strength wv is
a parameter, which has to be chosen before network
learning. There are several possibilities, how to do it:

• If there is solid experimental experience on how
powerful interventions are, this can be reflected in
an appropriate choice of wv. An obvious problem
is that wv needs to be determined on a scale that
is compatible with the Bayesian network model.

• If there is prior knowledge on parts of the network
topology, the parameter wv can be tuned until the
result of network learning fits the prior knowledge.

Note again that by the parametrization of pushing
given in Section 2, the pushing strengths for discrete
and Gaussian nodes live on different scales and have
to be calibrated separately.

However, a closer inspection of the biological experi-
ments, which motivated the theory of soft pushing in-
terventions, suggests to treat the intervention strength
wv as a random variable: In gene silencing an inhibit-
ing molecule (a double-stranded RNA in case of RNAi)
is introduced into the cell. This usually works in a
high percentage of affected cells. In the case of suc-
cess, the inhibitor still has to spread throughout the
cell to silence the target gene. This diffusion process is
stochastic and consequently causes experimental vari-
ance in the strength of the silencing effect.

These observations suggest to assign a prior distri-
bution p(wv) to the intervention strength. That is,
we drop the assumption of having one intervention
strength in all cases, but instead average over possi-
ble values of wv. For simplicity we assume there is
only a limited number of possible values of wv, say,
w

(1)
v , . . . , w

(k)
v , with an arbitrary discrete distribution

assigned to them. Then we can express our inabil-
ity to control the pushing strength in the experiment
deterministically by using a mixed prior of the form:

p(θv|D) =
k∑

i=1

qk p(θv|D,w(k)
v ). (15)

Here, the mixture coefficients qk = p(w(k)
v ) are the

prior probabilities of each possible pushing strength.
The terms p(θv|D,w

(k)
v ) correspond to Dirichlet den-

sities in the discrete case and Normal-inverse-χ2 den-
sities in the Gaussian case. In RNAi experiments,
w

(1)
v , . . . , w

(k)
v can be estimated from the empirical dis-

tribution of measured RNA degradation efficiencies in
repeated assays.

Mixed priors as in Eq. 15 are often used in biological
sequence analysis to express prior knowledge which is



not easily forced into a single distribution. See (Durbin
et al., 1998) for details.

If we substitute the prior p′′(θv|D,wv) in the interven-
tional part of Eq. 12 with the mixture prior in Eq. 15,
the marginal likelihood of a family of nodes is a mix-
ture of marginal likelihoods corresponding to certain
values w

(k)
v weighted by mixture coefficients qk.

5 Conclusion

Our work extends structure learning from interven-
tional data into two directions: from learning discrete
networks to learning mixed networks and from learning
with hard interventions to learning with soft interven-
tions.

Soft interventions are focussed on a specific target
value of the variable of interest and concentrate the
local probability distribution there. We proposed
parametrizations for pushing discrete and continuous
variables using Dirichlet and Normal-inverse-χ2 priors,
respectively.

We computed the marginal likelihood of CG networks
for data containing both observational and (soft) in-
terventional cases. In Bayesian structure learning, the
marginal likelihood is the key quantity to compute
from data. Using it (and possibly a prior over network
structures) as a scoring function, we can start model
search over possible network structures. For networks
with more than 5 nodes, exhaustive search becomes in-
feasible; often used search heuristics include hill climb-
ing or MCMC methods. For a survey see Heckerman
et al. (1995) and references therein.

Since in biological settings the pushing strength is un-
known we proposed using a mixture hyperprior on it,
resulting in a mixture marginal likelihood. This makes
the score for each network more time-consuming to
compute. Searching in the space of DAGs may be-
come infeasible even with quick search heuristics. But
in applications there is often a large amount of biolog-
ical prior knowledge, which limits the number of path-
way candidates from the beginning. When learning
network structure we usually don’t have to optimize
the score over the space of all possible DAGs but are
limited to a few candidate networks, which are to be
compared. This corresponds to a very rigid structure
prior.

Due to measurement error or noise inherent in the ob-
served system it may often happen that a variable,
at which an intervention took place, is observed in a
state different from the target state. In the hard in-
tervention framework, a single observation of this kind
results in a marginal likelihood of zero. Modeling in-

terventions as soft pushing mends this problem and
makes structure learning more robust against noise.
This is a central benefit of our approach.
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C. Klüppelberg (eds.) Complex Stochastic Systems.
Chapman and Hall, London, 2000.



K. P. Murphy. Active Learning of Causal Bayes Net
Structure, Tech. Rep., UC Berkeley, 2001.

J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, Cambridge, 2000.

D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Infer-
ring subnetworks from perturbed expression profiles.
Bioinformatics, 17(90001):S215–S224, 2001.

P. Spirtes, C. Glymour, and R. Scheines. Causation,
Prediction, and Search. MIT Press, Cambridge, MA,
second edition, 2000.

H. Steck and T. S. Jaakkola. Unsupervised active
learning in large domains. In Proceedings of UAI 18,
pages 469–476, 2002.

J. Tian and J. Pearl. Causal discovery from changes:
a Bayesian approach. In Proceedings of UAI 17, pages
512–521, 2001.

S. Tong and D. Koller. Active Learning for Structure
in Bayesian Networks. In Proceedings of IJCAI 17,
2001.

T. S. Verma and J. Pearl. Equivalence and synthesis
of causal models. In Proceedings of UAI 6, pages 255–
268, 1990.

C. Yoo and G. F. Cooper. An evaluation of a system
that recommends microarray experiments to perform
to discover gene-regulation pathways. Journal Artifi-
cial Intelligence in Medicine, 2003.

C. Yoo, V. Thorsson, and G. F. Cooper. Discovery of
causal relationships in a generegulation pathway from
a mixture of experimental and oberservational DNA
microarray data. In Proceedings of PSB 7, pages 498-
509, 2002.


