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Abstract

We introduce Recursive Exponential Mixed
Models (REMMs) and derive the gradient of
the parameters for the incomplete-data like-
lihood. We demonstrate how one can use
probabilistic inference in Conditional Gaus-
sian (CG) graphical models, a special case
of REMMSs, to compute the gradient for a
CG model. We also demonstrate that this
approach can yield simple and effective algo-
rithms for computing the gradient for mod-
els with tied parameters and illustrate this
approach on stochastic ARMA models.

1 Introduction

The computation of parameter gradients given incom-
plete data is an important step in learning the param-
eters of a statistical model with missing data. In par-
ticular, for gradient based optimization methods, such
as the conjugate gradient method, the gradient is used
to iteratively adapt the parameters of the model in
order to improve the incomplete-data likelihood and,
in this way, identify the MLE or local maxima of the
incomplete-data likelihood.

In this paper, we derive parameter gradients for a
broad class of graphical models called recursive ex-
ponential mixed models (REMMs). REMMs general-
ize the well-known conditional Gaussian (CQG) directed
graphical models introduced by Lauritzen and Wer-
muth (1989). While REMMs have modelling advan-
tages over CG models (e.g., allowing discrete variables
to have continuous parents) our primary motivation
for introducing REMMs in this paper is as a tool to
derive the parameter gradient for CG models.

CG models are an important class of graphical mod-
els. They generalize discrete and Gaussian Bayesian
networks and, importantly, they have efficient exact
probabilistic inference algorithms for computing con-
ditional marginal probabilities (Lauritzen and Jensen
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2001). We derive the expression for the parameter gra-
dient in CG models and demonstrate that standard
probabilistic inference techniques can be used to effi-
ciently compute these gradients.

We also demonstrate that our approach can yield sim-
ple and effective algorithms for computing parameter
gradients of graphical models with tied parameters.
We illustrate our approach to handling tied parameters
on stochastic ARMA models (Thiesson et al. 2004).
The stochastic ARMA model is of particular interest
because it is a simple and useful model for modeling
time-series data.

Previous papers have derived parameter gradients for
graphical models. For instance, Thiesson (1997) and
Binder et al. (1997) derive the parameter gradient for
general classes of graphical models. In addition, both
Thiesson (1997) and Binder et al. (1997) demonstrate
that, for graphical models with only discrete variables,
one can compute the parameter gradient using exact
probabilistic inference. Binder et al. (1997) also dis-
cuss computation of the parameter gradient for models
that have continuous variables. For such models, they
resort to stochastic simulation to compute the gradi-
ent; they do so even with conditional Gaussian models
for which exact probabilistic inference algorithms ex-
ist. Our results extend this work by demonstrating
precisely how one can use probabilistic inference to
compute the gradient for CG graphical models.

2 Recursive exponential mixed models

We consider directed graphical models with both dis-
crete and continuous variables. For a directed graph-
ical model the structural relations between variables
X = (X,)vev, are represented by a directed acyclic
graph (DAG), where each node v represents a vari-
able, X, and directed edges represent direct influence
from variables represented by parent nodes, X,4(y)-
Markov properties with respect to the graph (Kiiveri,
Speed, and Carlin 1984; Lauritzen et al. 1990) imply
that any distribution, which is structurally defined by
a such model, can be represented by (local) conditional



distributions, p(X,|Xpa(w))-

Thiesson (1997), defines a class of directed graphical
models called recursive exponential models (REMs) for
which the focus is on discrete variables. We extend
this definition to mixed models with both continuous
and discrete variables. We call this class of models for
recursive exponential mized models (REMMs).

Both REM and REMM models assume global variation
independence for the parameters in the models. That
is,
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where © = X,cy0,, and 6, € O, completely speci-
fies the relationship between the variable X, and its
conditional set of variables X4 (y)-

For mixed models, the conditioning set for distri-
butions on the right-hand side of (1) may have
both continuous variables, denoted X;fa(v)v and dis-

That is, Xpa(v) =
(X;a(v),Xga(v)). When the conditioning set contains
discrete variables, REMM models will in addition as-
sume partial local variation independence between pa-
rameters in conditional distributions with different val-
ues for the discrete conditioning variables. Let I1¢ de-
note the set of all configurations for discrete parents
of v, and let 7¢ € II¢ denote a particular configura-
tion. By partial local parameter independence, O, =
XraeraOyjra, and by.a € @U|,Td completely defines
the local model p(X, |X ,md ,0yxa). Notice that if
the discrete set of parent varlables is empty, then the
local model p(X,|X (U),ﬁff,ﬂv‘ﬂg) = p(Xo| Xpa(u)s O)-
Hence, REMM models with only continuous variables,
will only require global parameter independence. No-
tice also that if all involved variables are discrete, then
partial local parameter independence is the same as lo-
cal parameter independence, as defined for the REM
models.

; d
crete variables, denoted Xpa(v).

Given global and partial local parameter independence
the likelihood for a single observation factors into local
likelihoods as follows

LE|9 H p l‘v|xpa(v)> v|md )
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For a REMM, the local models have to be repre-
sentable as regular exponential models. Hence, a local
likelihood is represented as

p(wv|wpa(v)70v|7r,‘f)
= b(l‘v) exp (gv\ﬁﬂt(xv)l - ¢(9v\ﬁg)) ’ (2)

where b is the carrying density, ¢ the canonical statis-
tics, ¢ the normalization function, and ' denotes trans-
pose. Notice that b, ¢, ¢ are specific to the distri-

bution, where we condition on the discrete parents
d _.d
Tpav) = Mo

As described above, a model is a REMM if it is de-
fined in terms of local models represented as regular
exponential models and the collection of local models
satisfy global and partial local variation independence.
Later, in Section 5, we will see that the assumptions of
variation independence can easily be relaxed to allow
parameters to be tied across local models.

2.1 Conditional Gaussian models

The REMMs are particularly designed to generalize
the class of conditional Gaussian (CG) models intro-
duced by Lauritzen and Wermuth (1989). The CG
models are of particular interest because we can, as
we demonstrate below, use the exact inference scheme
of Lauritzen and Jensen (2001) to efficiently compute
the parameter gradients for these models.

A conditional Gaussian directed graphical models is a
graphical model in which (i) the graphical DAG struc-
ture has no discrete variable with a continuous parent
variable, (ii) the local models for discrete variables are
defined by conditional multinomial distributions that
can be represented in the usual way via conditional
probability tables, and (iii) the local models for contin-
uous variables (given continuous and discrete parents)
are defind by conditional Gaussian regressions — one
for each configuration of values for discrete parents.
In particular

(X | a(v)aﬂ-gaevhg)
~ N (elmd) + B Xy 0 (7))

We have here emphazised that the intercept for the re-
gression, ¢, the linear regression coefficients, 3, and the
variance o all depend on the particular configuration
for the discrete parents, 7¢. To simplify the notation
in what follows, we will drop this explicit dependence.

Later, in Sections 4.2 and 4.3, we will see that local
conditional multinomial and non-degenerate (or pos-
itive) local conditional Gaussian distributions can be
represented as exponential models. A CG model as-
suming global and partial local parameter indepen-
dence is therefore a REMM.

3 The incomplete-data gradient

We consider samples of incomplete observation and as-
sume that the observations are incomplete in an non-
informative way (e.g., missing at random; Gelman et
al. 1995). Let y = (y',%>,...,y%) denote a sample
of possibly incomplete observations which are mutu-
ally independent. Given the mutual independence, the
likelihood factorizes as a product over likelihoods for
each observation

L
p(yl6) = T[ p(s'16)-
=1



The gradient for the sample log-likelihood can there-
fore be obtained by simply adding the individual gra-
dients for each observation. That is,

dlogp(ylf) _ . 9logply dlog p(y'10)

. 3
We will in the next section derive the gradient expres-
sion for a single observation, knowing that the gradi-
ent for a sample can be obtained by simply adding up
gradients for each observation, as in (3).

4 Single observation gradient

Suppose for a given model that a complete observa-
tion z is only observed indirectly through the incom-
plete observation y. Denote by X(y) the set of pos-
sible completions that are obtainable by augmenting
the incomplete observation y. The likelihood for the
incomplete observation then becomes

p(yld)
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where g is a generalized measure, which for a CG
model is an appropriate combination of the counting
measure for discrete variables and the Lebesque mea-
sure for continuous variables.

The gradient for the log-likelihood can now be ex-
pressed as

Ologp(yld) 1
90, g
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p(x), (5)

where the last equality follows from (4) and by using
Leibnitz’s rule for interchanging the order of differen-
tiation and integration.

Now, consider the local gradient for the complete ob-
servation z. The chain rule for differentiation implies

Ip(z|6)
90, g
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Thus, by the exponential representation in (2), the
local gradient for a complete observation becomes

Op(|6) _
08| ra

p@lO) 1™ (2 ) (Hwo) = T(0u1n0)) » (7)

where
8¢(0v|ﬂd)
T(evlﬂg ) = W
and I™ (mga(v)) is the indicator function, which is one

for Jﬁga(v) = m? and zero otherwise.

It is a well-known fact from exponential model theory
that the derivative for the normalizing function equals
the expected value of the canonical statistics (see, e.g.,
Schervish 1995). That is

T(ev\ﬂﬂ) = E9v g[t(Xv)]

We will later use this fact when deriving the gradient
for specific distributions.

Now, by inserting (7) into (5) we get the following
expression for the local gradient of the incomplete ob-

servation
Ologp(y|0) / p(|0) e, 4
- - v 7 = Iﬁu x
ety Pl0) | Fra)
X (t(20) = 7(Ouyea)) ().
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Finally, by applying the fact that
p(zlt)
plaly,6) = {017

we obtain the final expression for the local gradient

dlog p(y|0)
90y

d
= /p(vapa(v) |ZJ> Q)I”v (l‘za(v))
X (t(:L'U) - T(0v|7r;f)) u(vapa(v))

/ D0, 2500y 711, 6)
X (t(l'v) - T(evlﬂ',‘f)) u(xv,xf,a(v)) (8)

where the last equation follows from integrating over
all discrete parents and exploiting the fact that
I~ () is one for zf,
The incomplete-data log-likelihood gradient expres-
sion in (8) apply for any local exponential model.
This generality makes the expression appear somewhat
complicated. However, as we will see below, in Sec-
tions 4.2 and 4.3, the exponential model expression
leads to simple expressions for the more specific local
conditional multinomials and conditional Gaussians in

the CG models.

for x € X(y) and p(y|6) > 0
otherwise.

) = my and zero otherwise.

4.1 Re-parameterization

The local gradient for a regular exponential model dis-
tribution is a step on the way in deriving the local gra-
dients for the specific local distributions in CG mod-
els. For these specific distributions, we will, however,



cousider specific standard (non-exponential) parame-
terizations, as we will see in the subsections below. To
obtain the gradient with respect to a new parameter-
ization v, we apply the chain rule and multiply the
derivative in (7) by the Jacobian 08,r4/9¢. Doing
S0, we obtain

op(x|y)  Op(x|f) 0y|x
00, OU
= palO)I™ (2l )
891,‘774
X (t(mv) - T(ev\ﬂf)) 81/1 -

Performing the same operations that lead from (7) to
(8) is trivial, and we finally obtain the expresion for
the local gradient of the incomplete-data log-likelihood
with repect to the re-parameterization

dlogp(y|v)
oY
= [ Doz i)
BQUW .
X (t(l'v) - T(evlﬂ',‘f)) 81/) = ,u‘(l'v: xpa(v))'(g)

4.2 Conditional multinomial local gradient

Let us now take a look at the local gradient for the two
specific types of local distributions in a CG model.
First consider a conditional multinomial distribution
for p(X,|m?). As demonstrated in Thiesson (1997),
we can obtain an exponential model representation for
this distribution as follows. Let sg denote a value of
reference for the discrete variable X, and let sy =
1,...,5 be the remaining possible values for X,. If
we choose sg as any value for which p(sg|rd) > 0, we
can represent the conditional multinomial distribution
by an exponential model with probabilities of the form
(2) by letting

6>+ = log [p(s+|my) /p(so|7])]

1 forz,=s
St _ v +
7 (20) = { 0 otherwise

s
G(Byjra) =log [ 1+ D exp(6°+)
s4=1
b(z,) =1
where 0y« = (0',...,0%) and t(z,) =

(t' (x0), ..., 15 (xy)).
The expected value for the canonical statistics in the
above exponential model representation is

T(ev\ﬂj}) = E0u|7r§} [t(Xv)]

Z t(l'v)p(l‘v |l‘pa(v) ; 0v|7rg)

Tov
= (®,....p%

where p*+ = p(X, = 5+|77576v\ﬂ'§)'

We finally obtain the expression for the local gradient
with respect to the exponential model parameteriza-
tion by inserting the above expressions for t(x,) and
7(0y)ra) into equation (8). The elements of this vector
are

dlogp(y|0)
005+

- / p(e, 7y, 06+ () ()
—/p(wv,WZly,G)p“u(wv)

p(8+, 7T1C)l|y7 0v|7r,‘f)
_p(ﬂ-ﬂy: 0v|ﬂ'§f)p(8+ |7T37 ev\ﬂ'g)' (10)

We can now use the Lauritzen and Jensen (2001) prop-
agation scheme for Bayesian networks with CG distri-
butions to efficiently compute the quantities in (10).
The propagation scheme enables us to efficiently com-
pute posterior marginal distributions for any family
Xoyupa(v) given evidence y. This marginal distribu-
tion is represented as the product of a marginal distri-
bution for discrete variables and a conditional Gaus-
sian for continuous variables given the discrete vari-
ables. The posterior probabilities p(s+,7rg|y,(9v|,,g)
and p(7rld,|y,(9v|,rg) can therefore easily be extracted
from the discrete marginal distribution and, hence,
a conditional multinomial local gradient can be effi-
ciently computed.

The Lauritzen and Jensen (2001) propagation scheme
utilizes the traditional parameterization for the con-
ditional multinomial distribution. This representation
is given by the conditional probabilities (p°,---,p°),
where p° = p(X, = so|7rg,(9v|,,g) and p°+ is defined
as above. Hence, after we update the parameters for
the exponential model representation during the line-
search in a gradient based optimization method, we
will need to switch back into the traditional represen-
tation — using (2) — in order to use the propagation
scheme to compute the next gradient.

Switching between representations has a minor com-
putational cost. On the other hand, performing the
gradient optimization for parameters in the exponen-
tial model representation has the benefit that this pa-
rameterization automatically enforces the constraints
p® > 0and ), p® =1, which is not the case for gradi-
ent optimization using the traditional parameters.

We consider next the alternative gradient for the tra-
ditional parameter representation. In order to derive
this gradient, we first derive the Jacobian from the ex-



ponential model representation to the traditional prob-
ability parameterization

00y |d
A", -, p°)
-1/p° 1/pt 0 ... 0

-1/p° 0 ... 0 1/p°

By insertion into equation (9) we now obtain the local
gradient with respect to the traditional representation.
The st (s = 0,...,S5) element in this gradient is given
by
d
610gp£y|9) — p(svsz:e) —p(ﬂ'ﬂy,e) (11)
op p(s|7rv79v\7r§)

Notice that the expression for this gradient differs
slightly from the gradient expression in Binder et al.
(1997) [Equation (4)].

Binder et al. (1997) ensure that the constraint
> . p° = 1 is satisfied by using a standard method
in which one projects the gradient onto the surface
defined by this constraint. This method can be used
for an optimization method based on our gradient in
(11) as well. Still, however, both methods will have
to ensure the constraint that p® > 0 by inspecting the
probability parameterization during a gradient update
(i.e., a line-search).

4.3 Conditional Gaussian local gradient

Next, let us consider a conditional Gaussian (CG) local
regression model for the continuous variable X, given
— d
the parents X, = (X;a(v),Xpa(v)), where the con-
ditioning parent set may contain continuous variables,

Xga(v), as well as discrete variables, Xga(v). Recall

that 7¢ denotes a particular configuration of values for
discrete parents, and to ease notation, we will in this
section use a (instead of 7¢ or x;a(v)) to denote a par-
ticular configuration of values for continuous parents.
The CG regression model defines a set of linear regres-
sions on the continuous parent variables — a regression
for each configuration of distrete parent variables. See
Lauritzen and Wermuth (1989) for more details on CG
models. Let us now consider a particular distribution
for X,, given the values a for continuous parents and
the configuration of values for discrete parents 7. The
distribution is defined by the mean p = ¢ + fa’ and
variance o, where ¢ and 3 are respectively the intercept
and the coefficients for the regression on continuous
parents, and ' denotes transpose. Restricting atten-
tion to non-degenerate (or positive) Gaussians, where
o > 0, we can obtain an exponential model represen-
tation of the form (2) as follows

1
Bus = (01,6) = (ﬁ, ——)

t(z,) = (mv,xi)
0ume) = 2L Liog( o))
ol 49, 2 0BT
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Notice that the restriction to positive Gaussians (o >
0) ensures that the natural parameters for the expo-
nential representation are defined.

The expected value of the canonical statistics is

2 [H(X0)]

T(ev\ﬂf) = E0v|7\'

(1,0 + %)
= (c+pd, o+ (c+Ba)).

Again, we can use the Lauritzen and Jensen (2001)
propagation scheme to efficiently compute the gradient
for the parameters of the exponential model. As with
the conditional multinomial case, the inference scheme
utilizes a parameterization for a conditional Gaussian,
that is different from our exponential model. In the
case of conditional multinomial models, we can easily
switch between parameterizations. This allowed us to
use a gradient method (e.g., a line-search) to update
the exponential model parameters and then convert
the resulting parameterization back into the propaga-
tion scheme parameters in order to compute the next
gradient. However, in the case of conditional Gaussian
models, the propagation scheme requires the parame-
ters (¢, B, 0), and these parameters cannot be obtained
from the parameters of the exponential model repre-
sentation. We therefore compute the gradient for these
parameters directly.

By inserting the expressions for £(X,) and 7(6,4) into
the equation (9) and by using the Jacobian
0oy

1 a
o) L0 0 o

we can derive the following local gradient with respect
to the parameterization (c, 5,0). Let u = ¢+ fa’, then

dlog p(y|0)
6(07/870-)
dlogp(ylf) 9ujxg
0yra  O(c,B,0)
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where p(z,,a|rd,y,0) = 0 for values of discrete par-
ents 7¢ not consistent with the incomplete observa-
tion y. The step from (12) to (13) follows by factoring
p(@o, a,myly,0) into p(zy, alry,y,0) and p(wily,6) and
then pulling the discrete density out from under the
integration.

Let (z,,a) denote the expected value for the vector
(XU,X;a(U)) with respect to the posterior Gaussian

distribution for (X, X7, ) given 7d That is,

(#0,0) = Eo 4 [Xo, Xjo)lY]

- / (@0, aln?, g, 6) (@0, Q) u(zy, a)-

Similarly, let (z,,a)'(x,,a) denote the expected value
for the matrix ((X Xe oy (X,,,X;a(v))).

pa(v)
stance, T,a = Eaulﬂ_g [X pa v) |y]

For in-

The expression for the local gradient in (13) then re-
duces to

dlog p(y|0)

_ d N —
LU0 = p(nlly.0) (7o — fa—c) fo
PV piatly.t) (w - e 5a) fo
alogTM = p(ﬁﬂy:a) (xvl'v — 2cTy, — Qﬂm
g
+Bd'ap' + 2¢fd’ + ¢ — o) [20°.
(14)

We can now use the Lauritzen and Jensen (2001)
propagation scheme and this time efficiently compute
the gradient for CG regression models. Recall that
the propagation scheme allow us to efficiently com-
pute posterior marginal distributions for any fam-
ily Xyupa(v), where this distribution is represented
as the product of the marginal distribution for dis-
crete variables, p(X d o(v))> and the conditional Gaus-
sian p(X,, X (v)| ) Given a particular configu-
ration for the dlscrete varlables 7¢, the mean vector
and covariance matrix ¥ for this condltlonal Gaussian
equals

po= (24,0

Y = (l‘vaa)l(l‘vaa) _l’l‘lll’
The expected statistics on the right-hand side of (14)
can therefore easily be extracted from the parameteri-

zation of the marginal distribution and hence, the gra-
dient for a CG regression can be efficiently computed.

5 Parameter tying

Tying of parameters is an essential feature for some
types of models, including, for example, models for
stochastic temporal processes and pedigree analysis.
We consider parameter tying that relaxes the global
variation independence in (1) by assuming that the
parameterization for the relationship between the vari-
able X, and its conditional variables X () is the same
across a set of variables. Let © C V denote a such set
of variables and let V denotes all of such sets. We
will let 87 denote the tied parameterization across all
v € 0. In this case, the model factorizes as

p(X10) = [] p(Xo|Xpa(w), 05) (15)
veV

where @ = X, 705 We call this type of tying for
global parameter tying. Global parameter tying is, of
course, only possible between conditional models that
are similar. That is, for all X,, where v € 0, the
number of discrete and continuous conditioning par-
ent variables must be the same and the set of possible
state configurations for discrete parents must be the
same. We will let 7¢ denote a particular configuration
of states for discrete parent variables. This configura-
tion will be the same across all v € 0.

We are now seeking the incomplete-data log-likelihood
with respect to the parameterization Ov‘ﬁ Similar to
(6) and (7), we use the chain rule and exponential
model representation to first compute the local gradi-
ent for a complete observation

ap(x);) dlog p(zy|pa(v) s O5)x2)

B (v)
0ypa >_p(«lf) D

vED
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We then obtain the expression for the local gradient for
the incomplete data log-likelihood by the same steps,
which lead to (8) and (9). Hence,

dlog p(y[¢)
o
—Z/ mv; pav v|71' |y7 )(( ) (017|7r:.f))
vev
89v|7T .
X— aw (wTHmpa(v))‘ (16)
89, a
Setting —5.= = 1 gives us the expression for the gra-

dient with respect to the natural parameters in the
exponential model representation.

Notice that the only difference between (9) and (16)
is that the gradient in (16) adds the gradients com-
puted at each v € ©. In other words, with global



parameter tying, the gradient for the incomplete-data
log-likelihood can be computed by proceeding as if pa-
rameters were not tied and then add up the gradients
which are related by tying. That is,

Ologp(yly) _ Zalogp(ylwﬂg) (a7)

a¢ =r a%\wg
where 1, s denotes the (artificial) non-tied parame-
terization for the local model, with ¥« = 1 for all
v € D.

For simplicity, we will only consider global parame-
ter tying, as describe above. More sophisticated tying
schemes are, of course, possible.

5.1 Stochastic ARMA models

The stochastic ARMA (0 ARMA) models of Thiesson
et al. (2004) is an illustrative example of a stochastic
temporal process, where tying of parameters plays an
important role. ¢ARMA models are closely related
to the classic autoregressive moving average (ARMA)
time-series models (see, e.g., Box, Jenkins, and Rein-
sel 1994 or Ansley 1979). As demonstrated in Thies-
son et al. (2004), both the ARMA and c ARMA mod-
els are naturally represented as graphical models with
only continuous variables. The cARMA models differs
from the ARMA models by replacing the determinis-
tic component of an ARMA model with a Gaussian
distribution having a small variance, as we will see be-
low. This variation allow us to smooth the time series
model in a controlled way.

A 0cARMA(p,q) time-series model is defined as fol-
lows. We denote a temporal sequence of continuous
observation variables by ¥ = (Y1,Y3,...,Yy). Time-
series data is a sequence of values for these variables
— some of which may be missing. The models asso-
ciate a latent “white noise” variable with each ob-
servable variable. These latent variables are denoted
E = (Ey,E,,...,Ep).

The c ARMA model is now defined by the conditional
Gaussian distribution

YED@—I):"'7)/;5—17Et—qa"'7Et ~ N(H’t:a)(]‘g)
where the functional expression for the mean p; and
the variance o are shared across the observation vari-
ables. The variance is fixed at a given (small) value to
be specified by the user. The mean is related to the

conditional variables as follows

q P
e = c+ ZﬁjEtfj + Z ;Y (19)
7j=0 i=1

where c is the intercept for the regression, Zle ;Y
is the autoregressive (AR) part, Z;I.:O BjE¢_; is the
moving average (MA) part with Sy fixed as 1, and

E; ~ N(0,7) with E; mutually independent for all
t. The model therefore involves the free parameters
¢, (a1,...,0p), (B1,...,B¢), and 7. These parameters
are tied across time steps.

From the above description, one may realize that an
ARMA model is the limit of a ¢ARMA model as
o — 0. Letting ¢ — 0 will in effect replace the condi-
tional Gaussian distribution in (18) by a deterministic
relation, where Y; equals the right-hand side of (19).

We are interested in computing the gradient for the
conditional log-likelithood model, where we condition on
the first R = max(p,q) variables. Relations between
variables for t < R can therefore be ignored. The
graphical representation for an c ARMA(2,2) model is
shown in Figure 1. It should be noted that if we arti-
ficially extend the time series back in time for R (un-
observed) time steps, this model represents what is
known in the literature as the ezact likelthood model.
There are alternative methods for dealing with the be-
ginning of a time series (see, e.g., Box, Jenkins, and
Reinsel 1994).

Figure 1: Graphical representation for cARMA(2,2)
time-series model with five observations.

Let wus first consider the variance parameter -,
which is tied across all the “white noise” variables
Egr,ERt1,-..,Er. We intend to use (17) to compute
the partial gradient for this parameter and will there-
fore first derive the expression for a partial gradient
under the assumption that the « parameters for these
variables are not tied. Notice that v will in this case
take the place of the variance parameter ¢ in all of the
formulas in Section 4.3. Also, recall that the “white
noise” variables do not have any parents, which means
that there are no regression coefficients and hence no
partial derivative with respect to 5. Because the Gaus-
sian distribution is restricted to have a mean of zero,
we invoke the chain-rule once more and multiply the
gradient expression in (14) by the Jacobian [0 1]’ going
from the (¢, y) parameterization to a parameterization,
where 7y is the only parameter. Notice that because
the Jacobian is constant with respect to the integral
in (13), the parameter gradient can be computed by
simply multiplying the Jacobian and equation (14). As
expected, we obtain a partial gradient for the non-tied
variance of E; that equals the partial derivative for
the variance parameter in (14) — but it is not quite as
complicated because ¢ = 0 and E; has no parents. Fi-
nally, by using (17), we arrive at the expression for the



partial gradient with respect to the tied v parameter

€ter — 7Y

Ologp(yld) XT:
22

- (20)

t=R+1

In a similar fashion, we can derive the gradient for
the free parameters ¢, (ai,...,ap), and (B1,...,08¢)
associated with the conditional Gaussian distribution
for the observation variables. As above, we apply
the chain rule to achieve the gradient for the free
parameters. Let Ay = (Yi—p,...,Yio1, Ei—g, ..., Et)
denote all the parents for the observation variable
Y; and let Z, = A; \ E; denote the parents except
for the parent E; associated with the fixed regres-
sion coeflicient By. We denote all of the regression
coefficients by 8 = (o, -..,ap, 5o, 61,---,8,) and let
Bz = (Q1,-..,0p,01,...,04) denote the free regres-
sion coefficients. The expression for the partial gradi-
ent for the tied ¢ and 5., parameters now becomes

dlog p(y|6)

a(cvﬂzt)
- (¥ — Ba — ) [o '
= | EE-a-paEE) o

6 Discussion and further work

In this paper, we derived the gradient for recursive ex-
ponential mixed models, a class of probabilistic mod-
els with both discrete and continuous variables. We
demonstrated that positive conditional Gaussian mod-
els are a specific subclass of the REMMs and that
one can use probabilistic inference to compute the pa-
rameter gradient for the incomplete-data likelihood for
these models. As descried above, one can use this gra-
dient to adapt the parameters in order to improve the
incomplete-data likelihood and identify the MLE or
local maxima of the likelihood. It is easy to extend
this analysis to obtain similar results for MAP esti-
mation by differentiating a prior with respect to the
parameters of interest.

Alternative methods for learning parameters that do
not directly compute the parameter gradient exist. For
instance, the EM algorithm is a general method for
improving parameters of a statistical model given in-
complete data. In the context of graphical models,
the E-step of the EM algorithm is accomplished via
probabilistic inference in the graphical model (see, e.g.,
Lauritzen 1995 for a treatment of the EM algorithm
for discrete graphical models). It should be noted,
however, that in many situations, one can improve the
speed of convergence of the EM algorithm through the
use of the gradient (see, e.g., Thiesson 1995). Also, in
some situations, the EM algorithm cannot be applied
to improve the parameters of the model. In such situ-
ations a gradient method can often be used instead.

It is important to note that CG models that involve
local degenerate conditional Gaussian models cannot
be expressed as REMMs. The requirement for non-
degenerate conditional Gaussians, where the variance
o > 0, can be seen by examining the exponential pa-
rameterization of the conditional Gaussian local model
in Section 4.3. Unfortunately, some standard models
can therefore not be naturally expressed as REMMs.
For instance, the ARMA (a stochastic ARMA model
in which the variance o is zero) cannot be represented
as a CG model. It is an open question as to whether
or not probabilistic inference can be used to efficiently
compute the gradient for non-positive CG models.

Finally, the class of REMMs has the advantage over
CG models of allowing discrete variables to have con-
tinuous parents. Given this advantage, it would be
worthwhile to investigate efficient methods for com-
puting the parameter gradients for REMMs (i.e., the
quantity in equation 8).
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