
Very Large SVM Training using Core Vector Machines

Ivor W. Tsang James T. Kwok
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay

Hong Kong

Pak-Ming Cheung

Abstract

Standard SVM training hasO(m3) time and
O(m2) space complexities, wherem is the train-
ing set size. In this paper, we scale up kernel
methods by exploiting the “approximateness” in
practical SVM implementations. We formulate
many kernel methods as equivalent minimum en-
closing ball problems in computational geome-
try, and then obtain provably approximately opti-
mal solutions efficiently with the use of core-sets.
Our proposed Core Vector Machine (CVM) al-
gorithm has a time complexity that islinear in m
and a space complexity that isindependentof m.
Experiments on large toy and real-world data sets
demonstrate that the CVM is much faster and can
handle much larger data sets than existing scale-
up methods. In particular, on our PC with only
512M RAM, the CVM with Gaussian kernel can
process the checkerboard data set with 1 million
points in less than 13 seconds.

1 Introduction

In recent years, there has been a lot of interest on using
kernels in various machine learning problems, with the sup-
port vector machines (SVM) being the most prominent ex-
ample. Many of these kernel methods are formulated as
quadratic programming (QP) problems. Denote the number
of training patterns bym. The training time complexity of
QP isO(m3) and its space complexity is at least quadratic.
Hence, a major stumbling block is in scaling up these QP’s
to large data sets, such as those commonly encountered in
data mining applications.

To reduce the time and space complexities, a popular tech-
nique is to obtain low-rank approximations on the kernel
matrix, by using the Nyström method (Williams & Seeger,
2001), greedy approximation (Smola & Schölkopf, 2000)
or matrix decompositions (Fine & Scheinberg, 2001).

However, on very large data sets, the resulting rank of the
kernel matrix may still be too high to be handled efficiently.

Another approach to scale up kernel methods is by chunk-
ing or more sophisticated decomposition methods. How-
ever, chunking needs to optimize the entire set of non-zero
Lagrange multipliers that have been identified, and the re-
sultant kernel matrix may still be too large to fit into mem-
ory. Osuna et al. (1997) suggested optimizing only a fixed-
size subset of the training data (working set) each time,
while the variables corresponding to the other patterns are
frozen. Going to the extreme, the sequential minimal opti-
mization (SMO) algorithm (Platt, 1999) breaks a large QP
into a series of smallest possible QPs, each involving only
two variables. In the context of classification, Mangasar-
ian and Musicant (2001) proposed the Lagrangian SVM
(LSVM) that avoids the QP (or LP) altogether. Instead,
the solution is obtained by a fast iterative scheme. How-
ever, for nonlinear kernels (which is the focus in this pa-
per), it still requires the inversion of anm×m matrix. Fur-
ther speed-up is possible by employing the reduced SVM
(RSVM) (Lee & Mangasarian, 2001), which uses a rectan-
gular subset of the kernel matrix. However, this may lead
to performance degradation (Lin & Lin, 2003).

In practice, state-of-the-art SVM implementations typically
have a training time complexity that scales betweenO(m)
andO(m2.3) (Platt, 1999). This can be further driven down
to O(m) with the use of a parallel mixture (Collobert et al.,
2002). However, these are only empirical observations and
not theoretical guarantees. For reliable scaling behaviorto
very large data sets, our goal is to develop an algorithm that
can be proved (using tools in analysis of algorithms) to be
asymptotically efficient in both time and space.

Moreover, practical SVM implementations, as in many nu-
merical routines, onlyapproximatethe optimal solution by
an iterative strategy. Typically, the stopping criterion uti-
lizes either the precision of the Lagrange multipliers (e.g.,
(Joachims, 1999; Platt, 1999)) or the duality gap (e.g.,
(Smola & Schölkopf, 2004)). However, while approxi-
mation algorithms (with provable performance guarantees)
have been extensively used in tackling computationally dif-

ficult problems like NP-complete problems (Garey & John-
son, 1979), such “approximateness” has never been ex-
ploited in the design of SVM implementations.

In this paper, we first transform the SVM optimization
problem (with a possibly nonlinear kernel) to theminimum
enclosing ball(MEB) problem in computational geometry.
The MEB problem computes the ball of minimum radius
enclosing a given set of points (or, more generally, balls).
Traditional algorithms for finding exact MEBs do not scale
well with the dimensionalityd of the points. Consequently,
recent attention has shifted to the development of approxi-
mation algorithms. Lately, a breakthrough was obtained by
Bădoiu and Clarkson (2002), who showed that an(1 + ǫ)-
approximation of the MEB can be efficiently obtained us-
ing core-sets. Generally speaking, in an optimization prob-
lem, a core-set is a subset of the input points, such that
we can get a good approximation (with an approximation
ratio1 specified by a user-definedǫ parameter) to the orig-
inal input by solving the optimization problem directly on
the core-set. Moreover, a surprising property of (Bădoiu &
Clarkson, 2002) is that the size of its core-set isindepen-
dentof bothd and the size of the point set.

Inspired from this core-set-based approximate MEB al-
gorithm, we will develop an approximation algorithm for
SVM training that has an approximation ratio of(1 + ǫ)2.
Its time complexity is linear inm while its space complex-
ity is independent ofm. The rest of this paper is organized
as follows. Section 2 gives a short introduction on the MEB
problem and its approximation algorithm. The connection
between kernel methods and the MEB problem is given in
Section 3. Section 4 then describes our proposed Core Vec-
tor Machine (CVM) algorithm. Experimental results are
presented in Section 5, and the last section gives some con-
cluding remarks.

2 MEB in Computational Geometry

Given a set of pointsS = {x1, . . . ,xm}, where eachxi ∈
R

d, the minimum enclosing ball ofS (denoted MEB(S))
is the smallest ball that contains all the points inS. The
MEB problem has found applications in diverse areas such
as computer graphics (e.g., collision detection, visibility
culling), machine learning (e.g., similarity search) and fa-
cility locations problems.

1Let C be the cost (or value of the objective function) of
the solution returned by an approximate algorithm, andC∗ be
the cost of the optimal solution. Then, the approximate algo-
rithm has anapproximation ratioρ(n) for an input sizen if

max
“

C
C∗

, C∗

C

”

≤ ρ(n). Intuitively, this measures how bad

the approximate solution is compared with the optimal solution.
A large (small) approximation ratio means the solution is much
worse than (more or less the same as) the optimal solution. Ob-
serve thatρ(n) is always≥ 1. If the ratio does not depend on
n, we may just writeρ and call the algorithm anρ-approximation
algorithm.

Here, we will focus on approximate MEB algorithms based
on core-sets. LetB(c, R) be the ball with centerc and
radiusR. Given ǫ > 0, a ballB(c, (1 + ǫ)R) is an(1 +
ǫ)-approximationof MEB(S) if R ≤ rMEB(S) andS ⊂
B(c, (1 + ǫ)R). A subsetX ⊆ S is acore-setof S if an
expansion by a factor(1 + ǫ) of its MEB containsS, i.e.,
S ⊂ B(c, (1+ǫ)r), whereB(c, r) = MEB(X) (Figure 1).

ε

R

R

Figure 1: The inner cir-
cle is the MEB of the set
of squares and its(1 + ǫ)
expansion (the outer cir-
cle) covers all the points.
The set of squares is thus a
core-set.

To obtain such an (1 + ǫ)-
approximation, Bădoiu and
Clarkson (2002) proposed
a simple iterative scheme:
At the tth iteration, the
current estimateB(ct, rt)
is expanded incrementally
by including the furthest
point outside the(1 + ǫ)-
ball B(ct, (1 + ǫ)rt). This
is repeated until all the
points inS are covered by
B(ct, (1 + ǫ)rt). Despite
its simplicity, Bădoiu and
Clarkson (2002) showed
that the number of itera-
tions, and hence the size of
the final core-set, depends
only onǫ butnotond orm.
This independence ofd is important on applying this algo-
rithm to kernel methods (Section 3) as the kernel-induced
feature space can be infinite-dimensional. As for the inde-
pendence onm, it allows both the time and space complex-
ities of our algorithm to grow slowly, as will be shown in
Section 4.3.

3 MEB Problems and Kernel Methods

Obviously, the MEB is equivalent to the hard-margin sup-
port vector data description (SVDD) (Tax & Duin, 1999),
which will be briefly reviewed in Section 3.1. The MEB
problem can also be used for finding the radius compo-
nent of the radius-margin bound (Chapelle et al., 2002).
Thus, as pointed out by Kumar et al. (2003), the MEB
problem is useful in support vector clustering and SVM
parameter tuning. However, we will show in Section 3.2
that other kernel-related problems, including the training
of soft-margin one-class and two-class L2-SVMs, can also
be viewed as MEB problems.

3.1 Hard-Margin SVDD
Given a kernelk with the associated feature mapϕ, let the
MEB in the kernel-induced feature space beB(c, R). The
primal problem in the hard-margin SVDD is

min R2 : ‖c − ϕ(xi)‖2 ≤ R2, i = 1, . . . , m. (1)

The corresponding dual is

max α
′diag(K) − α

′Kα : 0 ≤ α, α
′1 = 1, (2)

where α = [αi, . . . , αm]′ are the Lagrange multipli-
ers, 0 = [0, . . . , 0]′, 1 = [1, . . . , 1]′ and Km×m =
[k(xi,xj)] = [ϕ(xi)

′ϕ(xj)] is the kernel matrix. As is
well-known, this is a QP problem. The primal variables
can be recovered from the optimalα as

c =
m

∑

i=1

αiϕ(xi), R =
√

α
′diag(K) − α

′Kα. (3)

3.2 Viewing Kernel Methods as MEB Problems

In this paper, we consider the situation where

k(x,x) = κ, (4)

a constant2. This will be the case when either (1) the
isotropic kernelk(x,y) = K(‖x−y‖) (e.g., Gaussian ker-
nel); or (2) the dot product kernelk(x,y) = K(x′y) (e.g.,
polynomial kernel) with normalized inputs; or (3) any nor-
malized kernelk(x,y) = K(x,y)√

K(x,x)
√

K(y,y)
is used. Using

the conditionα′1 = 1 in (2), we haveα′diag(K) = κ.
Dropping this constant term from the dual objective in (2),
we obtain a simpler optimization problem:

max−α
′Kα : 0 ≤ α, α

′1 = 1. (5)

Conversely, when the kernelk satisfies (4), QP’s of the
form (5) can always be regarded as a MEB problem (1).
Note that (2) and (5) yield the same set ofα’s, Moreover,
let d∗1 andd∗2 denote the optimal dual objectives in (2) and
(5) respectively, then, obviously,

d∗1 = d∗2 + κ. (6)

In the following, we will show that when (4) is satisfied,
the duals in a number of kernel methods can be rewrit-
ten in the form of (5). While the 1-norm error has been
commonly used for the SVM, our main focus will be on
the 2-norm error. In theory, this could be less robust in
the presence of outliers. However, experimentally, its gen-
eralization performance is often comparable to that of the
L1-SVM (e.g., (Lee & Mangasarian, 2001; Mangasarian &
Musicant, 2001). Besides, the 2-norm error is more advan-
tageous here because a soft-margin L2-SVM can be trans-
formed to a hard-margin one. While the 2-norm error has
been used in classification (Section 3.2.2), we will also ex-
tend its use for novelty detection (Section 3.2.1).

3.2.1 One-Class L2-SVM

Given a set of unlabeled patterns{zi}m
i=1 wherezi only has

the input partxi, the one-class L2-SVM separates the out-

2In this case, it can be shown that the hard (soft) margin SVDD
yields identical solution as the hard (soft) margin one-class SVM
(Schölkopf et al., 2001). Moreover, the weightw in the one-class
SVM solution is equal to the centerc in the SVDD solution.

liers from the normal data by solving the primal problem:

min
w,ρ,ξi

‖w‖2 − 2ρ + C

m
∑

i=1

ξ2
i : w′ϕ(xi) ≥ ρ − ξi,

wherew′ϕ(x) = ρ is the desired hyperplane andC is a
user-defined parameter. Note that constraintsξi ≥ 0 are
not needed for the L2-SVM. The corresponding dual is

max−α
′

(

K +
1

C
I

)

α : 0 ≤ α, α
′1 = 1

= max−α
′K̃α : 0 ≤ α, α

′1 = 1, (7)

whereI is them×m identity matrix and̃K = [k̃(zi, zj)] =

[k(xi,xj) +
δij

C]. It is thus of the form in (5). Since
k(x,x) = κ, k̃(z, z) = κ + 1

C ≡ κ̃ is also a constant. This
one-class SVM thus corresponds to the MEB problem (1),
in which ϕ is replaced by the nonlinear map̃ϕ satisfying
ϕ̃(zi)

′ϕ̃(zj) = k̃(zi, zj). From the Karush-Kuhn-Tucker
(KKT) conditions, we can recoverw =

∑m
i=1 αiϕ(xi) and

ξi = αi

C , andρ = w′ϕ(xi) + αi

C from any support vector
xi.

3.2.2 Two-Class L2-SVM

Given a training set{zi = (xi, yi)}m
i=1 with yi ∈ {−1, 1},

the primal of the two-class L2-SVM is

minw,b,ρ,ξi
‖w‖2 + b2 − 2ρ + C

m
∑

i=1

ξ2
i

s.t. yi(w
′ϕ(xi) + b) ≥ ρ − ξi. (8)

The corresponding dual is

max
0≤α

−α
′

(

K⊙ yy′ + yy′ +
1

C
I

)

α : α
′1 = 1

= max−α
′K̃α : 0 ≤ α, α

′1 = 1, (9)

where⊙ denotes the Hadamard product,y = [y1, . . . , ym]′

andK̃ = [k̃(zi, zj)] with

k̃(zi, zj) = yiyjk(xi,xj) + yiyj +
δij

C
, (10)

involving both input and label information. Again, this is of
the form in (5), withk̃(z, z) = κ + 1 + 1

C ≡ κ̃, a constant.
Again, we can recover

w =
m

∑

i=1

αiyiϕ(xi), b =
m

∑

i=1

αiyi, ξi =
αi

C
, (11)

from the optimalα andρ = yi(w
′ϕ(xi) + b) + αi

C from
any support vectorzi. Note that all the support vectors
of this L2-SVM, including those defining the margin and
those that are misclassified, now reside on the surface of the
ball in the feature space induced byk̃. A similar relation-
ship connecting one-class classification and binary classifi-
cation is also described in (Schölkopf et al., 2001).

4 Core Vector Machine (CVM)

After formulating the kernel method as a MEB problem,
we obtain a transformed kernelk̃, together with the associ-
ated feature spacẽF , mappingϕ̃ and constant̃κ = k̃(z, z).
To solve this kernel-induced MEB problem, we adopt the
approximation algorithm3 described in the proof of Theo-
rem 2.2 in (Bădoiu & Clarkson, 2002). As mentioned in
Section 2, the idea is to incrementally expand the ball by
including the point furthest away from the current center.
In the following, we denote the core-set, the ball’s center
and radius at thetth iteration bySt, ct andRt respectively.
Also, the center and radius of a ballB are denoted bycB

andrB. Given anǫ > 0, the CVM then works as follows:

1. InitializeS0, c0 andR0.

2. Terminate if there is nõϕ(z) (wherez is a training
point) falling outside the(1+ǫ)-ballB(ct, (1+ǫ)Rt).

3. Findz such thatϕ̃(z) is furthest away fromct. Set
St+1 = St ∪ {z}.

4. Find the new MEB(St+1) from (5) and setct+1 =
cMEB(St+1) andRt+1 = rMEB(St+1) using (3).

5. Incrementt by 1 and go back to step 2.

In the sequel, points that are added to the core-set will be
calledcore vectors. Details of each of the above steps will
be described in Section 4.1. Despite its simplicity, CVM
has an approximation guarantee (Section 4.2) and also
provably small time and space complexities (Section 4.3).

4.1 Detailed Procedure

4.1.1 Initialization

Bădoiu and Clarkson (2002) simply used an arbitrary point
z ∈ S to initialize S0 = {z}. However, a good initial-
ization may lead to fewer updates and so we follow the
scheme in (Kumar et al., 2003). We start with an arbi-
trary pointz ∈ S and findza ∈ S that is furthest away
from z in the feature spacẽF . Then, we find another
point zb ∈ S that is furthest away fromza in F̃ . The ini-
tial core-set is then set to beS0 = {za, zb}. Obviously,
MEB(S0) (in F̃) has centerc0 = 1

2 (ϕ̃(za) + ϕ̃(zb)) On
using (3), we thus haveαa = αb = 1

2 and all the other
αi’s are zero. The initial radius isR0 = 1

2‖ϕ̃(za) −
ϕ̃(zb)‖ = 1

2

√

‖ϕ̃(za)‖2 + ‖ϕ̃(zb)‖2 − 2ϕ̃(za)′ϕ̃(zb) =

1
2

√

2κ̃ − 2k̃(za, zb).

In a classification problem, one may further requireza and
zb to come from different classes. On using (10),R0 then

becomes12

√

2
(

κ + 2 + 1
C

)

+ 2k(xa,xb). Asκ andC are

constants, choosing the pair(xa,xb) that maximizesR0 is
then equivalent to choosing the closest pair belonging to

3A similar algorithm is also described in (Kumar et al., 2003).

opposing classes, which is also the heuristic used in initial-
izing the SimpleSVM (Vishwanathan et al., 2003).

4.1.2 Distance Computations

Steps 2 and 3 involve computing‖ct − ϕ̃(zℓ)‖ for zℓ ∈ S.
Now,

‖ct − ϕ̃(zℓ)‖
2 (12)

=
X

zi,zj∈St

αiαj k̃(zi, zj) − 2
X

zi∈St

αik̃(zi, zℓ) + k̃(zℓ, zℓ),

on using (3). Hence, computations are based on kernel
evaluations instead of the explicit̃ϕ(zi)’s, which may be
infinite-dimensional. Note that, in contrast, existing MEB
algorithms only consider finite-dimensional spaces.

However, in the feature space,ct cannot be obtained as
an explicit point but rather as a convex combination of
(at most)|St| ϕ̃(zi)’s. Computing (12) for allm training
points takesO(|St|2 + m|St|) = O(m|St|) time at thetth
iteration. This becomes very expensive whenm is large.
Here, we use the probabilistic speedup method in (Smola
& Schölkopf, 2000). The idea is to randomly sample a suf-
ficiently large subsetS′ from S, and then take the point in
S′ that is furthest away fromct as the approximate furthest
point overS. As shown in (Smola & Schölkopf, 2000),
by using a small random sample of, say, size 59, the fur-
thest point obtained fromS′ is with probability 0.95 among
the furthest 5% of points from the wholeS. Instead of
takingO(m|St|) time, this randomized method only takes
O(|St|2 + |St|) = O(|St|2) time, which is much faster as
|St| ≪ m. This trick can also be used in initialization.

4.1.3 Adding the Furthest Point

Points outside MEB(St) have zeroαi’s (Section 4.1.1) and
so violate the KKT conditions of the dual problem. As in
(Osuna et al., 1997), one can simply add any such violating
point toSt. Our step 3, however, takes a greedy approach
by including the point furthest away from the current cen-
ter. In the classification case4 (Section 3.2.2), we have

arg max
zℓ /∈B(ct,(1+ǫ)Rt)

‖ct − ϕ̃(zℓ)‖2

= arg min
zℓ /∈B(ct,(1+ǫ)Rt)

∑

zi∈St

αiyiyℓ(k(xi,xℓ) + 1)

= arg min
zℓ /∈B(ct,(1+ǫ)Rt)

yℓ(w
′ϕ(xℓ) + b), (13)

on using (10), (11) and (12). Hence, (13) chooses theworst
violating pattern corresponding to the constraint (8). Also,
as the dual objective in (9) has gradient−2K̃α, so for a
patternℓ currently outside the ball

(K̃α)ℓ =
m

∑

i=1

αi

(

yiyℓk(xi,xℓ) + yiyℓ +
δiℓ

C

)

= yℓ(w
′ϕ(xℓ) + b),

4The case for one-class classification (Section 3.2.1) is similar.

on using (10), (11) andαℓ = 0. Thus, the pattern chosen
in (13) also makes the most progress towards maximizing
the dual objective. This subset selection heuristic has been
commonly used by various decomposition algorithms (e.g.,
(Chang & Lin, 2004; Joachims, 1999; Platt, 1999)).

4.1.4 Finding the MEB

At each iteration of step 4, we find the MEB by using the
QP formulation in Section 3.2. As the size|St| of the
core-set is much smaller thanm in practice (Section 5),
the computational complexity of each QP sub-problem is
much lower than solving the whole QP. Besides, as only
one core vector is added at each iteration, efficient rank-one
update procedures (Cauwenberghs & Poggio, 2001; Vish-
wanathan et al., 2003) can also be used. The cost then be-
comes quadratic rather than cubic. In the current imple-
mentation (Section 5), we use SMO. As only one point is
added each time, the new QP is just a slight perturbation of
the original. Hence, by using the MEB solution obtained
from the previous iteration as starting point (warm start),
SMO can often converge in a small number of iterations.

4.2 Convergence to (Approximate) Optimality

First, considerǫ = 0. The proof in (Bădoiu & Clarkson,
2002) does not apply as it requiresǫ > 0. Nevertheless, as
the number of core vectors increases by one at each itera-
tion and the training set size is finite, so CVM must termi-
nate in a finite number (say,τ) of iterations, Withǫ = 0,
MEB(Sτ) is an enclosing ball for all the points on termina-
tion. BecauseSτ is a subset of the whole training set and
the MEB of a subset cannot be larger than the MEB of the
whole set. Hence, MEB(Sτ) must also be the exact MEB
of the whole (̃ϕ-transformed) training set. In other words,
whenǫ = 0, CVM outputs theexactsolution of the kernel
problem.

Now, considerǫ > 0. Assume that the algorithm terminates
at theτ th iteration, then

Rτ ≤ rMEB(S) ≤ (1 + ǫ)Rτ (14)

by definition. Recall that the optimal primal objectivep∗

of the kernel problem in Section 3.2.1 (or 3.2.2) is equal to
the optimal dual objectived∗2 in (7) (or (9)), which in turn
is related to the optimal dual objectived∗1 = r2

MEB(S) in (2)
by (6). Together with (14), we can then boundp∗ as

R2
τ ≤ p∗ + κ̃ ≤ (1 + ǫ)2R2

τ . (15)

Hence,max
(

R2
τ

p∗+κ̃ , p∗+κ̃
R2

τ

)

≤ (1 + ǫ)2 and thus CVM is

an(1 + ǫ)2-approximation algorithm. This also holds with
high probability when probabilistic speedup is used.

As mentioned in Section 1, practical SVM implementa-
tions also output approximated solutions only. Typically,

a parameter similar to ourǫ is required at termination. For
example, in SMO and SVMlight (Joachims, 1999), train-
ing stops when the KKT conditions are fulfilled withinǫ.
Experience with these softwares indicate that near-optimal
solutions are often good enough in practical applications.
Moreover, it can also be shown that when the CVM ter-
minates, all the points satisfy loose KKT conditions as in
SMO and SVMlight.

4.3 Time and Space Complexities

Existing decomposition algorithms cannot guarantee the
number of iterations and consequently the overall time
complexity (Chang & Lin, 2004). In this Section, we show
how this can be obtained for CVM. In the following, we as-
sume that a plain QP implementation, which takesO(m3)
time andO(m2) space form patterns, is used for the MEB
sub-problem in Section 4.1.4. Moreover, we assume that
each kernel evaluation takes constant time.

As proved in (Bădoiu & Clarkson, 2002), CVM converges
in at most2/ǫ iterations. In other words, the total number
of iterations, and consequently the size of the final core-set,
are ofτ = O(1/ǫ). In practice, it has often been observed
that the size of the core-set is much smaller than this worst-
case theoretical upper bound (Kumar et al., 2003). This
will also be corroborated by our experiments in Section 5.

Consider first the case where probabilistic speedup is not
used in Section 4.1.2. As only one core vector is added at
each iteration,|St| = t + 2. Initialization takesO(m) time
while distance computations in steps 2 and 3 takeO((t +
2)2 + tm) = O(t2 + tm) time. Finding the MEB in step 4
takesO((t + 2)3) = O(t3) time, and the other operations
take constant time. Hence, thetth iteration takesO(tm +
t3) time, and the overall time forτ = O(1/ǫ) iterations is

τ
∑

t=1

O(tm + t3) = O(τ2m + τ4) = O

(

m

ǫ2
+

1

ǫ4

)

,

which is linear in m for a fixedǫ.

As for space5, since only the core vectors are involved
in the QP, the space complexity for thetth iteration is
O(|St|2). As τ = O(1/ǫ), the space complexity for the
whole procedure isO(1/ǫ2), which is independentof m
for a fixedǫ.

On the other hand, when probabilistic speedup is used, ini-
tialization only takesO(1) time while distance computa-
tions in steps 2 and 3 takeO((t+2)2) = O(t2) time. Time
for the other operations remains the same. Hence,tth iter-
ation takesO(t3) time and the whole procedure takes

τ
∑

t=1

O(t3) = O(τ4) = O

(

1

ǫ4

)

.

5As the patterns may be stored out of core, we ignore the
O(m) space required for storing them patterns.

For a fixedǫ, it is thusconstant, independent ofm. The
space complexity, which depends only on the number of
iterationsτ , is still O(1/ǫ2).

If more efficient QP solvers were used in the MEB sub-
problem of Section 4.1.4, both the time and space complex-
ities can be further improved. For example, with SMO, the
space complexity for thetth iteration is reduced toO(|St|)
and that for the whole procedure driven down toO(1/ǫ).

Note that whenǫ decreases, the CVM solution becomes
closer to the exact optimal solution, but at the expense of
higher time and space complexities. Such a tradeoff be-
tween efficiency and approximation quality is typical of all
approximation schemes. Morever, be cautioned that theO-
notation is used for studying the asymptotic efficiency of
algorithms. As we are interested on handling very large
data sets, an algorithm that is asymptotically more effi-
cient (in time and space) will be the best choice. However,
on smaller problems, this may be outperformed by algo-
rithms that are not as efficient asymptotically. These will
be demonstrated experimentally in Section 5.

5 Experiments

In this Section, we implement the two-class L2-SVM in
Section 3.2.2 and illustrate the scaling behavior of CVM (in
C++) on both toy and real-world data sets. For comparison,
we also run the following SVM implementations6:

1. L2-SVM: LIBSVM implementation (in C++);

2. L2-SVM: LSVM implementation (in MATLAB), with
low-rank approximation (Fine & Scheinberg, 2001) of
the kernel matrix added;

3. L2-SVM: RSVM (Lee & Mangasarian, 2001) imple-
mentation (in MATLAB). The RSVM addresses the
scale-up issue by solving a smaller optimization prob-
lem that involves a random̄m× m rectangular subset
of the kernel matrix. Here,̄m is set to10% of m;

4. L1-SVM: LIBSVM implementation (in C++);

5. L1-SVM: SimpleSVM (Vishwanathan et al., 2003)
implementation (in MATLAB).

Parameters are used in their default settings unless other-
wise specified. All experiments are performed on a 3.2GHz
Pentium–4 machine with 512M RAM, running Windows
XP. Since our focus is on nonlinear kernels, we use the

6Our CVM implementation can be downloaded from
http://www.cs.ust.hk/∼jamesk/cvm.zip. LIBSVM can be
downloaded fromhttp://www.csie.ntu.edu.tw/∼cjlin/libsvm/;
LSVM from http://www.cs.wisc.edu/dmi/lsvm; and Sim-
pleSVM fromhttp://asi.insa-rouen.fr/∼gloosli/. Moreover, we
followed http://www.csie.ntu.edu.tw/∼cjlin/libsvm/faq.html in
adapting the LIBSVM package for L2-SVM.

Gaussian kernelk(x,y) = exp(−‖x − y‖2/β), with
β = 1

m2

∑m
i,j=1 ‖xi − xj‖2.

Our CVM implementation is adapted from LIBSVM, and
uses SMO for each QP sub-problem in Section 4.1.4. As in
LIBSVM, our CVM also uses caching (with the same cache
size as in the other LIBSVM implementations above) and
stores all training patterns in main memory. For simplicity,
shrinking is not used in our current CVM implementation.
Moreover, we employ probabilistic speedup (Section 4.1.2)
and setǫ = 10−6 in all the experiments. As in other de-
composition methods, the use of a very stringent stopping
criterion is not necessary in practice. Preliminary studies
show thatǫ = 10−6 is acceptable for most tasks. Using an
even smallerǫ does not show improved generalization per-
formance, but may increase the training time unnecessarily.

5.1 Checkerboard Data

We first experiment on the4 × 4 checkerboard data used
by Lee and Mangasarian (2001) for evaluating large-scale
SVM implementations. We use training sets with a maxi-
mum of 1 million points and 2000 independent points for
testing. Of course, this problem does not need so many
points for training, but it is convenient for illustrating the
scaling properties. Experimentally, L2-SVM with low rank
approximation does not yield satisfactory performance on
this data set, and so its result is not reported here. RSVM,
on the other hand, has to keep a rectangular kernel matrix
of sizem̄ × m and cannot be run on our machine whenm
exceeds 10K. Similarly, the SimpleSVM has to store the
kernel matrix of the active set, and runs into storage prob-
lem whenm exceeds 30K.

As can be seen from Figure 2, CVM is as accurate as the
others. Besides, it is much faster7 and produces far fewer
support vectors (which implies faster testing) on large data
sets. In particular, one million patterns can be processed in
under 13s. On the other hand, for relatively small training
sets, with less than 10K patterns, LIBSVM is faster. This,
however, is to be expected as LIBSVM uses more sophis-
ticated heuristics and so will be more efficient on small-to-
medium sized data sets. Figure 2(b) also shows the core-set
size, which can be seen to be small and its curve basically
overlaps with that of the CVM. Thus, almost all the core
vectors are useful support vectors. Moreover, it also con-
firms our theoretical findings that both time and space are
constant w.r.t. the training set size, when it is large enough.

5.2 Forest Cover Type Data8

This data set has been used for large scale SVM training
by Collobert et al. (2002). Following (Collobert et al.,

7As some implementations are in MATLAB, so not all the
CPU time measurements can be directly compared. However, it
is still useful to note the constant scaling exhibited by theCVM
and its speed advantage over other C++ implementations, when
the data set is large.

8http://kdd.ics.uci.edu/databases/covertype/covertype.html

1K 3K 10K 30K 100K 300K 1M
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

size of training set

C
PU

 ti
m

e
(in

 s
ec

on
ds

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(a) CPU time.

1K 3K 10K 30K 100K 300K 1M
10

2

10
3

10
4

10
5

size of training set

nu
m

be
r o

f S
V’

s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(b) number of SV’s.

1K 3K 10K 30K 100K 300K 1M
0

5

10

15

20

25

30

35

40

size of training set

er
ro

r r
at

e
(in

 %
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(c) testing error.
Figure 2: Results on thecheckerboard data set (Except for the CVM, all the other implementations have to terminate
early because of not enough memory and / or the training time is too long). Note that the CPU time, number of support
vectors, and size of the training set are in log scale.

2002), we aim at separating class 2 from the other classes.
1% − 90% of the whole data set (with a maximum of
522,911 patterns) are used for training while the remaining
are used for testing. We setβ = 10000 for the Gaussian
kernel. Preliminary studies show that the number of sup-
port vectors is over ten thousands. Consequently, RSVM
and SimpleSVM cannot be run on our machine. Similarly,
for low rank approximation, preliminary studies show that
over thousands of basis vectors are required for a good ap-
proximation. Therefore, only the two LIBSVM implemen-
tations will be compared with the CVM here.

Figure 3 shows that CVM is, again, as accurate as the oth-
ers. Note that when the training set is small, more training
patterns bring in additional information useful for classi-
fication and so the number of core vectors increases with
training set size. However, after processing around 100K
patterns, both the time and space requirements of CVM be-
gin to exhibit a constant scaling with the training set size.
With hindsight, one might simply sample 100K training
patterns and hope to obtain comparable results9. However,
for satisfactory classification performance, different prob-
lems require samples of different sizes and CVM has the
important advantage that the required sample size does not
have to be pre-specified. Without such prior knowledge,
random sampling gives poor testing results, as has been
demonstrated in (Lee & Mangasarian, 2001).

5.3 Relatively Small Data Sets: UCI Adult Data10

Following (Platt, 1999), we use training sets with up to
32,562 patterns. As can be seen in Figure 4, CVM is
still among the most accurate methods. However, as this
data set is relatively small, more training patterns do carry
more classification information. Hence, as discussed in
Section 5.2, the number of iterations, the core set size
and consequently the CPU time all increase with the num-

9In fact, we tried both LIBSVM implementations on a random
sample of 100K training patterns, but their testing accuracies are
inferior to that of CVM.

10http://research.microsoft.com/users/jplatt/smo.html

ber of training patterns. From another perspective, recall
that the worst case core-set size is2/ǫ, independent of
m (Section 4.3). For the value ofǫ = 10−6 used here,
2/ǫ = 2 × 106. Although we have seen that the actual size
of the core-set is often much smaller than this worst case
value, however, whenm ≪ 2/ǫ, the number of core vec-
tors can still be dependent onm. Moreover, as has been ob-
served in Section 5.1, the CVM is slower than the more so-
phisticated LIBSVM on processing these smaller data sets.

6 Conclusion

In this paper, we exploit the “approximateness” in SVM
implementations. We formulate kernel methods as equiv-
alent MEB problems, and then obtain provably approxi-
mately optimal solutions efficiently with the use of core-
sets. The proposed CVM procedure is simple, and does not
require sophisticated heuristics as in other decomposition
methods. Moreover, despite its simplicity, CVM has small
asymptotic time and space complexities. In particular, for
a fixed ǫ, its asymptotic time complexity islinear in the
training set sizem while its space complexity isindepen-
dentof m. When probabilistic speedup is used, it even has
constantasymptotic time and space complexities for a fixed
ǫ, independent of the training set sizem. Experimentally,
on large data sets, it is much faster and produce far fewer
support vectors (and thus faster testing) than existing meth-
ods. On the other hand, on relatively small data sets where
m ≪ 2/ǫ, SMO can be faster. CVM can also be used for
other kernel methods such as support vector regression, and
details will be reported elsewhere.

References

Bădoiu, M., & Clarkson, K. (2002). Optimal core-sets for balls.
DIMACS Workshop on Computational Geometry.

Cauwenberghs, G., & Poggio, T. (2001). Incremental and decre-
mental support vector machine learning.Advances in Neural
Information Processing Systems 13. Cambridge, MA: MIT
Press.

0 1 2 3 4 5 6 7 8

x 10
5

10
1

10
2

10
3

10
4

10
5

10
6

size of training set

C
PU

 ti
m

e
(in

 s
ec

on
ds

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(a) CPU time.

0 1 2 3 4 5 6

x 10
5

10
3

10
4

10
5

10
6

size of training set

nu
m

be
r o

f S
V’

s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(b) number of SV’s.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

size of training set

er
ro

r r
at

e
(in

 %
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L1−SVM (LIBSVM)

(c) testing error.
Figure 3: Results on theforest cover type data set. Note that they-axes in Figures 3(a) and 3(b) are in log scale.

1000 3000 6000 10000 30000
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

size of training set

C
PU

 ti
m

e
(in

 s
ec

on
ds

)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(a) CPU time.

1000 3000 6000 10000 30000
10

2

10
3

10
4

10
5

size of training set

nu
m

be
r o

f S
V’

s

L2−SVM (CVM)
core−set size
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(b) number of SV’s.

1000 3000 6000 10000 30000
14

15

16

17

18

19

20

size of training set

er
ro

r r
at

e
(in

 %
)

L2−SVM (CVM)
L2−SVM (LIBSVM)
L2−SVM (low rank)
L2−SVM (RSVM)
L1−SVM (LIBSVM)
L1−SVM (SimpleSVM)

(c) testing error.
Figure 4: Results on theUCI adult data set (The other implementations have to terminate earlybecause of not enough
memory and/or training time is too long). Note that the CPU time, number of SV’s and size of training set are in log scale.

Chang, C.-C., & Lin, C.-J. (2004). LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm .

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002).
Choosing multiple parameters for support vector machines.
Machine Learning, 46, 131–159.

Collobert, R., Bengio, S., & Bengio, Y. (2002). A parallel mixture
of SVMs for very large scale problems.Neural Computation,
14, 1105–1114.

Fine, S., & Scheinberg, K. (2001). Efficient SVM training using
low-rank kernel representation.Journal of Machine Learning
Research, 2, 243–264.

Garey, M., & Johnson, D. (1979).Computers and intractability:
A guide to the theory of NP-completeness. W.H. Freeman.

Joachims, T. (1999). Making large-scale support vector machine
learning practical. In B. Schölkopf, C. Burges and A. Smola
(Eds.),Advances in kernel methods – Support vector learning,
169–184. Cambridge, MA: MIT Press.

Kumar, P., Mitchell, J., & Yildirim, A. (2003). Approximatemin-
imum enclosing balls in high dimensions using core-sets.ACM
Journal of Experimental Algorithmics, 8.

Lee, Y.-J., & Mangasarian, O. (2001). RSVM: Reduced support
vector machines.Proceeding of the First SIAM International
Conference on Data Mining.

Lin, K.-M., & Lin, C.-J. (2003). A study on reduced support
vector machines.IEEE Transactions on Neural Networks, 14,
1449–1459.

Mangasarian, O., & Musicant, D. (2001). Lagrangian support
vector machines.Journal of Machine Learning Research, 1,
161–177.

Osuna, E., Freund, R., & Girosi, F. (1997). Training supportvec-
tor machines: an application to face detection.Proceedings of
Computer Vision and Pattern Recognition(pp. 130–136). San
Juan, Puerto Rico.

Platt, J. (1999). Fast training of support vector machines using
sequential minimal optimization. In B. Schölkopf, C. Burges
and A. Smola (Eds.),Advances in kernel methods – support
vector learning, 185–208. Cambridge, MA: MIT Press.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., &
Williamson, R. (2001). Estimating the support of a high-
dimensional distribution.Neural Computation, 13, 1443–1471.

Smola, A., & Schölkopf, B. (2000). Sparse greedy matrix approx-
imation for machine learning.Proceedings of the Seventeenth
International Conference on Machine Learning(pp. 911–918).
Standord, CA, USA.

Smola, A., & Schölkopf, B. (2004). A tutorial on support vector
regression.Statistics and Computing, 14, 199–222.

Tax, D., & Duin, R. (1999). Support vector domain description.
Pattern Recognition Letters, 20, 1191–1199.

Vishwanathan, S., Smola, A., & Murty, M. (2003). SimpleSVM.
Proceedings of the Twentieth International Conference on Ma-
chine Learning(pp. 760–767). Washington, D.C., USA.

Williams, C., & Seeger, M. (2001). Using the Nyström method
to speed up kernel machines.Advances in Neural Information
Processing Systems 13. Cambridge, MA: MIT Press.

