Very Large SVM Training using Core Vector Machines
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Abstract However, on very large data sets, the resulting rank of the

Standard SVM training ha®)(m?) time and
O(m?) space complexities, where is the train-

ing set size. In this paper, we scale up kernel
methods by exploiting the “approximateness” in
practical SVM implementations. We formulate
many kernel methods as equivalent minimum en-
closing ball problems in computational geome-
try, and then obtain provably approximately opti-
mal solutions efficiently with the use of core-sets.
Our proposed Core Vector Machine (CVM) al-
gorithm has a time complexity thatlisear in m

and a space complexity thatirlependentf m.
Experiments on large toy and real-world data sets
demonstrate that the CVM is much faster and can
handle much larger data sets than existing scale-
up methods. In particular, on our PC with only
512M RAM, the CVM with Gaussian kernel can
process the checkerboard data set with 1 million
points in less than 13 seconds.

I ntroduction

kernel matrix may still be too high to be handled efficiently.

Another approach to scale up kernel methods is by chunk-
ing or more sophisticated decomposition methods. How-
ever, chunking needs to optimize the entire set of non-zero
Lagrange multipliers that have been identified, and the re-
sultant kernel matrix may still be too large to fit into mem-
ory. Osuna et al. (1997) suggested optimizing only a fixed-
size subset of the training datavdrking se} each time,
while the variables corresponding to the other patterns are
frozen. Going to the extreme, the sequential minimal opti-
mization (SMO) algorithm (Platt, 1999) breaks a large QP
into a series of smallest possible QPs, each involving only
two variables. In the context of classification, Mangasar-
ian and Musicant (2001) proposed the Lagrangian SVM
(LSVM) that avoids the QP (or LP) altogether. Instead,
the solution is obtained by a fast iterative scheme. How-
ever, for nonlinear kernels (which is the focus in this pa-
per), it still requires the inversion of an x m matrix. Fur-
ther speed-up is possible by employing the reduced SVM
(RSVM) (Lee & Mangasarian, 2001), which uses a rectan-
gular subset of the kernel matrix. However, this may lead
to performance degradation (Lin & Lin, 2003).

In practice, state-of-the-art SVM implementations tyfiica
have a training time complexity that scales betwékm)

In recent years, there has been a lot of interest on usingndO(m?*?) (Platt, 1999). This can be further driven down
kernels in various machine learning problems, with the supto O(m) with the use of a parallel mixture (Collobert et al.,
port vector machines (SVM) being the most prominent ex-2002). However, these are only empirical observations and
ample. Many of these kernel methods are formulated agot theoretical guarantees. For reliable scaling behawior
quadratic programming (QP) problems. Denote the numbevery large data sets, our goal is to develop an algorithm that

of training patterns byn. The training time complexity of

can be proved (using tools in analysis of algorithms) to be

QP isO(m?) and its space complexity is at least quadratic.asymptotically efficient in both time and space.

Hence, a major stumbling block is in scaling up these QP’SNI
to large data sets, such as those commonly encountered

data mining applications.

Moreover, practical SVM implementations, as in many nu-
Herical routines, onlgpproximatehe optimal solution by
an iterative strategy. Typically, the stopping criteridit u

To reduce the time and space complexities, a popular techizes either the precision of the Lagrange multipliers (e.g
nique is to obtain low-rank approximations on the kernel(Joachims, 1999; Platt, 1999)) or the duality gap (e.g.,
matrix, by using the Nystrom method (Williams & Seeger, (Smola & Scholkopf, 2004)). However, while approxi-
2001), greedy approximation (Smola & Scholkopf, 2000)mation algorithms (with provable performance guarantees)
or matrix decompositions (Fine & Scheinberg, 2001).have been extensively used in tackling computationally dif



ficult problems like NP-complete problems (Garey & John-Here, we will focus on approximate MEB algorithms based
son, 1979), such “approximateness” has never been exn core-sets. LeB(c, R) be the ball with centet and
ploited in the design of SVM implementations. radiusR. Givene > 0, a ballB(c, (1 + ¢)R) is an(1 +
€)-approximationof MEB(S) if R < ryegs) andS C
B(c,(1 + €)R). AsubsetX C S is acore-setof S if an
expansion by a factdfl + ¢) of its MEB containsS, i.e.,
S C B(c, (14¢€)r), whereB(c,r) = MEB(X) (Figure 1).

In this paper, we first transform the SVM optimization
problem (with a possibly nonlinear kernel) to timnimum
enclosing bal(MEB) problem in computational geometry.
The MEB problem computes the ball of minimum radius
enclosing a given set of points (or, more generally, balls).To obtain such anli(+ ¢)-
Traditional algorithms for finding exact MEBs do not scale approximation, Badoiu and
well with the dimensionalityl of the points. Consequently, Clarkson (2002) proposed
recent attention has shifted to the development of approxia simple iterative scheme:
mation algorithms. Lately, a breakthrough was obtained byAt the tth iteration, the
Badoiu and Clarkson (2002), who showed thatar-€)-  current estimateB(c¢, )
approximation of the MEB can be efficiently obtained us-is expanded incrementally
ing core-setsGenerally speaking, in an optimization prob- by including the furthest
lem, a core-set is a subset of the input points, such thgtoint outside the(l + ¢)-
we can get a good approximation (with an approximatiorball B(c;, (1 + €)r;). This
ratio' specified by a user-definecparameter) to the orig- is repeated until all the
inal input by solving the optimization problem directly on points inS are covered by Figure 1: The inner cir-
the core-set. Moreover, a surprising property of (Badoiu &B(c, (1 + €)r¢). Despite  q is the MEB of the set
Clarkson, 2002) is that the size of its core-sehidepen- its simplicity, Badoiu and
dentof bothd and the size of the point set. Clarkson (2002) showed
that the number of itera-
tions, and hence the size of
the final core-set, depends
only one butnotond orm.

L i . : This independence efis important on applying this algo-
ity is independent ofn. The rest of this paper is organized rithm to kernel methods (Section 3) as the kernel-induced

as follows. Section 2 gives a shortintroduction on the MEB S T : )
. L : — feature space can be infinite-dimensional. As for the inde-
problem and its approximation algorithm. The connection

between kernel methods and the MEB problem is given irPgndence om, it 'allows both the time and space complgx-
. . . ities of our algorithm to grow slowly, as will be shown in

Section 3. Section 4 then describes our proposed Core Ve%'ection 43

tor Machine (CVM) algorithm. Experimental results are -

presented in Section 5, and the last section gives some con-
cluding remarks. 3 MEB Problemsand Kernel Methods

of squares and it§l + ¢)
expansion (the outer cir-
cle) covers all the points.
The set of squares is thus a
core-set.

Inspired from this core-set-based approximate MEB al
gorithm, we will develop an approximation algorithm for
SVM training that has an approximation ratio (@f+ ¢)2.

Its time complexity is linear inn while its space complex-

Obviously, the MEB is equivalent to the hard-margin sup-
port vector data description (SVDD) (Tax & Duin, 1999),
which will be briefly reviewed in Section 3.1. The MEB

d . . problem can also be used for finding the radius compo-
R?, the minimum enclosing ball of (denoted MERS)) nent of the radius-margin bound (Chapelle et al., 2002).

is the smallest ball that contains all the pointsSn The Thus, as pointed out by Kumar et al. (2003), the MEB
MEB problem has found applications in diverse areas Suc'broblem is useful in support vector clustering and SVM

as”gomputerhgraplhlcs (e.g., CO"'?'O,T Qetectlonh V'SE‘Z'I; parameter tuning. However, we will show in Section 3.2
C.Llj. lnlg), machine belarnlng (e.g., similarity search) aa that other kernel-related problems, including the trainin
cility locations problems. of soft-margin one-class and two-class L2-SVMs, can also

ILet C be the cost (or value of the objective function) of b€ viewed as MEB problems.
the solution returned by an approximate algorithm, @fdbe .
the cost of the optimal solution. Then, the approximate -algo 31 Hard-Margin SVvDD
rithm has anapproximation ratiop(n) for an input sizen if Given a kernek with the associated feature maplet the

max (CQ %) < p(n). Intuitively, this measures how bad MEB in the kernel-induced feature space®gc, R). The
the approximate solution is compared with the optimal sotut ~ Primal problem in the hard-margin SVDD is

A large (small) approximation ratio means the solution iscmu P2 NP 2 .

worse than (more or less the same as) the optimal solution, Ob R 72 le =)l < B%, i=1,....m. (1)
serve thaip(n) is always> 1. If the ratio does not depend on The corresponding dual is

n, we may just writep and call the algorithm ap-approximation

algorithm maxa/diagK) —a’Ka : 0<a, a'1=1, (2)

2 MEB in Computational Geometry

Given a set of point§ = {x1,...,x,,}, where eack; €



wherea = J[ay,...,a,] are the Lagrange multipli- liers from the normal data by solving the primal problem:
ers,0 = [0,...,0, 1 = [1,...,1) and K,,xm =

[k:(xi,xj)] = [ ( i) o(x5)] is the kernel matrix. As is min w2 — 2p + C 2. x;) >
well-known, this is a QP problem. The primal variables — w.p.& il P Z& o) z 0 =&
can be recovered from the optimalas

=1

wherew’p(x) = p is the desired hyperplane aiddis a
. user-defined parameter. Note that constragpts 0 are
c= Z aip(x;), R=a/diagK)-a'Ka. (3) otneeded for the L2-SVM. The corresponding dual is

1
l . 1 —
32 Viewing Kernel Methods asMEB Problems max —o O<+Eﬂ)a' 0o, al=1

— _ 127 . 1 _
In this paper, we consider the situation where = max—oaKa : 0o, ol=1, 7

wherel is them xm identity matrix andK = [k(z;,2;)] =

k(x,x) = &, 4)
[k(xi,x5) +2 o tis thus of the form in (5). Since
a constartt This will be the case when either (1) the k(x,x) = &, k(z z) = k + & = i is also a constant. This
isotropic kernek(x,y) = K(||x—y||) (e.g., Gaussian ker- one-class SVM thus corresponds to the MEB problem (1),

nel); or (2) the dot product kernélx,y) = K(x'y) (e.g.,  in which ¢ is replaced by the nonlinear mapsatisfying
polynomial kernel) with normalized inputs; or (3) any nor- ¢(z;)'¢(z;) = k(z;,z;). From the Karush-Kuhn-Tucker

malized kernek(x, y) = ——2C¥) ___ s used. Using (KKT) condrtrons we can recovey = " | a;p(x;) and
VEx,x)\/K(y,y) 51 =% andp=w To(x;) + & from any support vector

the conditiona’1l = 1 in (2), we havea/diagK) = k.
Dropping this constant term from the dual objective in (2)

we obtain a simpler optimization problem: 322 Two-ClassL2-SVM

/ . 1 —
max—oKa : 0<a, ol =1 ®)  Given atraining sefz; = (x;,v,)}, with y; € {~1,1},

Conversely, when the kernél satisfies (4), QP’s of the the primal of the two-class LZ'SVM is

form (5) can always be regarded as a MEB problem (1). m
Note that (2) and (5) yield the same setag§, Moreover, ming e WI*+0* =20+ CY &
let d7 andd} denote the optimal dual objectives in (2) and i=1
(5) respectively, then, obviously, s.t. yi(Wox)+b)>p—&.  (8)
di =d5 + k. (6)  The corresponding dual is
1
In the following, we will show that when (4) is satisfied, max —a’ (K Oyy' +yy + 51> a:adl=1
the duals in a number of kernel methods can be rewrit- B = ,
ten in the form of (5). While the 1-norm error has been max-—a’Ka : 0<a, al=1, )

commonly used for the SVM, our main focus will be on where® denotes the Hadamard produgt= [ys, .. ., Y]’
the 2-norm error. I theory, this could be less robust inangg — (2, 2.)] with A
iy 4yj

the presence of outliers. However, experimentally, its-gen
eralization performance is often comparable to that of the i 2:) — vk dij

L1-SVM (e.g., (Lee & Mangasarian, 2001; Mangasarian & (20, 2;) = yiy;k(xi, X;) + vy + c’
Musicant, 2001). Besides, the 2-norm error is more advanrnvolvmg both input and label mformatron Again, thisis o
tageous here because a soft-margin L2-SVM can be tran N$re form in (5), Withie(z, 2) —  + 1 + L =7, aconstant.

formed to a hard-margin one. While the 2-norm error ha Again, we can recover '

been used in classification (Section 3.2.2), we will also ex-
tend its use for novelty detection (Section 3.2.1).

(10)

W = Z a;Y; X'L b == Z a;Y;, fl = %7 (11)

from the optimalec andp = y;(w'o(x;) + b) + % from

any support vectog;. Note that all the support vectors

of this L2-SVM, including those defining the margin and
2In this case, it can be shown that the hard (soft) margin SYDDthose that are misclassified, now reside on the surface of the

yields identical solution as the hard (soft) margin onessI&8VM ball in the feature space induced fayA similar relation-

(Scholkopf et al., 2001). Moreover, the weightin the one-class  ship connecting one-class classification and binary dlassi

SVM solution is equal to the centerin the SVDD solution. cation is also described in (Scholkopf et al., 2001).

3.21 OneClassL2-SVM

Given a set of unlabeled patterfis } " ; wherez; only has
the input part;, the one-class L2-SVM separates the out-



4 CoreVector Machine (CVM) opposing classes, which is also the heuristic used in knitia

After formulating the kernel method as a MEB problem, izing the SimpleSVM (Vishwanathan et al., 2003).

we obtain a transformed kernel together with the associ-
ated feature spacg, mappingp and constank = k(z, z).
To solve this kernel-induced MEB problem, we adopt theSteps 2 and 3 involve computitig; — 4(z¢)|| for z, € S.
approximation algorithrhdescribed in the proof of Theo- Now,
rem 2.2 in (Badoiu & Clarkson, 2002). As mentioned in lle: — @(
Section 2, the idea is to incrementally expand the ball by . - -
including the point furthest away from the current center. ~— > oiah(ziz) =2 Y aik(zize) + k2, 20),
In the following, we denote the core-set, the ball's center =425 €5 e
and radius at theth iteration byS;, ¢, andR, respectively.  on using (3). Hence, computations are based on kernel
Also, the center and radius of a bl are denoted by  €valuations instead of the expligi(z;)'s, which may be
andrg. Given ane > 0, the CVM then works as follows: infinite-dimensional. Note that, in contrast, existing MEB
algorithms only consider finite-dimensional spaces.

4.1.2 Distance Computations

z)|? (12)

1. Initialize So, co and Ry. However, in the feature space, cannot be obtained as

2. Terminate if there is ng(z) (wherez is a training ?ant rixopslic;ig ||30~ir(1t t))t;t @;r;ﬁ;u?n;(igr)“;g)r( ;;’;nt?;sit%n of
. . . B t| P\Zi)S.
point) falling outside the¢1 +¢)-ball B(c:, (1+€)Ry). points takeD(S, 2 1 m|Si|) = O(m|S,) time at therth
3. Findz such thatp(z) is furthest away front;. Set iteration. This becomes very expensive wheris large.
Sit1 =S U{z}. Here, we use the probabilistic speedup method in (Smola
i & Scholkopf, 2000). The idea is to randomly sample a suf-
4. Find the new MERS;,) from (5) gnd Setcyy = ficiently large subse$’ from S, and then take the pointin
CMEB(S:41) @NARiy1 = TvEB(S, ) USING (3). S’ that is furthest away fror, as the approximate furthest
5. Increment by 1 and go back to step 2. point pverS. As shown in (Smola & Schb!kopf, 2000),
by using a small random sample of, say, size 59, the fur-
est point obtained frord’ is with probability 0.95 among
e furthest 5% of points from the whol®. Instead of
taking O(m|S:|) time, this randomized method only takes
(IS¢ + |St]) = O(|S¢|?) time, which is much faster as
%’A < m. This trick can also be used in initialization.

In the sequel, points that are added to the core-set will bé{:
calledcore vectors Details of each of the above steps will t
be described in Section 4.1. Despite its simplicity, CVM
has an approximation guarantee (Section 4.2) and als
provably small time and space complexities (Section 4.3).

4.1 Detailed Procedure 4.1.3 Adding the Furthest Point

411 Initialization Points outside MERS;) have zeray;'s (Section 4.1.1) and

Badoiu and Clarkson (2002) simply used an arbitrary poin0 violate the KKT conditions of the dual problem. As in
z € S to initialize Sy = {z}. However, a good initial- (Osunaetal., 1997), one can simply add any such violating
ization may lead to fewer updates and so we follow thePointtoS;. Our step 3, however, takes a greedy approach
scheme in (Kumar et al., 2003). We start with an arbi-by including the point furthest away from the current cen-
trary pointz ¢ S and findz, € S that is furthest away ter. In the classification ca/éeSection 322), we have

from z in the feature spacé. Then, we find another

: : "z - arg max lee — @(ze)||?

pointz, € S that is furthest away from, in F. The ini- z¢¢B(ct,(14€) Ry)
tial core-set is then set to k&) = {z,,z,}. Obviously, - ar min o k(% %

ot a = iYile i Xe) +1
MEB(S,) (in 7) has centety = 1(3(z) + $(zs)) ON gze@(ct,(lﬂ)m)z;& yiye(k(xi,xe) +1)
using (3), we thus have, = o, = 3 and all the other B . (w'o(xs) + b) (13)
a;’s are zero. The initial radius i€y = 1(@¢(za) — T W iRy T PIXE ’
P(z)l = 5V 1¢(2a)l1? + ¢(2)]12 — 26(2a) G(2z5) =  op using (10), (11) and (12). Hence, (13) chooseshist
%1 /2% — Qk(za, Zp). violating pattern corresponding to the constraint (8).0Als

as the dual objective in (9) has gradier2Kc, so for a

In a classification problem, one may further requireand pattern? currently outside the ball

z, to come from different classes. On using (18), then
m

becomes; \/2 (k+2+4 &) + 2k(xq,%xp). Ask andC are (Ka) Y <yiyek(xi, x¢) + yiye + %)
constants, choosing the péit,, x;) that maximizesR, is i=1 ¢
then equivalent to choosing the closest pair belonging to yo(wW'o(x¢) + 1),

3A similar algorithm is also described in (Kumar et al., 2003) 4The case for one-class classification (Section 3.2.1) iasim




on using (10), (11) and, = 0. Thus, the pattern chosen a parameter similar to ouris required at termination. For
in (13) also makes the most progress towards maximizingxample, in SMO and SVKF** (Joachims, 1999), train-
the dual objective. This subset selection heuristic has beeing stops when the KKT conditions are fulfilled withén
commonly used by various decomposition algorithms (e.g.Experience with these softwares indicate that near-optima

(Chang & Lin, 2004; Joachims, 1999; Platt, 1999)). solutions are often good enough in practical applications.
Moreover, it can also be shown that when the CVM ter-
414 Findingthe MEB minates, all the points satisfy loose KKT conditions as in

SMO and SVM¥9"*,
At each iteration of step 4, we find the MEB by using the

QP formulation in Section 3.2. As the siz8;| of the
core-set is much smaller than in practice (Section 5),
the computational complexity of each QP sub-problem isExisting decomposition algorithms cannot guarantee the
much lower than solving the whole QP. Besides, as onlyhumber of iterations and consequently the overall time
one core vector is added at each iteration, efficient rark-oncomplexity (Chang & Lin, 2004). In this Section, we show
update procedures (Cauwenberghs & Poggio, 2001; Vishhow this can be obtained for CVM. In the following, we as-
wanathan et al., 2003) can also be used. The cost then bgume that a plain QP implementation, which takksn?)
comes quadratic rather than cubic. In the current impletime andO(mz) space form patterns, is used for the MEB
mentation (Section 5), we use SMO. As only one point issub-problem in Section 4.1.4. Moreover, we assume that

added each time, the new QP is just a slight perturbation ofach kernel evaluation takes constant time.
the original. Hence, by using the MEB solution obtained

from the previous iteration as starting poimtafm starj,
SMO can often converge in a small number of iterations.

4.3 Time and Space Complexities

As proved in (Badoiu & Clarkson, 2002), CVM converges
in at most2/¢ iterations. In other words, the total number
of iterations, and consequently the size of the final cote-se
are ofr = O(1/¢). In practice, it has often been observed
that the size of the core-set is much smaller than this worst-
case theoretical upper bound (Kumar et al., 2003). This
will also be corroborated by our experiments in Section 5.

4.2 Convergenceto (Approximate) Optimality

First, considek = 0. The proof in (Badoiu & Clarkson,
2002) does not apply as it requires- 0. Nevertheless, as
the number of core vectors increases by one at each iter@onsider first the case where probabilistic speedup is not
tion and the training set size is finite, so CVM must termi- used in Section 4.1.2. As only one core vector is added at
nate in a finite number (say,) of iterations, Withe = 0,  each iteration|S;| = ¢ + 2. Initialization takesO(m) time
MEB(S;) is an enclosing ball for all the points on termina- while distance computations in steps 2 and 3 t@ké +

tion. BecauseS; is a subset of the whole training set and 2)2 + tm) = O(¢? + tm) time. Finding the MEB in step 4
the MEB of a subset cannot be larger than the MEB of thetakesO((t + 2)3) = O(t?) time, and the other operations
whole set. Hence, MEBY;) must also be the exact MEB take constant time. Hence, thid iteration take) (tm +

of the whole (-transformed) training set. In other words, ¢3) time, and the overall time for = O(1/¢) iterations is
whene = 0, CVM outputs theexactsolution of the kernel

u 1
problem. S 0@tm+ %) = 0(r*m + ') = O (g + 6—4) ,
Now, considee > 0. Assume that the algorithmterminates =1
at therth iteration, then which islinear in m for a fixede.
R, < ryens) < (1 + )R, (14)  As for space, since only the core vectors are involved

in the QP, the space complexity for thth iteration is
by definition. Recall that the optimal primal objective ~ O(|S:|?). As 7 = O(1/¢), the space complexity for the
of the kernel problem in Section 3.2.1 (or 3.2.2) is equal towhole procedure i®)(1/¢?), which isindependenbf m
the optimal dual objective in (7) (or (9)), which in turn  for a fixede.
is related to the optimal dual objectidg = r,%AEB(S) in (2)

On the other hand, when probabilistic speedup is used, ini-
by (6). Together with (14), we can then bouwidas P P P

tialization only takesO(1) time while distance computa-
tions in steps 2 and 3 take((t +2)?) = O(t?) time. Time
for the other operations remains the same. Hettbdter-
ation take€)(¢3) time and the whole procedure takes

RZ <p"+i<(1+¢)’R2. (15)

p*+R’ RZ -
an(1 + ¢)2-approximation algorithm. This also holds with Z Ot3) = 0(r%) = O <i) '
high probability when probabilistic speedup is used. et et

Hence,max( i p*”’") < (1 + €)% and thus CVM is

As mentioned in Section 1, practical SVM implementa-  5as the patterns may be stored out of core, we ignore the
tions also output approximated solutions only. Typically, O(m) space required for storing the patterns.



For a fixede, it is thusconstant independent ofn. The  Gaussian kernek(x,y) = exp(—|x — yl|?/3), with
space complexity, which depends only on the number ofs = # oy % — x5

i,j=1
. : s 5
iterationsr, is still O(1/¢%). Our CVM implementation is adapted from LIBSVM, and

If more efficient QP solvers were used in the MEB sub-uses SMO for each QP sub-problem in Section 4.1.4. As in
problem of Section 4.1.4, both the time and space complex:IBSVM, our CVM also uses caching (with the same cache
ities can be further improved. For example, with SMO, thesize as in the other LIBSVM implementations above) and
space complexity for théh iteration is reduced t0(|S;|)  stores all training patterns in main memory. For simplicity
and that for the whole procedure driven dowr(xfl /). shrinking is not used in our current CVM implementation.
Note that where decreases, the CVM solution becomesMoreover’ we cirg]ploy probablllsn_c speedup(_Sectmn4.1.2)
i . nd sett = 107° in all the experiments. As in other de-
closer to the exact optimal solution, but at the expense of . . .
. X o composition methods, the use of a very stringent stopping
higher time and space complexities. Such a tradeoff be=". """ . . o .
. o o ; criterion is not necessary in practice. Preliminary stadie
tween efficiency and approximation quality is typical of all 6 ;
S : show thate = 10~° is acceptable for most tasks. Using an
approximation schemes. Morever, be cautioned thabthe ) o

o . . o even smaller does not show improved generalization per-
notation is used for studying the asymptotic efficiency of . LY .

. . ; formance, but may increase the training time unnecessarily
algorithms. As we are interested on handling very large
data sets, an algorithm that is asymptotically more effi-5.1 Checkerboard Data
cient (in time and space) will be the best choice. However
on smaller problems, this may be outperformed by algo
rithms that are not as efficient asymptotically. These will
be demonstrated experimentally in Section 5.

We first experiment on thé x 4 checkerboard data used
by Lee and Mangasarian (2001) for evaluating large-scale
SVM implementations. We use training sets with a maxi-
mum of 1 million points and 2000 independent points for
testing. Of course, this problem does not need so many
points for training, but it is convenient for illustratinge

In this Section, we implement the two-class L2-SVM in scaling properties. Experimentally, L2-SVM with low rank
Section 3.2.2 and illustrate the scaling behavior of CVM (inapproximation does not yield satisfactory performance on
C++) on both toy and real-world data sets. For comparisonthis data set, and so its result is not reported here. RSVM,

5 Experiments

we also run the following SVM implementaticdhs on the other hand, has to keep a rectangular kernel matrix
of sizem x m and cannot be run on our machine when
1. L2-SVM: LIBSVM implementation (in C++); exceeds 10K. Similarly, the SimpleSVM has to store the

kernel matrix of the active set, and runs into storage prob-
2. L2-SVM: LSVM implementation (in MATLAB), with  lem whenm exceeds 30K.
low-rank approximation (Fine & Scheinberg, 2001) of

the kernel matrix added: As can be seen from Figure 2, CVM is as accurate as the

others. Besides, it is much fasteand produces far fewer
3. L2-SVM: RSVM (Lee & Mangasarian, 2001) imple- support vectors (which implies faster testing) on largadat

mentation (in MATLAB). The RSVM addresses the sets. In particular, one million patterns can be processed i
scale-up issue by solving a smaller optimization prob_under 13s. On the other hand, for relatively small training
lem that involves a random: x m rectangular subset sets, with less than 10K patterns, LIBSVM is faster. This,

however, is to be expected as LIBSVM uses more sophis-
ticated heuristics and so will be more efficient on small-to-
4. L1-SVM: LIBSVM implementation (in C++); medium sized data sets. Figure 2(b) also shows the core-set
size, which can be seen to be small and its curve basically
5. L1-SVM: SimpleSVM (Vishwanathan et al., 2003) overlaps with that of the CVM. Thus, almost all the core
implementation (in MATLAB). vectors are useful support vectors. Moreover, it also con-
firms our theoretical findings that both time and space are

Parameters are used in their default settings unless othef@nstant w.rt. the training set size, when itis large ehoug

wise specified. All experiments are performed on a 3.2GH 8

Pentium—4 machine with 512M RAM, running Windows 75'2, Forest Cover Type Data o

XP. Since our focus is on nonlinear kernels, we use the NiS data set has been used for large scale SVM training
by Collobert et al. (2002). Following (Collobert et al.,

S0Our CVM implementation can be downloaded from —

http://www.cs.ust.hk/~jamesk/cvm.zip.  LIBSVM can be "As some implementations are in MATLAB, so not all the

downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/; CPU time measurements can be directly compared. However, it

LSVM from http://www.cs.wisc.edu/dmi/lsvm; and Sim- s still useful to note the constant scaling exhibited by @\éM

pleSVM from http://asi.insa-rouen.fr/~gloosli/. Moreover, we  and its speed advantage over other C++ implementations) whe

followed http://www.csie.ntu.edu.tw/~cjlin/libsvm/fag.html in the data set is large.

adapting the LIBSVM package for L2-SVM. 8hittp://kdd.ics.uci.edu/databases/covertype/covertype.html

of the kernel matrix. Heren is set t010% of m;



——L2-SVM (CVM) —~L2-SVM (CVM) ——L2-SvMm (Cvm)
L2-svmqesvwmy) | f |[>core-se t size L L2-SVM (LIBSVM)
L2-SVM (RSVM) L2-SVM (LIBSVM) L2-SVM (RSVM)

->6-L1-SVM (LIBSVM) L2-SVM (RSVM) ->6-L1-SVM (LIBSVM)

—©-L1-SVM (SimpleSVM) 56 L1-SVM (LIBSVM) 30k —9-L1-SVM

=©~L1-SVM (SimpleSVM)|

CPU time (in seconds)
number of SV's
error rate (in %)

N
8

——p—P—P—p 108
*

1K 3K 10K 30K 100K 300K 1M 1K 3K 10K 30K 100K 300K 1M
size of training set size of training set

3K 10K K 100K 300K Y
t

301
size of training se

(a) CPU time. (b) number of SV's. (c) testing error.
Figure 2: Results on theheckerboard data set (Except for the CVM, all the other implementatioagehto terminate

early because of not enough memory and / or the training tited long). Note that the CPU time, number of support
vectors, and size of the training set are in log scale.

2002), we aim at separating class 2 from the other classeber of training patterns. From another perspective, recall
1% — 90% of the whole data set (with a maximum of that the worst case core-set size2i&, independent of
522,911 patterns) are used for training while the remainingn (Section 4.3). For the value ef = 10~% used here,
are used for testing. We sgt= 10000 for the Gaussian 2/e = 2 x 105. Although we have seen that the actual size
kernel. Preliminary studies show that the number of supof the core-set is often much smaller than this worst case
port vectors is over ten thousands. Consequently, RSVMalue, however, whem < 2/¢, the number of core vec-
and SimpleSVM cannot be run on our machine. Similarly,tors can still be dependent an. Moreover, as has been ob-
for low rank approximation, preliminary studies show that served in Section 5.1, the CVM is slower than the more so-
over thousands of basis vectors are required for a good aphisticated LIBSVM on processing these smaller data sets.
proximation. Therefore, only the two LIBSVM implemen-

tations will be compared with the CVM here. 6 Conclusion

Figure 3 shows that CVM is, again, as accurate as the othn this paper, we exploit the “approximateness” in SVM
ers. Note that when the training set is small, more trainingmplementations. We formulate kernel methods as equiv-
patterns bring in additional information useful for classi alent MEB problems, and then obtain provably approxi-
fication and so the number of core vectors increases witlmately optimal solutions efficiently with the use of core-
training set size. However, after processing around 100kets. The proposed CVM procedure is simple, and does not
patterns, both the time and space requirements of CVM berequire sophisticated heuristics as in other decompasitio
gin to exhibit a constant scaling with the training set size.methods. Moreover, despite its simplicity, CVM has small
With hindsight, one might simply sample 100K training asymptotic time and space complexities. In particular, for
patterns and hope to obtain comparable reSuli®wever, a fixede, its asymptotic time complexity ifnear in the

for satisfactory classification performance, differerglpr  training set sizen while its space complexity imdepen-
lems require samples of different sizes and CVM has thalentof m. When probabilistic speedup is used, it even has
important advantage that the required sample size does nobnstanfaisymptotic time and space complexities for a fixed
have to be pre-specified. Without such prior knowledgeg, independent of the training set size Experimentally,
random sampling gives poor testing results, as has beewn large data sets, it is much faster and produce far fewer

demonstrated in (Lee & Mangasarian, 2001). support vectors (and thus faster testing) than existindgpmet
) 10 ods. On the other hand, on relatively small data sets where
53 Relatively Small Data Sets: UCI Adult Data m < 2/e, SMO can be faster. CVM can also be used for

Following (Platt, 1999), we use training sets with up to other kernel methods such as support vector regression, and
32,562 patterns. As can be seen in Figure 4, CVM isdetails will be reported elsewhere.

still among the most accurate methods. However, as this

data set is r.e.latn./ely.small, more training patterlns doy:arr_ References

more classification information. Hence, as discussed in

Section 5.2, the number Of_ Iteratlpns, the core set SIZ&5doiu, M., & Clarkson, K. (2002). Optimal core-sets fotflba
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