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Abstract

In Streaming Feature Selection (SFS), new fea-
tures are sequentially considered for addition to
a predictive model. When the space of poten-
tial features is large, SFS offers many advantages
over methods in which all features are assumed to
be known in advance. Features can be generated
dynamically, focusing the search for new features
on promising subspaces, and overfitting can be
controlled by dynamically adjusting the thresh-
old for adding features to the model. We present
a new, adaptive complexity penalty, the Informa-
tion Investing Criterion (1IC), which uses an ef-
ficient coding of features added, and not added,
to the model to dynamically adjust the threshold
on the entropy reduction required for adding a
new feature. Streaming Feature Selection with
[IC gives strong guarantees against overfitting. In
contrast, standard penalty methods such as BIC
or RIC always drastically over- or under-fitin the
limit of infinite numbers of non-predictive fea-
tures. Empirical results show that SFS is compet-
itive with much more compute-intensive feature
selection methods.

Introduction

foster, stine@harton. upenn. edu

ering interactions between the 365 original features led to
a set of over 67,000 potential features, of which about 40
proved significant.

The features may also come from more complex feature
generation algorithms. For example, Statistical Relation
Learning (SRL) methods often generate tens or hundreds
of thousands of potentially predictive features. SRL and
related methods “crawl” through a database or other rela-
tional structure and generate features by building inereas
ingly complex compound relations [1] . For example, when
building a model to predict the journal in which an article
will be published, potentially predictive features inctud
the words in the target article itself, the words in the ¢atic
cited by the target article, the words in articles that cite a
cles written by the authors of the target article, and sdfort
Traversing such relational structures can easily gererate
millions of features, since there are many words, authors,
and journals. Current modeling techniques, however, are
ill equipped to deal with problems of learning from, say, a
million potential features for each of a hundred thousand
observations. A hundred billion numbers do not fit easily
into memory on most contemporary computers. More im-
portantly, CPU is fast relative to memory, and being more
Sso.

When building models from potentially enormous sets of
features, it is desirable to interleave the process of featu
generation with that of feature testing in order to avoideve
generating features which are less likely to be useful. One
may want to only consider interaction terms in a regression

In many problems, one ha'sgfixed set of observations frorﬂ at least one of the component terms has proven predic-
which a vast, or even infinite stream of features can bEEive. One may want to only search farther in those branches

g]?nerateq Itlo bwlglpredl?tlve models. The Iafrge numbeEJfarefinementgraph in inductive logic programming (ILP)
of potentially predictive features may come from trans'Whic;h contain terms that have proven predictive — as is, in-

formations of, and interactions between, a smaller 'n't'al?eed, done in ILP. Building predictive models from such

set of features. For e.x'ample, most cpmmermal .Stat'St'.anrge, complex data sets requires careful control to avoid
software offers the ability to do stepwise regression usm%ver-fitting, particularly when there are many more fea-

all feature interactions (e.g., products of pairs of feesur tures than observations. Standard statistical and machine

tor allt_products. cont?lmtng tgreT Va”aptlﬁz)'t PtalrW|?e In'Iearning methods such as SVMs, maximum entropy meth-
eractions areé important and, along with data transtormag, s 4 neyral networks generally assume that all features

a bankruptcy prediction problem described below, consid? predictors”) are known in advance. They then use regu-



larization or features selection to avoid overfitting. sequence of features that are random noise, any selection

This paper focuses on penalty-based feature Selectio;r)]rocedurethat generates false positives at a fixed ratie, suc

methods for problems in which a small number of predic-as AIC or BIC, will select infinitely many of these random

. .ffzatures as predictors. Inclusion rules such as RIC (Bon-
tive features are to be selected from a large set of pment'?erroni) whichare a function ofp under-fit asp becomes

features. We wil compare, in the context of streaming f(.aa_large. Any such method that reduces the chance of includ-
ture selection, the widely used BIC penalty method W|thing each feature based on the total number of featuges
RIC, a more recent penalty method, and with the new In- o

formation Investing Criterion (IIC), which this paper iotr 2 be considered will end up not adding any features in the
duces. limit asp — oco.

. . . . The solution to this dilemma is to sequentially consider a
BIC can be understood in an information theoretic SeNSE tream of features for model inclusion and use a method
as consisting of a code (specifying the pa_rameters n th.(\?vhich incrementally adjusts the criterion for includingine
model) "’?”‘?' the compressed data (describing the errors Ratures in the model depending on the history of addi-
the predmhops made .by the model)'. Each Zero paramgtei{on (or non-addition) of features seen so far. We argue
(feature not included in the model) is coded with one b't’for Streaming Feature Selection (SFS), where as each ad-
and each non-zero parameter is coded With 1 log(n) y

bits, wheren is the number of observations used. (All logs ditional feature is observed, it is tested for inclusionhia t
' ' 95 model and then either included or discarded. Streaming

are base 2.) Recalling that the log likelihood of the dat . ;
. : : eature selection offers many advantages over the tradi-
given a model gives the number of bits to code the mode). . . .

ional approach of stepwise selection from a fixed set of

error, leads to the BIC criterion for feature selection: ac- . .
. . L features. In stepwise regression, all features are comside
cept a new feature; only if the change in log likelihood o .

: . ) : for addition to the model, the best one is selected, and then
from adding the feature is greater théﬂog(n), ie. if o ; i .

. . L ] ) all remaining features considered, etc. At every iteration
log(P(Y]Y;)) —log(P(Y[Y-)) > 5 log(n). BICisequiv-  51nqst 4|l features are tested for addition to the models Thi
alentto a Minimum Description Length (MDL)[2] criterion o4 jires having a finite set of features specified in advance,
if the numberoffeatyres considereds much less than the ang requires looking at each feature many times. Step-
number of observations, Howver, BIC is notavalid code \yise feature selection is widely used with penalty methods
forp > n. such as AIC and BIC, but we will show below that stream-
The Risk Inflation Criterion (RIC) [3, 4] gives another, ing feature selection often gives competitive performance
much more stringent criterion for feature selection, whichwhile allowing much greater flexibility in dynamically con-
controls the minimax risk. RIC chooses a set of featuredrolling feature generation. Using streams of features has
from the potential feature pool so that the loss of the re-other benefits. Since most features will not be included in
sulting model is within a factor dbg(p) of the loss of the  the models, they can be discarded soon after generation,
best such model. In essence, RIC behaves like a Bonferroffius reducing data storage requirement and allowing the
rule, in which a threshold for feature inclusion is selectedsolution of larger problems than can be tackled using stan-
so thatthe set of all features will only have a small chance dard machine learning algorithms such as support vector
of containing a “false” feature. This is highly conservativ machines (SVMs) or neural networks which assume that
and does often not produce optimal out of sample predicall potentially predictive features are knoarpriori.
tion accuracies.

The Information Investing Criterion (11C) introduced irish 2 Streaming feature selection

paper is an alternative MDL-style coding which, unlike ) o .

BIC and RIC, is adaptive. Information investing does not 1€ goal of streaming feature selection is to pick useful

require knowing the number of potential predictors in ad-Predictors from an offered sequence of features. For a fixed
vance, yet still has provable bounds on overfitting. 11C'sSet of observations, new features (predictors) are consid-
performance is never much worse than BIC or RIC, and fof'ed sequentially, and the decision to include or discard
the types of problems we are interested in, where there ar@ach feature is made at the time it is provided. SFS can be

far more potential features than observations, it oftergiv US€d with a variety of different machine learning methods;
vastly superior performance. all it requires from the machine learner is that it take fea-

tures sequentially and produce an estimate of the change
The assumptions behind penalty methods such as BIC ang entropy (log-likelihood) in the model. A wide range
RIC are not met when a fixed number of features are to bt classical statistical methods can be used off-the-shelf
selected from an arbitrarily large set of potentially peedi such as linear or logistic regression, or extensions such as
tive features. Inclusion rules such as AIC and BIC, whichgeneralized linear methods and estimating equations. SFS
are not a function op, the number of possible features to \yorks particularly well with modeling methods than can ef-

be considered for inclusion in the model, inevitably over-ficiently add additional features and with adaptive penalty
fit asp becomes large. When presented with a continuougnethods such as IIC.



model, the wealth is decreased by the cost of coding the
Initialize variable’s absence, which by an argument similar for that
i = 1, wealth = wy bits,model = {} used above is- log(1 — ¢€), which, for smalle, is approxi-
Do forever matelye.
x — get_new_feature()
€ < wealth/2i 2.1 Guarantees against overfitting
bits_saved «— entropy_reduction(x, e, model)
if(bits_saved > wa) One sense in which SFS is guaranteed not to over-fit, is
wealth «— wealth + wa that on average, the sum of the total description length plus
add_feature(x, model) Il addx to the model the wealth will never increase. Since the wealth is strictly
else positive, this guarantees that the total description lengh
wealth «— wealth — € never increase by more than the current wealth. Since when
t—1i+1 a feature is added to the model we increase the wealth less
than the description length decreases, the descriptigthen
Figure 1: Information-investing algorithm plus wealth tends to decrease, providing on average better
models.

SFS also provides another, much more subtle, guarantee
SFS dynamically adjusts the threshalgh, on the entropy  against overfitting. For the case of “hard” problems, where
reduction needed for a new variable to enter the model.the coefficients to be estimated are just barely distinguish
The thresholdw,, is adjusted using the wealtly;, which  apje above the noise, the cost of adding a “false” feature is
represents the number of bits currently available for overcomparable to the benefit of adding a true features. This
f|tt|ng Wea.lth starts at an |n|t|a| Valu@o SpeCifying the is a property Of using a So_ca”eﬂi mator. A testimator
number of bits by which one is willing to risk increasing tests for significance and then estimates by the usual esti-
the description length. Itis increased iy each time a  mator if it is significant, and estimates by zero otherwise.
variable (feature) is added to the model, since the variablg 3 variable has a true coefficient of zero, then when it is
is guaranteed to save at least bits, and decreased by  falsely included, it will be biased by abottSE, wheret,,
each time a variable is not added to the model,reflecting (ag the critical value used for testing significance, &l
described below) the cost of coding the fact that the featurgs the standard error of the coefficient. On the other hand,
was not added. the hardest to detect coefficients will have a coefficient of

The algorithm is given in Figure 1¢ specifies how many aboutt, SE. Hence leaving them out will bias their esti-
bits are available to code a variable. Thies_saved by ~ Mated value by about the same amount, namhefis. We
adding a feature to the model is the net entropy reductioff@n thus get optimal test error by adding as many features
from addingz to the model: the reduction in the model er- S possible while not exceeding a specified ratio of false to

ror minus the cost of coding the coefficient, associated Ue features added to the model.

with z and the cost of indiCating that the variable is to beSFS using the 1IC Coding (described be]ow) allows us, for
added to the model. Different COdingS can be used for th%ny valid Coding, to bound in expectation the ratio of in-
coefficients, for examplglog(n) bits (or, for a very ap- correct features added to correct features added, and thus
proximate coding 3 bits) to code each nonzero coefficientio minimize the expected test error by adding as many fea-
and e.g. log(e) bits to code that: is to be added to the tyres as possible subject to controlling that ratio.

model. (Since is the number of bits available to code a

spurious feature, the probability of the next feature being{heorem _ . .
“useful” is1—e € =1 — (1 — e+ O(e?)) ~ ¢, and et M; be the number of correct var|.ables mpluded in the
the cost in bits of coding that that the feature is useful isT0del, letV; be the number of spurious variables (those
roughly dog(e) bits.) If 3, the coefficient ofz, has an as- with true coefficient zero) included and; be the wealth,

sociated t-statistic, then addingto the model reduces the @l atiterationi, andletwa < 1/4 be a user selected value.
entropy of the model b)étzlog(e). (The log(e) converts Then if the algorithm in Figure 1 is modified so that it never
thet2 to bits.) bids more thari /2 it will have the property that:

If the featurex reduces entropy sufficiently to be worth E(N;) < dwa E(M;) + 4wy.
adding to the model, then the wealth is incremented by

— - . .
fixed amount,wa. If the featurer is not added to the This is very similar to controlling the False Discovery Rate

(FDR) [5], the number of features incorrectly included ire th
- model divided by the total number of features included in the

1A very similar SFS algorithm, which we call-investing, model, which has become popular in recent years. In the iegim
can be written that dynamically adjusts the criterion fodiad a  that we are working, correctly adding a feature always reduc
new feature to a model based on the p-value of the feature unddoth the FDR and the out-of-sample error, and incorrecttirag
consideration. a feature always increases both FDR and error.



Proof Sketch generatev,,, we havew,, = IT;(1 — §;) = e2=los(1-0) —
The proof relies on the fact that, = N; — dwaM; + ¢~ X640 Thusw,, = 0 iff S 6, is infinite.

4w; is a super-martingale, namely at each time period the . , 1
conditional expectation of; — S;_; is negative. We will Thus n‘r\]/ve let); go to zsro fahsterthah/lz,hs?]yz 7 where
show thatS; is a super-martingale by considering the cases’ > Othenwe, > 0 and we have wealth that we never use.
when the variable is or is not in the true model and is or is ] )

not added to the estimated model. 2.2 lIC and its coding scheme

A key question is what coding scheme to use in determin-

Bi=0 Bi #0

ing the entropy reduction. We describe here an “optimal”

use zero] AM; =0, AN, =0 | AM; =0, AN, =0 coding scheme which leads to the information investing al-

add variable] AM; =0,AN; =1 | AM; =1, AN; =0 gorithm described in Figure 1. Our goal is to find a (legit-

We can write the change if}; as: imate) coding scheme which, given a “bid,” specifying
how many bits are available to code a variable, will guar-
AS; = 5 —8Si antee the highest probability of adding the variable to the
= AN; — dwpaAM; + 4Aw; model. The key idea is that log(probability) and bits are
equivalent. This equivalence allows us to think in terms
If 5; # 0, thenAN; = 0. Thus, of distributions and thus to compute codes which handle
fractions of a bit. We show in this section that given any
AS; = —€;(1 — AM;) <0, actual distributionf; of the coefficients, we can produce a

coding corresponding to a modified distributigm which

whereg; is the amount bid at timé On the other hand, if uniformly dominates the coding implied lfSé

B; = 0, thenAM; = 0. So,
Assume, for simplicity, that we increase the wealth by one

AS; = AN; +4Aw; bit when a variabler; with coefficientg; is added. Thus,
= AN; + 4waAN; — 4¢;(1 — AN;) whenz; is addedog(p(x; is a “true” variable) /p(z; is a
— ANN(1 + dwa + &) — 4e;. false” variable)) > 1 bit; i.e. the log-likelihood decreases

by more than one bit. Lefs, be the distribution implied by
By bounds from information theory, we see thatthe coding scheme fap, if we addz; and fo(ts,) be the
E(AN;) < ¢. Also by assumptiondws < 1 and hormaldistribution (the null model in which; should not
6 < 1/2._HenceE(ASi) < de; — 4¢; = 0. Thus,s; DPe added). The coding saves enough bits to justify adding
is a super-martingale. a variable whenevefg, (t5,) > 2 * fo(ts,). This happens

. . with probability o;; = po({tﬁ,; : fﬂi (tﬂi) > 2% fO(tﬂi)})

Using the weaker fact that for super-martingalB$Si) < ynder the null ¢; is thus the area under the tails of the null
E(S;-1), we see thaF(S;) < Sy. But since we start out distribution.)

with N; = 0, andM; = 0, Sp = 4wy. Sincew; > 0 by ) .
construction, we see tha&t(N; — dwaM;) < 4wp. O There is no reason to havg, (t5,) > 2 * fo(tg,) in the
tails, since this would “waste” probability or bits. Hence

Whenwa = 1, this reduces td(N;) < E(M;) + 4wo.  the optimal coding corresponds fa(ts,) = 2 * fo(ts,)
The expected number of spurious variables added is thus nygy | the variables that are likely to be added. Using all of
more thantw, greater than the expected number of correcihe remaining probability mass (or equivalently, making th
variables added. coding “Kraft tight”) dictates the coding for the case when

As described above, if we add as many features as possibige variable is not likely to be added. The most efficient
subject to meeting such a constraint on spurious to true feg0ding to use is thus:

tures added, we will minimize the expected test error. The fs(ts,) = 2fo(ts,) if [t5,] > ta,
selection ok; asw; /2i gives the slowest possible decrease { Falts,) = L5259 fo(ts,) otherwise
f — f

in wealth such that all wealth is used; i.e., so that as many
features as possible are included in the model without sysand the corresponding cost in bits is:
tematically over-fitting. More formally:

Theorem { log(15(t5)/ (1)) = Tog(2) =1 bit1 [

) . . > ta,
Cc tinge; i /2t the sl t ble d ’
omputinge; asw; /2 gives the slowest possible decrease og(fa(ts )/ folts) =

in wealth such thalim; ., w; = 0. log( 11123) ~ —a; bits otherwise
Proof Sketch
Defined; = ¢;/w; to be the fraction of wealth invested Figure 2 shows the distributiofj; (¢(3;)), with the proba-

at timei. If no features are added to the model, wealthbility mass transfered away from the center, where features
at timei is w; = II;(1 — ;). If we pass to the limit to are not added, out to the tails, where features are added.



than the stepwise selection procedure. RIC gives perfor-
mance superior to SFS in this particular cage=(10) but

it fails badly when its assumptiong ¢mall) are violated, as
shown in Table 2. Stepwise regression using RIC does bet-
ter here than the streaming version. However, using stan-
dard code from R, the stepwise regression mmash slower

than the streaming regression, to the point where running
stepwise regression on data sets with tens of thousands of
features was not possible.

— Sl
| 2 £t )
= LU =(1-2%qa

| 1=,

ifltg| =4,

L Fir, ) otherwise

/'

One might
% hope that BIC | RIC | SFS
5 : " adding features | 89.3] 25.5| 61.5
Figure 2: Optimal distributiorf s more error 6.24| 9.57 | 7.60
spurious
features to ,
the end of Table 2. RIC underfits for ¢ > 1. Sameg
] BIC | RIC | SFS a feature |Parametersas Table 1 (streaming) except
streaming| features ggzi 27é18 35146 stream 1,000,q = 100 features in data and = 15.
error . . .
stepwise | features | 199 | 11.1| - would not o
orror 389 240 = severely harm an algorithm’s performance. However, BIC,

since its penalty is not a function of will add even more
spurious variables (if BIC haven't already added a feature

Table 1. BIC overfits for p > n. Average number d
features selected and out-of-sample error. 200 observa
tions,p = 1,000 features; = 10 true features in model Sy
thetic datazw ~ N(0,1) y: linear inz with noises? = 5. A
perfect model would give test error of 2.236, the error of
null model is 3.873. The results are an average over 20
and reported errors have an uncertainty of around 0.02

f for every observation!). RIC (or Bonferroni) puts a harsher
- penalty asp gets large, adding fewer and fewer features.
n-As Table 3 shows, SFS is clearly the superior method when
the true features occur early in the feature stream. SFS
trentinues to occasionally add features to the model, which
ruwsuld be good if there were predictive features later in the
stream, but does not lead to much overfitting when there

are no such features.

) ) ) _ It is often the case that large numbers of features are
The above equations been derived assuming that 1 bit §enerated, with the best ones tending to be earlier in

added to the wealth. It can be generalized toadditsto ¢ sequence. Such feature streams are generated when

the wealth each time a variable is added to the model. Ther,o searches over interactions and transformations, as in

when a variable is added to the model the probability of ithe bankruptcy example presented below. Similar feature

H [ ” w H H H i ”
being “true” should be®= times that of it being "false”, gyeams arise when one computes features at many length
and all of the 2’s in the above equations are replaced Wltgcales, as for face or object recognition in machine vi-
w.

2%a. sion. Another example is Structural Relational Learning

(SRL), where potential features are generated by searching

3 Experimental Results the space of logic queries or relational database queries.

We have used the CiteSeer data set, which contains about
To further illustrate the method, we evaluate SFS on a syn500,000 papers, 100,000 “constants” (words, authors, and
thetic data set for which the correct answers are known anfburnals), and around ten different relations (including a
on a larger, real data set of bankruptcy prediction. The basghor, venue, cites, has-word, institution, download) te-pr
synthetic data set contains 200 observations each of 1,0(fict which journal a given paper will be published in, or
features, of which 10 are predictive. We generate the feawhich papers it will cite. Predictions using CiteSeer benefi
tures independently from a normal distributioN,(0,1),  from the generation of rich sets of features, and depending
Wlt.h the true model beyr;g. the sum of the ten predictors plusn the exact task, SFS gives out-of-sample errors compara-
noise,N (0,5). The artificially simple structure of the data ble to, or several percentage points below those from non-
allows us to easily see which feature selection methods argdaptive techniques [6]. Learning in SRL methods such as
adding spl_Jrious variables or failing to find variables thatStructural Generalized Linear Regression (SGLR) [6] ben-
should be in the model. efit from efficient integration of feature generation and se-

The results are presented in Table 1. As expected Bldection; as each feature is tested for possible inclusion in
overfits, although less badly when streaming is used rathdp® model, the results are fed back to the feature genera-



threshold when considering 67,000 features. BIC also mas-
sively overfits, although less severely.

P 1,000] 10,000] 100k | IM
features 39.3 199 | 199 | 199
BIC | false pos.| 29.5 189 | 189 189
error 321 4.45| 4.45]| 4.45 4 Alternate feature selection methods
features 7.1 3.8 1.2 09

RIC | falsepos.| 0.1 05, 01] 02 Recent developments in statistical variable selectioe tak
error 288 349| 377|391 into account the size of the feature space, but only allow
features 5.4 54| 5.7 5.7 for finite, fixed feature spaces, and do not support sequen-
SFS | false pos.| 0.3 05| 08| 08 tial (or streaming) feature selection. The risk inflatioitesr
error 316| 3.30] 3.29] 3.29 rion (RIC) produces a model that possesses a type of com-

Table 3. Effect of adding spurious features Same pa Petitive predictive optimality [4, 3]. RIC chooses a set of
rameters as Table 1 except that additional spurious fegjtigatures from the potential feature pool so that the loss of
have been added after the first 1,000 features. “false pd§e resulting model is within a factor afg(p) of the loss

indicates the average number of features incorrectly agdefithe best such model. In essence, RIC behaves like a
(average over 10 runs) Bonferroni rule [3]. Each time a predictor is considered,

there is a chance that it will enter the model even if it is
merely noise. In other words, the tested null hypothesis
tor, which can then use this information to determine whichis that the proposed feature does not improve the predic-
further features to generate. Since generating the fesaturdion of the model. Doing a formal test generates a p-value
from these databases takes CPU days, avoiding generatifigf this null hypothesis. Suppose we only add this predic-
features is important both for computational as well as fortor if its p-value is less than; when we consider thgth
statistical efficiency methods. predictor. Then the Bonferroni rule keeps the chance of

dding even one extraneous predictor to less than, say, 0.05
We also tested a slight modification of SFS on a problem oﬁ g P y

predicting personal bankruptcies[7]. The data set is Kighl y constraining_ a;; < 0.05.

un-balanced, containing 2,244 bankruptcy events and hurBonferroni methods like RIC are conservative, limiting the
dreds of thousands of non-bankruptcy observations. Thability of a model to add factors that improve its predic-
real world loss function for predicting bankruptcy is quite tive accuracy. The connection of RIC ¢espending rules
asymmetric: the cost of predicting a bankruptcy when nondeads to a more powerful alternative. Anspending rule
occurs is much higher than the cost of failing to predict ais a multiple comparison procedure that bounds its cumula-
bankruptcy when one does occur. We call the ratio of theséve type 1 error rate at a small level, say 5%. For example,
two costsp. suppose one has to test thétypothesedd,, Hs, ..., Hp.

If we test the first using leveka, the second using level

We compared Streaming Feature Selection against boost%[d2 and so forth withy", a; = 0.05, then we have only a

C4.5, doing 5-fold cross-validation, where each pass of th%% chance of falsely rejecting one of théypotheses. If

cros?—f;/r? I|?a;[1|onbusis 1OQ,OOOSrI1:()Sr\—bankruptC|es and daEOWe associate each hypothesis with the claim that a predictor
one fifth of the bankruptcies. was run once, and the ¢ 1 yajye to a regression, then we are back in the situa-

the Qut-of—samplg costs were. gsﬂmated for each cost ratlcfi'on of a Bonferroni rule for variable selection. Bonferron
p using the predicted probability of bankruptcy. C4.5 was

run separately for each value of

methods and RIC simply fix; = «/p for each test.

Alternative multiple comparison procedures control a dif-
ferent property. Rather than control the cumulativélso
known as the family wide error rate), these control the so-
called false discovery rate [5]. Control of the false dis-
covery rate at 5% implies that at most 5% of the rejected
hypotheses are false positives. In variable selectios, thi
) . implies that of the included predictors, at most 5% de-
Table 4. Loss as a function of the loss ratiop, for grade the accuracy of the model. The Benjamini-Hochberg
boosted C4.5 and for SFS method for controlling the false discovery rate suggests th
a-spending method for keeping the false discovery rate be-
Table 4 shows that for low cost ratios, the two methoddow «: Order the p-values of the independents tests of
give very similar results, but at higher cost ratios, SF&giv H,, Hs, ..., H, so thatp; < py < ---p,. Now find the
around half the loss of C4.5. Using AIC, one would expectlargest p-value for whichp;, < o/(p — k) and reject allH;
over 1,000 variables to be falsely included in the modelfor i < k. Thus, if the smallest p-valug, < a/p, itis
based on the fact that an f-statistic-based penalty of 2 corejected. Rather than compare the second largest p-value to
responds to a t-statistic af2 which is a wildly generous the RIC/Bonferroni threshold /p, rejectHs if p, < 2a/p.

P 199| 99| 19 6 4 1
C.45cost| 132| 76 | 18.6| 7.2 | 5.09| 1.45
SFScost| 61 | 41| 15.3| 6.9 | 5.02| 1.54




There have been many papers that looked at procedures tife limit as the number of observationggoes to infinity
this sort for use in variable selection from an FDR perspecwhile the number of featurgs remains small. The more
tive [8], an empirical Bayesian perspective [9, 10], aninfo modern RIC assumes thatandp are large but that the
mation theoretical perspective [11] or simply a data miningnumber of true variables in the model is close to one. Un-
perspective [7]. But all of these require knowing the en-like BIC and RIC, IIC works for all values gf andn, and

tire list of possible variables ahead of time. Further, mosfor any¢ < p. The results presented in this paper are for
of them assume that the variables are orthogonal and hen¢kard” problems, in which the coefficients are close to the
tacitly assume that < n. limit of being detectable above the noise. For easy prob-
lems, where the signal to noise ratio is high, all methods
Send to work reasonably well. For problems which have a

what we calla-investing instead of .”C' In SFS using IIC, mix of easy and hard coefficients, the SFS algorithm can
we keep track of the number of bits saved and use thesg

bits to invest in future variables. Whereascdrnvesting e modified to make multiple passes, first investing” a rel-

the medium of exchanae is the accumulatiomdhat has atively small number of bits to find the easy features, and
yet to be spent Whenga significant variable is found, th then using the algorithm as described above to find the hard

. : : atures.
a-spending account goes up, but when a variable is found
to be insignificant, the account decreases. Thougtthe Key to the guarantee that IIC works for widely varying val-
investing rule sounds like it might be close to Benjamini- ues ofn, p andq is the use of an adaptive penalty to control
Hochberg's FDR procedure described above, it turns out téhe ratio of correct (“true”) to incorrect (“false”) feaes by
be fairly different. In particular, the Benjamini-Hochlger using an information theoretic coding to adjust the thresh-
method fails a® gets large; it is a batch-oriented proce- old on the entropy reduction necessary for adding a variable
dure. But thex-investing shares with 1IC the property of to the model. Streaming Feature Selection with IIC is ex-
not needing to know ahead of time and hence being able tremely easily to implement on top of any algorithm which
to handle a potentially infinite stream of predictors. incrementally considers features for addition and catesla
their entropy reduction or p-value. For linear and logistic
regression, we have found that SFS can easily handle mil-

5 Summary lions of features.
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