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Abstract

In (Wainwright et al., 2002) a new general
class of upper bounds on the log partition
function of arbitrary undirected graphical
models has been developed. This bound is
constructed by taking convex combinations
of tractable distributions. The experimen-
tal results published so far concentrates on
combinations of tree-structured distributions
leading to a convexified Bethe free energy,
which is minimized by the tree-reweighted
belief propagation algorithm. One of the fa-
vorable properties of this class of approxima-
tions is that increasing the complexity of the
approximation is guaranteed to increase the
precision. The lack of this guarantee is no-
torious in standard generalized belief prop-
agation. We increase the complexity of the
approximating distributions by taking combi-
nations of junction trees, leading to a convex-
ified Kikuchi free energy, which is minimized
by reweighted generalized belief propagation.
Experimental results for Ising grids as well as
for fully connected Ising models are presented
illustrating advantages and disadvantages of
the reweighting method in approximate in-
ference.

1 INTRODUCTION

Probabilistic graphical models such as Bayesian net-
works and Markov random fields are powerful tools
for learning and reasoning in domains with uncer-
tainty. Unfortunately, exact inference is intractable in
large, complex graphs. Therefore approximate infer-
ence methods are of great importance. An approxima-
tion method that recently received much attention is
loopy belief propagation (BP) (Pearl, 1988). Although
the algorithm is not guaranteed to converge, it of-

ten gives surprisingly accurate results (Murphy et al.,
1999). In (Yedidia et al., 2001), it has been shown that
fixed points of loopy BP are actually extrema of the
Bethe free energy, which can be considered as a two-
node approximation of the exact free energy of the
system. By considering the Kikuchi free energy, which
is an approximate free energy based on larger clusters
of nodes, the more advanced generalized belief prop-
agation (GBP) algorithm has been derived (Yedidia
et al., 2001). This algorithm can be viewed as an in-
terpolation between loopy BP and the junction tree
algorithm (Lauritzen and Spiegelhalter, 1988; Jensen,
1996). The relation between (G)BP and the approxi-
mate Bethe/Kikuchi free energies motivated several re-
searchers to design double-loop algorithms for explicit
minimization of the Bethe/Kikuchi free energy with
a guaranteed convergence to a (local) optimum (Teh
and Welling, 2002; Yuille, 2002; Heskes et al., 2003).

Increasing the cluster-size in GBP often improves the
accuracy of the approximation. Unfortunately, this is
not guaranteed. A notorious counter example is the
fully connected Ising model with pair and triplet ap-
proximations (Kappen and Wiegerinck, 2002). Even
with moderate interaction strength, the triplet approx-
imation is much worse than the pair approximation. A
related problem is that the quality of different GBP ap-
proximations cannot be compared by comparing their
Kikuchi free energy values. A lower Kikuchi free en-
ergy does not imply a better approximation.

A method that is closely related to (G)BP, but derived
in a completely different way is the convexified free
energy approximation (Wainwright et al., 2002; Wain-
wright et al., 2003; Wainwright and Jordan, 2003).
This approximation is derived to provide an upper
bound of the log partition function. The parameters
of the exact model are represented as the average of
parameters of tractable models. By the convexity of
the log partition function, it is upper-bounded by the
average of the log partition functions of the tractable
models. The optimization of this upper bound then



give rise to a approximate Bethe/Kikuchi-like free en-
ergy, in which the cluster beliefs are parameters to
be optimized. The advantage of this approach is that
this approximate free energy is convex. So it is rela-
tively easy to minimize, and it is guaranteed to have
only a single minimum. Another advantage of this
method is that a nested sequence of approximations
with increasing complexity leads to tighter approxi-
mations of the free energy. So, for example, in a fully
connected Ising model, the convexified approximation
using triplets must be more accurate in free energy
than with using pairs. One may expect (or hope) that
the increase of precision in free energy is reflected in
an increase of precision of other quantities, such as
node marginals. Experimental results published so-far
only involved approximations with trees, leading to a
convexified Bethe free energy, which is optimized by
tree-reweighted BP. The optimized pseudo-marginals
in these approximations are pair-marginals.

The main contribution of this paper is an experimental
study of convexified approximations with increasingly
complex clusters. First, we review the convexified free
energy approximation of an arbitrary discrete prob-
ability distributions (Wainwright et al., 2002; Wain-
wright et al., 2003), and the use of convex combina-
tions of junction-trees leading to convexified Kikuchi
free energy, as outlined earlier in (Wainwright and
Jordan, 2003). We present reweighted GBP (i.e.,
RGBP) to minimize the convexified free energy. This
algorithm is a straightforward generalization of the
message-free GBP algorithm presented in (Heskes and
Zoeter, 2003). We consider Ising grids and fully con-
nected Ising models for which we construct nested con-
vexified pair and cluster approximations of the free
energy and of the cluster marginals. These approxi-
mations are experimentally compared with each other
and with the corresponding standard Bethe/Kikuchi
approximations optimized with convergent double loop
algorithms (Heskes et al., 2003).

2 EXACT MODEL, PARTITION
FUNCTION AND FREE ENERGY

We consider a distribution over discrete variables x
with potential ¢ (x),

Px) = 5 exp((x) - 1)

The normalization constant,

=Y exp($(x)) (2)

is known as the partition function. For later reference,
we also define the variational free energy of the system,

=Y P)w(x +ZP

Minimizing the free energy with respect to P returns
the distribution P in (1). The value of the free energy
at its minimum is

Ylog P(x), (3)

F(P)=-logZ. 4)

2.1 JUNCTION TREES

Now we consider distributions over sets of nodes, x =
(z1,-..,2,), and potentials that factorize into over-
lapping cluster potentials,

= Z Ya(Xa) (5)

with @ C {1,...,n}, and x,, the state vector restricted
to the the variables in . The clusters and potentials
are not uniquely defined. For instance, clusters can be
merged into bigger clusters " = a U o' with ¥, =
Yo + Yo . For convenience, we assume that clusters «
are not contained in each other. This can be achieved
by merging subclusters with their supersets.

In general the distribution P(x) will be intractable.
An exception is formed by models in which the (possi-
bly merged) clusters can be organized into a junction
tree with small maximal cluster size.

A junction tree (Lauritzen and Spiegelhalter, 1988;
Jensen, 1996) is a hyper-tree of clusters @ € C (or
actually: a forest of hyper-trees), which has the prop-
erties that for any pair of clusters @ and o' with
nonempty overlap a N a': (1) There is a path in the
cluster tree that connects a and o' and (2) All the
clusters k in the path connecting « and o' should con-
tain their intersection: aNa’ C k (running intersection
property). The links between adjacent clusters in the
hyper-tree are labeled with separators. They consists
of the intersections § = aNa’ of the adjacent clusters.
The number of times that a subcluster § appears in
the hyper-tree is ng.

A probabilistic model in which the cluster set C = {a}
can be organized as a junction tree, can be factorized
into a product of probabilities on the cliques C' and
separators S,

mm—nmfmm [ P60 ©
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where we defined I' = C'US, and the counting numbers
ky =1for v € C and ky = —n, for vy € S. The free



energy can be expressed as

=2 2 Palxa)P(x
a€C Xa
+> ky Y P(x,)log P(x,) (7)

~yeT Xy

By defining P,(xy) = P(xy), v € T' the minimiza-
tion with respect to P can be conveniently be refor-
mulated as a minimization with respect to the inde-
pendent cluster marginals {P,(xy)} under constraint
that they are consistent on their overlaps v N+'.

3 AN UPPER BOUND OF THE
PARTITION FUNCTION

From now on, we assume that P(x) is intractable. In
this section the goal is to upper-bound log Z ().

If we have a set of (tractable) distributions P(7)(x),
with potentials ¢(7)(x), and a weight u(7) > 0 for
each of of the distributions, with ) u(7) = 1, such
that the original potential ¢ is the weighted sum of
potentials ¢(7)

Y MM (x) = 9(x) (®)
—

then the log partition function logZ(y) is upper
bounded by

log Z(y) = T)6') 9)

log Z Zu
Zu

This results from the semi-convexity of log Z (), which
follows from the fact the second derivative,

IA

)og Z(¢T)  (10)

2(v)
Somouty) = POe) ~ POPE)

= P(2)(8ax — P(x))(0ny —
is positive semi-definite .

3.1 A CONVEX COMBINATION OF
JUNCTION TREES

Now we take P(7T) to be junction trees with cluster
sets C(T) (such that the maximal cluster size is small

enough) and cluster potentials qﬁ(ﬁT). According to (8)
these potentials should satisfy

ST Y 6 xe) =v(x)  (12)
2

BeC(T)

For convenience, we assume that each cluster « is a
member of at least one cluster set C(7T), and that the
clusters a are not smaller than the clusters g of the
junction trees (i.e., « C 8 = a = ). This can be
achieved by merging of clusters a.

To optimize the upper bound of the log partition func-
tion with respect to the cluster potentials {¢§3T)} for
fixed {u(7T)}, we construct the Lagrangian

LE{6T},Q) =D u(T)log Z(67)
T

S x| (13)

BEC(T)

+) Q(x) - > w(T)
x T

where we introduced Lagrange multipliers @Q(x) for
the constraints (12). Differentiation with respect to

¢4 (x5), using

dlog Z(¢'))

= P (xp) (14)
96" (x5)
yields for 8 € C(T),
PT(x5) =) Q(x) = Q(xp) (15)
x\xg
Apparently, Q(x) is a ‘pseudo-probability’ with

‘pseudo-marginals’ on the clusters of the junction trees
that are equal to the cluster marginals of these junc-
tion trees. This implies that in the optimal {¢} all the
cluster probabilities of the different junction trees are
consistent on their overlaps.

PD(xgnp) = P (xp081) = Q(xsns1) (16)

for any pair of clusters g € C(T) and ' € C(T").
We reformulate the log Z(¢(7)) as min F({P{T}). Us-
ing the fact that the optimal {P,gT)} are equal to the
pseudo-marginals ()(x,), and using (12) we can add
up of all the free energies

POVGLAR(CT l > balxa)Q

+ D uT) D kQxy)logQ(xy) | (17)
T YEI(T)
Introducing the counting numbers
= ZN(T) Z k’y’(s'w’ (18)
T ¥ €T(T)

and writing Q(X,,) = @(X,) as independent pseudo-

marginals we obtain the convexified Kikuchi free en-



Algorithm 1 Message-free RGBP.

1: initialize @, (x4) and Qs(xs) as in (21)
2: repeat

3: for all inner clusters § do

4: update Q;(zs5) + Q5" (x5) as in (23)

5: for all outer clusters & D § do

6: update Q4 (x,) + Q2% (x,) as in (24)
7: end for

8: end for

9: until convergence
10: return Q,(x,) and Qs(xs)

ergy
Faros = = 33 tax)@a(x)
+3 D Q4(x,) log Qy(x,)  (19)
T Xy

which should be minimized under the constraint that
the (),’s are consistent on their overlaps. The convex-
ity follows by construction from the fact that Fiyprox
is a convex combination of exact free energies which
are convex.

3.2 RELATION WITH THE KIKUCHI
FREE ENERGY

The Kikuchi free energy (Yedidia et al., 2001; Hes-
kes et al., 2003) has the same functional form as in
(19). The difference is in the counting numbers. In
the Kikuchi free energy, the starting point is a set of
outer clusters, typically coinciding with the clusters «
of the original models (possibly after merging). The
inner clusters d are formed by taking all intersections of
the outer clusters. The counting numbers follow from
the recursive Moebius formula cs =1-3%_ 5 ¢, with
¢, = 1 for all outer clusters. The standard Kikuchi
free energy need not to be convex.

3.3 REWEIGHTED GENERALIZED
BELIEF PROPAGATION

Due to the similarity between the Kikuchi free en-
ergy and its convexified version, the GBP algorithm
for minimizing the Kikuchi free energy is easily gen-
eralized to reweighted generalized belief propagation
(RGBP) for the convexified Kikuchi free energy. Here
we describe a message-free form of RGBP. It is based
on the message-free GBP presented in (Heskes and
Zoeter, 2003)). The only difference is that we now
allow ¢, # 1 for the outer clusters.

We divide the clusters v € UrT'(T) into ‘outer clusters’
coinciding with clusters « in the original model, and

‘inner clusters’ § which are subclusters of a. The ap-
proximate free energy (19) can (loosely) be interpreted
as the free-energy of a “junction tree-like pseudo-
probability distribution”,

~ _ Ha Qa(Xa)®
Q) = [15 Qs(xs)—ce

We start by initializing the inner and outer cluster
marginals

(20)

Ya(Xa)

Co

Qo (xq) x exp( ) and Qs(xs) x1. (21)

so that tQ)(x) is proportional to the target distribution,

Q) x exp(> h(xa)) (22)

Next we repeatedly update the inner and outer cluster
pseudo-marginals that re-arrange information in the
cluster marginals to make them mutually consistent
while keeping (22) satisfied. The update rule for the
inner clusters ¢ is

Q2% (x5) o Qg (x5) ™45 Qs(x5) 7ot (23)

with

=Y ca and Qs(xs) lH Qa(xs) ]

add aDd
The update rule for the outer clusters « is

Qi (xa) ¢ Qalxa) o=

The final RGBP algorithm is summarized in Algo-
rithm 1.

(24)

In analogy with (Heskes and Zoeter, 2003) it can be
shown that fixed points of Algorithm 1 is an extremum
(and hence a minimum) of the convexified Kikuchi free
energy. In our simulations, the algorithm converged
without damping. To our knowledge, however, this is
not guaranteed. If needed, a damping term can be
introduced similar to the one in (Heskes and Zoeter,
2003).

4 COUNTING NUMBERS IN SOME
REGULAR GRAPHS

For a graph with a random structure, the construction
of the Kikuchi free energy is straightforward, given the
choice of the clusters. The reason is that the count-
ing numbers follow straightforwardly from the Moe-
bius formula. In the convexified case, the computa-
tion of the counting numbers is generally much more
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Figure 1: Left: full grid Tsx¢ with periodic boundary
conditions. Middle: spanning tree. Right: covering
junction tree.

difficult (Wainwright et al., 2002). Since we are inter-
ested in the performance of nested convexified cluster
approximations, without having a general algorithm
for computing counting numbers, we restrict ourself to
approximations of models with regular graphs, namely
an Ising grid with periodic boundary conditions and a
fully connected Ising model.

In (Wainwright et al., 2002), a convex combination of
all spanning trees in the graph is taken, leading to a
convexified Bethe free energy Fig. In this approxima-
tion the outer clusters are the pairs of connected nodes
in the Ising model. In (Wainwright et al., 2002), the
distribution p(7) is optimized as well. Here we fix
u(T) to be uniform. Under this simplifying condition,
and making use of the symmetries in the models that
we consider, we can construct convexified Kikuchi free
energies Fk that will provide strictly tighter bounds

min F' > min Fx > min F,g. (25)

4.1 ISING GRID

The first Ising model that we consider is a grid of 2n x
2n nodes with periodic boundary conditions (torus).
Each node is connected to four neighbors. We denote
this graph as Topx2n (see Fig. 1(a)).

We consider pair approximations and 2 x 2 cluster ap-
proximations. To write down Fik, we have to com-
pute the counting numbers c¢,. For this we draw a
random junction tree with clusters and subclusters
I(T). For each type of cluster, namely singleton
(type (1)), pair (type 7(2)), and 2 x 2 cluster (type
v(4)), we compute the sum of the counting numbers
k(i) = 3_., is ype 4(s) kv and divide the result by the
total number n (%) of clusters of type ¥(7) in the origi-
nal graph. In the 75,2, graph, these are n(1) = 4n2,
n(2) = 8n?, and n(4) = 4n?. The resulting counting
number for clusters of type i is ¢(i) = k(i) /n(i), which
can be substituted in (19) for the c¢,’s with « of type
i.

o U O O

(a) (b) (c) (d)

Figure 2: Left: fully connected K. Middle: spanning
tree. Right: two covering junction trees.

If we consider a spanning tree (see Fig. 1(b)), we find
k(2) = 4n? — 1 and k(1) = —(4n? — 2). As a result we
find for F.p the counting numbers

2n? —1

c(l) = ~Tonr (26)

4n? —1
0(2)27187 and

For our cluster approach we construct a set of junc-
tion trees as follows: take n non-overlapping horizontal
strips of 2n —1 type-4 clusters and connect these verti-
cally by n—1 additional type-4 clusters (see Fig. 1(c)).
Shifting and rotating this procedure leads to a homo-
geneous set. We find k(4) = 2n%2—1, k(2) = —(2n%-2),
and k(1) = 0. So, with this choice of junction trees the
counting numbers for F .k are

2n? -1
and ¢(2) =— n2n2 (27)

c(4) = ——

If we now go back to the spanning trees and restrict
the spanning trees to those that are contained in the
junction trees as constructed above (which is the case
in Fig. 1(b)), we find that the resulting counting num-
bers are the same as in (26). From this we conclude
that the approximations are nested and (25) holds.

4.2 FULLY CONNECTED ISING MODEL

We denote the fully connected Ising model with n
nodes as K, (see Fig. 2(a)). We consider pair and
triplet approximations. The counting numbers are
needed for singletons (type (1)), pairs (type 7(2)),
and triplets (type v(3)). In the graph K,, n(1) = n,
n(2) = n(n —1)/2, and n(3) = n(n — 1)(n — 2)/6.

If we consider a spanning tree (see Fig. 2(b)), we find
k(2) = n—1 and k(1) = —(n — 2). The resulting
counting numbers for F.p are

n—2

c(2)=% and o(1) =" (28)

For the triplet approximation we consider junction
trees that have clusters of three nodes, and separa-
tors of two nodes (see Fig. 2(c,d)). For such type of
junction trees we find k(3) =n — 2, k(2) = —(n — 3),



and k(1) = 0. So we find for F k the counting numbers

6 2(n — 3)

c(3) = Y — and ¢(2) =— (29)

Each spanning tree is contained in a junction tree.
Therefore the approximations are again nested and
(25) holds.

5 SIMULATIONS

We apply (R)(G)BP to the Ising models described in
the previous section. The prefix “G” (i.e, “general-
ized”), implies the use of outer-clusters larger than
two, namely the 2 x 2 for the grids and the triplets
for the fully connected models. The prefix “R” (i.e.,
“reweighted”), implies the use of counting numbers c,
from the convexified free energy as described in the
previous section rather than the standard ones ob-
tained by the Moebius relation. For R(G)BP we used
the RGBP algorithm as described earlier in this pa-
per. For (G)BP we used the double-loop algorithm
described in (Heskes et al., 2003).

5.1 EXPERIMENTAL SET-UP

We considered Ising grids Tsx¢ and Tgxs as well as the
fully connected models Ko and Kj2. The variables in
the models are binary z; = 1. We choose 9 (x;;) =
wiT;x; + 6;/nix; + 6 /njz;) with n; the number of
neighbors of node i. The external fields are generated
according 6; ~ N(0,0.01) (in both type of graphs) and
couplings according to J;; ~ N (0, g) for the torus and
Jij ~ N(0, %), with N the number of nodes in the
graph, for the fully connected model. We consider
eight scalings § = [0.2,0.5,0.75,1,1.5,2,5,10]. With
each scaling, we generated 5 models. For each model
realization we ran simulations with RBP, RGBP, BP
and GBP. In all runs, we computed the exact minimal
free energy Feaet = —logZ, the exact edge proba-
bilities P(x;;), the approximating free energy Fipprox
according to (19), and the approximating pseudo-
marginals on the edges Q(x;;).

5.2 RESULTS

In figure 3 we plotted for the four models the maximum
absolute deviation (MAD) of edge probabilities

MAD = max max|Q(x;;) — P(xi;)|, (30)
(i,))EE ij

the relative error in free energy

€= Fapprox - exacty (31)

Fexact

reweighted conventional
0.6
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Figure 4: Scatter plot of performance in MAD as a
function of relative error € for reweighted approxima-
tions (RBP and RGBP, (left)) and conventional ap-
proximations (BP and GBP, (right)).

and the absolute values of these relative errors |e|.
Plotted are the means and standard deviations of these
quantities as function of interaction strength .

On the grids Tgxe and Tgxs, in both the conventional
approximations (BP, GBP) as in the reweighted ap-
proximations (RBP,RGBP), increasing clustersize con-
sistently improves the result: GBP outperforms BP,
and RGBP outperforms RBP. In addition, we see
that the conventional approximations (BP, GBP) out-
perform their reweighted counterparts (RBP, RGBP)
both in the MAD and e.

With the fully connected models K¢ and K2, the re-
sults show a completely different picture for the con-
ventional approximations: GBP performs only well for
small g. If 8 is of order one, or larger, the GBP ap-
proximation collapses and BP outperforms GBP. (The
large error bars in GBP for § = 1 are due to the fact
that for some model realizations GBP performed very
well, and for others very bad). On the other hand,
adding complexity in the reweighted approximation
always improves the result: RGBP is always better
than RBP. The improvement is remarkably constant,
almost independent of 8, and independent of whether
the approximation is good or bad.

To investigate the relation between € and MAD of the
two different classes of approximations, we pooled all
the simulation results (i.e. of all the runs for the four
models with all the settings of 3) into two groups: one
for the reweighted approximations (RBP and RGBP)
and one for the conventional approximations (BP and
GBP). In figure 4 we made scatter plots of each pool
by plotting the MAD versus € for each simulation run.
In these plots we see that the relation between e and
MAD is much stronger in the the reweighted approxi-
mations than in the conventional approximations.

Furthermore, we investigated the effect of increasing
the cluster size in each of the approximation classes.
For each model realization, we compared the errors €
and MAD for the pair approximations BP and RBP
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Figure 3: Columns from left to right: (a) Results for Tsxg, (2 D grid with 6 x 6 = 36 nodes, periodic boundary
conditions); (b) Results for Tgxs. (c) Results for Ky (fully connected model with 9 nodes). (d) Results for
K,. First row: Maximal absolute deviation (MAD) for edge probabilities p(z;;) Second row:MAD, in log scale.
Third row: Relative error in free energy € = (Fhpprox — Fexact)/ Fexact in linear scale. Fourth row: absolute values
of relative errors |e| in log scale. Results are plotted for RGBP (full line), RBP (dashed), GBP (dash-dotted)
and BP (dotted). Only upper parts of errorbars are drawn for visual clarity. (Large errorbars in Ko and Ko
are in GBP results).

with the cluster approximation in the same approxi- 6 DISCUSSION
mating class, GBP and RGBP respectively. The scat-
ter plots in figure 5 clearly show that in the reweighted
approximation class the performance with larger clus-
ters improves in all model realizations. For the approx-
imation in F, this improvement is theoretically guar-
anteed. The improvement in both ¢ and MAD is sur-
prisingly constant. In the conventional approximation
class, the improvement clearly depends on the regime.
In the easy regime (small €, small MAD), larger clus-
ters improves the results. In the hard regime (large
€, large MAD), increasing cluster size may actually do
harm. Furthermore, there are exceptions: sometimes
BP improves upon GBP even in the easy regime.

Finding accurate approximations of graphical models
such as Bayesian networks is crucial if their application
to large scale problems is to be realized. Generalized
belief propagation (GBP) is nowadays considered as
one of the most powerful approximation methods. The
method is flexible in the sense that there is a tradeoff
in computational complexity and cluster-size. Unfor-
tunately, increasing the cluster size does not guarantee
to improve accuracy, and sometimes even deteriorate
results. For this reason we are interested in alterna-
tive approximate methods that do provide a guarantee
of improvement (at least in the free energy). Besides
the convexified free energy approach, which is studied
in this paper, another method that provide this guar-
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antee is the structural mean field (SMF) approxima-
tion (Wiegerinck, 2000). The convexified free energy
approach, however, has several appealing advantages.
Unlike SMF theory, all the edges in the target distri-
bution need (by construction) to be covered. This not
only circumvents the problem in SMF of which edges
to keep and which to delete, but it also suggests more
powerful approximation. The additional fact that no
results about its performance with cluster size larger
than two have been published (as far as we know) mo-
tivated us to further investigate this method.

The experimental results with RGBP (reweighted gen-
eralized belief propagation -the counterpart of RBP for
the convexified approach) suggest that in ‘easy’ prob-
lems where (G)BP performs well, the reweighted ap-
proximations do not provide a competing alternative.
However, in ‘hard’ problems, it might be worthwhile
to consider RGBP with larger clusters as an alterna-
tive. The method seems to be more robust in such
problems.

There is, however, an important open problem, not ad-
dressed in this paper, but mentioned earlier in (Wain-
wright et al., 2002), which is: how to find — or even
better: optimize the counting numbers in RGBP. In
this paper, we computed them (suboptimally - since
o was taken constant) by hand, which was possible
thanks to the symmetries in the model. An automatic
procedure, however, is crucial if the RGBP is to be
applied in real world problems with graphical models
of arbitrary structure
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