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Abstract

We present a general approximation method
for Bayesian inference problems. The method
is based on Expectation Propagation (EP).
Projection steps in the EP iteration that can-
not be done analytically are done using Gaus-
sian quadrature. By identifying a general
form in the projections, the only quadrature
rules that are required are for exponential
family weight functions. The corresponding
cumulant and moment generating functions
can then be used to automatically derive the
necessary quadrature rules. In this article
the approach is restricted to approximating
families that factorize to a product of one-
dimensional families.

The final algorithm has interesting similar-
ities with particle filtering algorithms. We
discuss these, and also discuss the rela-
tionship with variational Bayes and Laplace
propagation. Experimental results are given
for an interesting model from mathematical
finance.

1 INTRODUCTION

Expectation Propagation (EP) [12] is a powerful deter-
ministic approximate inference technique. It is briefly
introduced in Section 3. In EP an initial approxima-
tion is iteratively refined by introducing interactions
from the exact model and subsequently projecting the
extended approximation back onto a chosen paramet-
ric family. These projections boil down to a matching
of expected sufficient statistics. One of the problems
that can stand in the way of a direct application of the
EP technique, is that the required integrals implied by
the computation of the expected sufficient statistics
cannot be done analytically.
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It is very natural to try to combine EP with an ex-
isting technique to approximate relatively low dimen-
sional integrals. In [18] EP is combined with Laplace
approximations. Here we expand upon [10] and [21]
and define a general way of combining EP with Gaus-
sian quadrature. Section 6 shows how every projec-
tion can be interpreted in a general form. Section 8
describes how, using Stieltjes procedure to construct
orthogonal polynomials, the required quadrature rules
can be derived automatically. This means that the
entire quadrature EP routine could be computer gen-
erated for many chosen approximating families. Of
course, making use of properties of specific exponen-
tial family forms can result in efficiency gains. And as
it now stands, the chosen approximating family is re-
quired to factorize onto a product of one-dimensional
families. However, the procedure as described in this
article can form the basis for a method as general as
the variational (mean-field) Bayes approach [1, 2].

To facilitate the description of the methods we first
introduce our running example and briefly describe
EP, the exponential family and Gaussian quadrature.
Readers familiar with these basics may briefly glance
at Figure 1 and jump to Section 6 right away.

2 STOCHASTIC VOLATILITY
MODELS

Many of the, by now classic, results in mathematical fi-
nance assume that stocks follow a geometric Brownian
motion. This model implies that equidistant log re-
turns are independently, identically and normally dis-
tributed. Although the geometric Brownian motion
gives a rough description of stock market behavior,
the log returns tend to have fatter tails than a nor-
mal distribution and do not seem to be homoskedas-
tic. This has led to the development of models where
the standard deviation of the log returns, referred to
as volatility in finance, is treated as a random variable
itself. In this article we study the stochastic volatility



Figure 1: The dynamic Bayesian network that encodes
the conditional independences in the stochastic volatil-
ity model. Shading emphasizes the fact that a partic-
ular variable is observed.

model from [7].

The model is defined in discrete time. The time-index
t = 1,2,...T ranges over equidistant points in time.
We define y; = log S_fi_l’ the log return at t of stock
S. As mentioned above, if the volatility would be con-
stant, the log returns are independently, identically,
and normally distributed. We keep the mean of their
distributions fixed at u, but treat the volatility as a
random variable itself. The log of the volatility at ¢
is denoted by x;. The log volatility follows a mean
reverting AR(1) process. The complete model reads

e = alz,—D+l+e, e~NO7), (1)

ye = e"me+p, me~N(O1). (2)
In the above N(m,v) denotes the Gaussian probabil-
ity distribution with mean m and variance v. All dis-
turbances €; and n; are assumed to be independently
drawn.

We will consider factorized subjective priors of the
form

p(a) = Beta(ag, )

p(l) = N(m,u)
p(r) = Gamma(ar, SBr)
p(p) = N(my,vu)
p(z1) N(mg,,vs,) -

The full model is depicted as a dynamic Bayesian net-
work [15] in Figure 1. The notational conventions for
the various exponential families are introduced in Sec-
tion 4.

The interest is in smoothed posteriors: p(x¢|s1.7), with
t < T, and in posteriors over the log volatility and
drift parameters p(f|s1.7), with 8 = {a,l,7,u}. Un-
fortunately, as in most Bayesian inference problems,
the required integrals cannot be solved analytically.

3 EXPECTATION PROPAGATION

We assume that the joint over all variables in our
model factorizes as a product of factors W;. For the
stochastic volatility model this becomes:

H \Ilt(ht)a Wlth
p(a)p()p(T)p(p)p(z1) x
p(y1|71, p)p(yalre, p) X
p(l'2|£1)1, a, la T) )
Ui(he) = p(yesa|weyn, 1) x
(

p It+1|xt, a, l7 T) )

p(aa la Ty by L1:T yl:T)
Uy (h1)

fort=1,2,...,7 —1. We denote the hidden variables
in the domain of ¥ jointly as h;.

The required posteriors are proportional to this joint
p(hlyrr) H Wi(he) - 3)

To derive an expectation propagation algorithm we
choose a tractable approximating exponential family
Q. For the stochastic volatility model we take a fully
factorized approximation with every marginal in the
same exponential family as its corresponding prior. Le.
every element g(h) € Q satisfies

T
q(h) = qa(@)a(ar (T)au (1) [T ae(ee) . (4)

with qa, @1, g7, qyu, ¢:, a Beta, Normal, Gamma, Normal
and Normal distribution respectively.

The exact posterior in (3) is approximated by a prod-
uct of approximate factors Wy:

p(hlyrr) ~ a(h) = [ Felhe) (5)

The product is restricted to be in the chosen approx-
imating family ¢(h). Since this family is taken fully
factorized the individual terms can be written with-
out loss of generality as a product of terms over the
individual variables in its domain:

Uy(hy) = myal@)ymyi(Dmy.(1) x

Mo ()M, (T4 )T (Te41)-
The final algorithm can be interpreted as a message

passing algorithm, we will therefore refer to the m;_..
terms as the messages going out from factor W;.

By definition the approximation of a marginal over h;
is now the product of all the messages from factors
coming into h;. E.g.

q(a) = 1:[ mi—a(a) .



Figure 2: The factor graph corresponding to the choice
of factors for the stochastic volatility model. Shaded
squares represent factors.

Figure 2 gives a factor graph [8] interpretation of the
chosen approximation.

To find an approximation in the family ¢(h) that is
close to the exact posterior (3) EP proceeds as follows:

1. Initialize the approximate factors ¥, (and hence
the outgoing messages).

2. Compute the initial approximation g(h) from the
product of the approximating factors:

T-1
q(h) = H ‘i’t(ht) : (6)

Here we assume without loss of generality that the
W, are initialized such that the initial approxima-
tion (6) is normalized.

3. Until all ¥, converge:

(a) Choose a ¥, to refine.

(b) Remove W, (h,) from the approximation g(h)
by division:

¢\ (he) = =

(c) Combine ¢\*(h;) with the exact factor Wy (hy):

\t
g - )

The normalizing constant is defined as Z; =
f@t(ht)q\t(ht)dht
(d) Since p(hy) is not in chosen family Q, project:

q"" (he) ZaI“ngIginKL (B(h)llg(he)) . (7)

(e) Infer the new approximating factor (and
hence messages) by division:

Grev(p,) = Lo )
t ( t) q\t(ht)

4. Use the normalizing constant of ¢(h) as an ap-
proximation of p(y1.r):

T-1
p(yl:T) ~ H Zt .
t=1

This algorithm is closely related to loopy belief prop-
agation [13]. Just as for loopy belief propagation con-
vergence is not guaranteed.

4 EXPONENTIAL FAMILY
MODELS

The approximating family Q is restricted to be in the
exponential family. The exponential family has some
pleasant properties: an exponential family is closed
under product and division, and the minimum of (7) is
determined by a finite number of statistics from p(h).
In this section we introduce our notation for exponen-
tial family models and give the basic results that are
required in the rest of the text.

Exponential family models can be represented as
p(yl6) = o W00 (®)

We say that a class F of models is an exponential fam-
ily if all its members can be written in the form (8).
We refer to 6 as the vector of natural parameters or
canonical parameters, to u(y) as the vector of sufficient
statistics, and to ¢(f) as the log partition function. We
assume that the family is represented minimally, i.e.
that no elements of u(y) are linear combinations of
others. From the exponential form in (8) we immedi-
ately see that the family is closed under product and
division.

The expected values of the sufficient statistics
(u(y))p(y0): Will be important in our further descrip-
tion of exponential family models. We will refer
to them as natural moments to contrast them with
<yi>p(yw), the i-th moment of p(y). The so-called link-

function g¢(-) maps canonical parameters to natural
moments

916) = ()0 = [ w)pO)dy

The link function can also be derived as the first
derivative of ¢(8) [9]

82—(50):9(9)-

The KL minimization in the EP projection step (7)

boils down to a matching of the natural moments [9].
T . —

Le. "% (hy) = o %0, with 7 = g~} ((u(h))yen,))

is the distribution in Q that matches the natural mo-

ments of the distribution p(h).



5 GAUSSIAN QUADRATURE

Gaussian quadrature is a general technique to ap-
proximate integrals of the form f; f(z)K(z)dx, where
K(x) is a known non-negative function. In the infer-
ence algorithms K (z) will be a (normalized) exponen-
tial family distribution, not necessarily Gaussian (the
method is due to Gauss, which explains the name of
the quadrature procedure).

Based on K (z), n points Xy, ..., X, and n correspond-
ing weights wy, ..., w, are chosen such that

b n
/ K(@)f (@)~ 3 f(XJw

is exact if f(z) is a polynomial of degree at most 2n —
1. General procedures to determine X; and w; are
based on sets of n polynomials which are orthogonal
w.r.t. K(z) and the interval [a,b]. See e.g. [17] for an
introduction to Gaussian quadrature.

To approximate multi-dimensional integrals over fac-
toring weight functions, grids can be used. The lo-
cation of the grid points can be determined from the
position of the points determined for the individual
marginal weight functions. The weights are simply
multiplied:

b d
/ / £ (@, 9) Ko (2) Ky )y
b
~ [ S e (K, )y
~ Z ‘ wjiw; f (X, Vi) -

J

Throughout this paper we will assume that elements in
Q factorize as products of univariate marginals. More
advanced rules derived directly from the exactness of
integrals over multinomials form an interesting exten-
sion.

6 QUADRATURE EP

If we combine the EP steps (3.b) to (3.d), we can iden-
tify a general way of using Gaussian quadrature as a
numerical projection method. Combining the steps,
an update from ¢ to p is defined as:

\I/t (ht)

ﬁ(ht) = Zt\i]t<ht)

q(he) (9)

with Z, = [ gzgzgq(ht)dht. If we identify ¢(h;) as the

weight function, we can approximate the normaliza-
tion constant using Gaussian quadrature. Since the

weight function is by construction a normalized expo-
nential family distribution, we can make use of this
fact in deriving the quadrature rules.

Integrals involving p(h) can now be approximated by
reweighted function evaluations. To project p back
onto the chosen family, we first approximate the nat-
ural moments (u(y)); using the reweighted points.
Then, the inverse of the link function is used to find the
parameters of ¢"*V given the approximate moments.

Summarizing, quadrature EP updates an approxima-
tion of factor W; as follows:

1. Compute weights w; and points X; for the (fac-
torized) old posterior q(hy).

2. Reweight every point:

T,(X)
o - Wig (2,
i = v,(x)
225w T (%)

(10)

3. Approximate the natural moments using the
reweighted points

(u(he))y ~ Y du(X;) .
i
4. The parameters for the new approximation are

found by inverting the link function:

e”tT“(ht), with,

gfl(z wiu(X;)) .

qnew (ht) —

vt

5. Infer new messages by division

- qnew(ht)
Poew(p) — —
t ( t) q\t (ht)

qnew(ht)
q(he)

\~I/t(ht) .

Just as for EP itself, the iterative refinement of factors
is not guaranteed to converge.

There is a strong resemblance between the above al-
gorithm and particle filtering algorithms (see e.g. [4]).
Just as in the particle filtering algorithm, points are
used twice: once to approximate a normalization con-
stant and once to approximate a posterior distribution.
Also, if ¢™¢" has its center of mass in a very different
area from ¢, only a few points X; will get non-negligible
weight. As a result the approximation of ¢V is very
poor. We compare the algorithm in more detail to
particle filtering and other approaches in Section 9.



7 APPROXIMATE INFERENCE IN
THE SV MODEL

7.1 QUADRATURE EP FOR THE SV
MODEL

The specific quadrature EP algorithm for the stochas-
tic volatility model only depends on our choice of
the approximating family @. We will assume that
elements in Q factorize as a product of univariate
marginals. For the stochastic volatility model, Q con-
sists of all elements of the form (4).

To complete the general description of Section 6, we
need to define how the points and weights are cho-
sen for g(h), and how new parameters are found given
approximate moments.

For the Gaussian components g;(1), g, (), ge(z¢), the
points and weights can be determined using Gauss-
Hermite polynomials. See e.g. [17] for a description.

Since

/ " F(z)N (zlm, v)dz = / F (yo +m) N(ylo, 1)dy
(1)

we can determine points once for N(z|0,1), and
transform these when we encounter an integral for

N(z|m,v) with m #£ 0 or v # 1.

In exponential form we write the normal distribution
as
1 —(@—m)?
N(zlm,v) = e”

\V2Tv

_ Phun@—én(0n) yith
h=m
o= [50]
un(e) = [ }
on(ON) = %log (*%) - g :
The link function is
gn(On) = a¢g9(]iN) = [ _% —2r — 4hLz4 ]T

which we can invert analytically

9&1(<UN(U)>)=[ (12)<f)(m)2 2((x2;—1(x)2) } :

Unfortunately, there is no result analogous to (11) for
the Beta and Gamma distributions. We can, however,
rewrite integrals involving Beta and Gamma distribu-
tions as integrals over some well-studied weight func-
tions.

We write the Beta distribution as
F(OZ + B) a—1

Beta(elo, §) = pparet” 1)
_ Shus@—6s08) yigh
bp = [g:”
up(e) = [logl(olgf l‘)}
op(0s) = log%-

Any integral with a Beta weight function can be trans-
formed to a Gauss-Jacobi form as follows

! Lla+pB) o -1
/0 f(x)ir(a)r(ﬁ)x (1- .Z')ﬁ dx

= o) [ 1(5) aroeta-wa.

with ¢(a, 8) = #% Just as for the Gauss-
Hermite case, the coefficients of the polynomials are
known functions of the parameters in the weight func-
tion, and very good approximations of the roots ex-

ist [17].
The link function is given by

.
gn0n) = 22808) _ [ ¥(a) — o+ B) ] |

90p Y(B) — d(a+P)
where ¢(z) = ZI(z), is the digamma func-
tion.  There exists no analytical inverse of this

link function (in fact, depending on definitions,
the link function itself is not analytic due to the
digamma function). Minimizing the squared distance

(9500 <u3(y)>ﬁ)T (9505) — (un(w);) wer.t. 0

gives a numerical inverse.
The Gamma distribution is given by

Gamma(z|a, B) = %wa—le—ﬁx

_ e(’guc;(ﬂf/’)*d?G((’G)7 with

b = { o;—ﬁl }
ug(z) = { loié T }
dc(0c) = log Fﬂ(? :

We can rewrite Gamma integrals into a Gauss-
Laguerre form by noting that

< ﬁa a—1_—fz
/0 f(m)r(a)m le=Fe dy

_ L - 2 a—1_ -y
= r<a>/o f<ﬁ>y ©




The link function is

_ 0¢c(bc) 3 :
ga(fa) = T o0e { ¥(a) Elogﬂ }

Which also has no analytic inverse.

There is a dynamical aspect in the model, so it seems
most logical to update the approximate factors U, in a
forward-backward fashion. The next section presents
a useful initialization of the approximation ¢(h) and
of the messages. This completes the description of the
quadrature EP algorithm for the stochastic volatility
model. Section 7.3 gives results of experiments.

7.2 A FIRST FORWARD PASS

In principle, many initializations of ¢(h) and U, will
do. Although, as mentioned in Section 6 we want to
take care that g(h) ‘has mass’ wherever ¢"®¥(h) has.
Otherwise ¢V, and hence its sufficient statistics, are
poorly approximated by points computed from g(h).

We can initialize ¢(h) dynamically by constructing
q(ht) during the first forward pass. We initialize
da(a), t(1), g+ (7),qu(p), and qi(z1) with the priors
from the model. All messages are initialized as 1.
The consecutive g1 (z¢+1) are initialized by drawing
points from ¢(a, [, 7, z;) and propagating these through
the deterministic part of the transition model (1).
These propagated points are used to construct a Gaus-
sian approximation of ¢ 11(2¢+1). To introduce the
stochastic part of (1) we simply add the correspond-
ing Gaussian disturbance to the preliminary estimate
of ¢t4+1(z¢+1). Now a regular EP update can be per-
formed.

7.3 EXPERIMENTS

The procedure from Section 6 and the initialization
scheme from Section 7.2 allow us to compute approx-
imate posteriors of the form (4). Figure 3 presents
approximate posteriors over a, [, v = 7!, and pu
for a very small artificially generated five-slice prob-
lem. The solid curves show posteriors computed us-
ing quadrature EP. The histograms present approxi-
mations based on 100.000 Gibbs samples. Since the
problem is so small, we expect the Gibbs approxima-
tion to be near exact. Despite the restrictive form of
the approximating family (4), the EP approximation
is reasonable. Code for the stochastic volatility model
is available from www.snn.ru.nl/~orzoeter.

Figure 4 demonstrates the risk of an ill-matched ini-
tial estimate of ¢(h). As mentioned in Section 6, if
the initial estimate of ¢(h) has low weight in a sig-
nificant part of p(hlyi.7) the resulting approximation
is poor. The example is constructed such that the
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Figure 3: Approximate posteriors for a small prob-
lem with five observations. A Gibbs approximation is
presented by the histograms, the solid curves show a
quadrature EP approximation, the dashed curves are
the subjective priors.

prior p(v) (represented by a dotted line) and posterior
p(v|y1.r) (approximated by Gibbs samples in the his-
togram) have their mass in different areas. If ¢(v) is
initialized with the prior, the quadrature points and
weights that are drawn from p(v) (presented as cir-
cles) result in a poor approximation of p(v|y;.7) (rep-
resented by a solid line). A related problem would
have occurred if the prior for g would have been very
flat in the example in Figure 3. The exact posterior
is very peaked close to zero. The quadrature points
from a very flat distribution centered at zero would
have one point at zero which effectively takes all the
weight in (10). The result would be an approximation
of p(v|y1.7) by a delta-peak.

Simple experiments seem to be encouraging. However,
the strong influence of the initial estimate g(h) requires
extra care. Either better ways of initializing ¢(h), a
different proposal distribution, or smart adaptive ways
to position the quadrature points are needed to con-
struct a reliable approximation. Note that particle
filters suffer from related problems.

8 COMPUTER GENERATED
RULES

Ideally we would like to have a very general class of
approximation techniques where code for specific mod-
els can easily be computer generated. BUGS [19] is
a very successful example for Gibbs sampling, and
VIBES [20] for mean-field based approaches.



Figure 4: A quadrature EP approximation of p(v|y1.r)
based on an ill-matched initial approximation g(h).
See text for details.

The general form (9) of the quadrature EP algorithm
ensures that the weight functions are always (prod-
ucts of) exponential family models. There are several
techniques of recursively constructing orthogonal poly-
nomials that only require the evaluation of moments.
Stieltjes procedure [17] is among the best known, but
perhaps not the most stable.

If the moment generating function

M) = [ s

of an exponential distribution is known, the compu-
tation of the moments follows from differentiating the
moment generating function:

i d'M(t)
<$ >p(z) = 7'

This is mechanical and can be automated. Extensions
to multi-dimensional quadrature rules is a topic for
future research.

9 RELATED METHODS

In this section we give a, by no means complete, com-
parison to related methods.

Perhaps the method closest to the one presented here is
particle filtering [4]. Instead of determining points us-
ing Gaussian quadrature, particle filtering algorithms
draw points from a proposal distribution. And, instead
of using reweighted points to project the posterior onto
a chosen parametric form, the reweighted points (par-
ticles) are kept as a non-parametric approximation of
the posterior. Quadrature based filters in the fully
Gaussian case are a.0. described in [16] and [3]. Tan-
gent to our approach are lattice particle filters [14]

that stay within the particle filter class, but generate
proposal points in a clever way.

In Laplace propagation [18] the KL projection in the
EP algorithm is replaced by a Laplace approximation.
This may form a good alternative in many settings,
especially if there is a relatively large number of obser-
vations and posteriors are well approximated by Gaus-
sians.

Note that, for the current model, any approximation
method that approximates z; and y; jointly as a Gaus-
sian, will result in very poor results. Since x; and
y: are uncorrelated in (2), a Gaussian approximation
will treat z; and y; as independent. Hence a prior
for z; will not be updated in the light of observing
y+. The unscented Kalman filter [6] will therefore, for
this model, only propagate the prior, i.e. break down
completely. See [21] for more details.

EP and mean-field approaches are closely related.
However they are not as closely related as the factored
form (4) of Q may lead us to assume. Both methods
can be derived starting from the following variational
objective

—logp(yr.r) = min —log p(yr.r) +KL (a(W)|Ip(hlys1)) -

(12)
If P is the set of all valid distributions on h the KL
term in (12) vanishes at the minimum, and the equal-
ity is indeed an equality. Both mean-field and EP ap-
proaches arrive at an approximation by replacing P
with a tractable set. For mean-field approaches P is
replaced by the set Q with factored elements (4). Per-
haps confusingly, the EP approach is not based on the
same set Q. Instead of replacing P by a set of simpler,
but proper distributions ¢, the minimization is over
sets of overlapping pseudo marginals with certain con-
stistency constraints (see e.g. [11, 5] for more details).
The choice of Q as a family on which p is projected, de-
termines the overlaps of these pseudo marginals. Since
the approximation retains more structure of the origi-
nal model, the hope is that the approximation is better
than a fully factorized approximation of P.

10 DISCUSSION

We have shown how general quadrature approxima-
tions can be identified in the standard EP scheme. The
approach appears to be rather flexible and is closely re-
lated to particle filtering algorithms. The projections
onto a chosen family allows iterative improvements of
approximations. This is in contrast to particle filtering
algorithms that can select the position of points (par-
ticles) only once and can only reweight in the light of
extra information.



The running time of the quadrature EP approach is
exponential in the number of variables in h;. This is
because we have approximated integrals over h; by a
grid over all variables in h;. This complexity is iden-
tical to Kikuchi and junction tree algorithms in fully
discrete networks. More advanced quadrature rules
may result in a running time sub-exponential in the
largest clique size. The cost of determining the grid
points depends on the particular choice of Q, the ex-
ponential family on which the posterior is projected.
For Gaussians, grid points can be computed once and
rescaled whenever needed (11). In the worst case, a
set of orthogonal polynomials has to be constructed,
of which the roots must be found numerically.

When the quadrature based method is computation-
ally too intensive, replacing steps 1 to 3 from the algo-
rithm in Section 6 by importance sampling may form
an interesting alternative.

The Beta and Gamma components in the choice of
Q in Section 7 imply extra computational effort. Af-
ter seeing many observations, the posterior over 6 will
tend to be Gaussian. It is interesting to establish for
what observation sizes the extra effort is worthwhile.

The procedure to generate orthogonal polynomials and
quadrature rules described in this article is among the
best studied in the literature. But it is unlikely that it
is the optimal one for the EP framework. We would at
least require rules for multi-dimensional weight func-
tions, taking the posterior of parameters factorized is
probably relatively coarse. Also, traditional Gaussian
quadrature is designed to achieve zero error for a class
of polynomials. For the current application it may be
interesting to require good performance for different
classes of functions.
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