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Abstract
Log Gaussian processes are an attractive manner to construct intensity surfaces for the purposes
of spatial epidemiology. The intensity surfaces are naturally smoothed by placing a Gaussian pro-
cess (GP) prior over the relative log Poisson rate, and the spatial correlations between areas can be
included in an explicit and natural way into the model via a correlation function. The drawback
with using a Gaussian process is the computational burden of the covariance matrix calculations.
To overcome the computational limitations a number of approximations for Gaussian process have
been suggested in the literature. In this work a fully independent training conditional sparse approx-
imation is used to speed up the computations. The posterior inference is conducted using Markov
chain Monte Carlo simulations and the sampling of the latent values is sped up by a transformation
taking into account their posterior covariance. The sparse approximation is compared to a full GP
with two sets of mortality data.
Keywords: Sparse Log Gaussian Process, MCMC, FITC, pseudo-input, Poisson, HMC

1. Introduction

Spatial epidemiology concerns both describing and understanding the spatial variation in the disease
risk in geographically referenced health data. One of the main classes of spatial epidemiological
studies is disease mapping, where the aim is to describe the overall disease distribution on a map
and, for example, highlight areas of elevated or lowered mortality or morbidity risk (e.g. Lawson,
2001; Richardson, 2003; Elliot et al., 2001). The spatially referenced health data may be point
level, appointing to continuously varying co-ordinates and showing for example home residence of
diseased people. More commonly, however, the data are areal level, referring to a finite sub-region
of space, as for example, county or country and telling the counts of diseased people in the area
(e.g. Banerjee et al., 2004).

In this work the aim is to construct a model to study the spatial variations in relative mortality
risk in areally referenced health-care data. The data are aggregated from point-referenced data
into lattices of various grid cell sizes. The data are geographically more accurate than areal level
data where the subregions are defined by governmental districts. However, high resolution lattices
usually contain empty cells that appoint to areas of no population and this kind of areally sparse
data may lead to problems with certain models.

The mortality in areas is modeled as a Poisson process with mean intensity surface, which is
the product of a standardized expected number of deaths and a relative risk. The expected number
of deaths is evaluated using age, gender and scholarly degree standardization and the logarithm of
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the relative risk is given a Gaussian process prior. Compared to conditional autoregressive (CAR)
-models, GPs are more suitable for point referenced and areally sparse data and provide a more
flexible way to describe the form of the spatial prior with a combination of different covariance
functions.

The drawback with using GP is the computational burden of the required covariance matrix
inversion, which limits the study either to very small areas or a coarse grid. To overcome the
computational limitations a number of sparse approximations for GP have been suggested in the
literature. Here the computations are sped up with a fully independent training conditional (FITC)
sparse approximation (Snelson and Ghahramani, 2006; Quiñonero-Candela and Rasmussen, 2005).

In spatial epidemiology, it is very important to have good estimates of whether the spatial vari-
ation in disease risk is significant. To set a golden standard for the uncertainty estimates both the
hyperparameters and the latent values of Gaussian process are marginalized out using Markov chain
Monte Carlo (MCMC) methods. The sampling is conducted using the hybrid Monte Carlo (HMC)
method to sample from the conditional distributions of latent values given the covariance function
parameters and the covariance function parameters given the latent values. The mixing of latent
value sampling is improved with a transformation taking into account their approximate conditional
posterior precision. The use of the HMC method requires the gradients of the logarithm of the
marginal likelihood, which in the case of the sparse approximation are evaluated without forming
the full covariance matrix.

The main focus of the work is to test the usability of the sparse approximation for the disease
mapping problem and give a detailed description of its implementation. To test the approach, the
full and sparse Gaussian process models, with four different covariance functions, are applied to
two mortality data sets and compared with 10-fold cross-validation using the log predictive density
diagnostics. Maps revealing the posterior relative risk are also presented. The focus of the work is
in the implementation and the results of the performance of the approximation and its effect on the
spatial inference are still preliminary.

2. The Data

The data comprise of a lattice data set containing mortality and population data from the years
1970–1999. The whole country of Finland is included, spanning an area over 1100km in height and
more than 600km in width. The standard population is approximately 5 million people and there
are around 200 000 deceased for each five-year period. The data list every death with one month
accuracy and provides snapshots of the population from census surveys conducted every five years.

The data are aggregated by Statistics Finland from point-referenced data into a lattice, formed
of 250m × 250m grid cells. Background population and the number of deaths for each cause of
death were provided as counts pointed to cells. At its highest accuracy the number of data points
is computationally prohibitive and thus in the study the data are further aggregated in lattices of
larger cells. The data consist of six covariates. 1) Age, 2) sex, 3) cause of death, 4) date of death, 5)
co-ordinates of the lattice cell, within which the individual had a home and 6) scholarly degree of
an individual.

3. Model

The model constructed in this work follows the general approach discussed, for example, by Best
et al. (2005). The data are aggregated into areas Ai with co-ordinates (xi,1, xi,2). The mortality in
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an area Ai is modeled as a Poisson process with mean Eiµi , where Ei is the standardized expected
number of deaths in the area Ai , and the µi is the relative risk, which is given a Gaussian process
prior.

3.1 Sparse log Gaussian process model

The standardized expected number of deaths Ei is evaluated following the idea of the directly stan-
dardized rate (e.g. Ahmad et al., 2000), where the rate of death in an area is standardized according
to the age distribution of the population in that area. The expected value in the area Ai is obtained
by summing the products of the rate and population over the age-groups in the area

Ei =

R∑
r=1

Yr

Nr
nir ,

where Yr and Nr are the total number of deaths and people in the whole area of study in the age-
group r , and nir is the number of people in the age-group r and in the area Ai . Here, the population
was first divided between genders and both genders were then partitioned into 14 age segments
accounting in 28 age-gender groups. All the age-gender groups were further partitioned with respect
to 3 scholarly degrees accounting into 66 groups in total, since all scholarly degrees are not present
for all age-gender groups. A better approach than standardization would be to give a probabilistic
model also for Ei . However, since the amount of data is large, the standardization for Ei should be
a rather reliable estimate, and thus modeling of Ei is left for future improvement.

The log relative risk is given a Gaussian process prior with zero mean and different covariance
functions, for example squared exponential

ksexp(xi , xj ) = σ 2
sexp exp

(
−r2/ l2) , (1)

where r = | xi − xj |, and l and σ 2
sexp are the length-scale and magnitude, respectively. It is a priori

plausible that process variance is zero or very small and thus the prior for the covariance function
parameters should be such that it enables both the length-scale and the magnitude to reach zero.
To obtain these characteristics the covariance function parameters, θ =

[
l, σ 2
·

]
, are given a half-

Student’s t-prior. In case of the length-scale this is related to the choice of width of population prior
in hierarchical normal model discussed by Gelman (2006). This results in the complete model

Y ∼ Poisson(Eµ)

log(µ) = f ∼ GP(0, Kf,f)

p(θl |ν, A) ∝

0 if θl < 0,(
1+ 1

ν

(
θl
A

)2
)−(ν+1)/2

otherwise,

where f is the latent value of the Gaussian process,
[
Kf,f

]
i j = k(xi , xj ), and A is the scale and ν the

degrees of freedom of the half-Students’t distribution.
Due to the fact that the population sizes in general are large and the number of disease cases

relatively small, the Poisson distribution can be considered as a good approximation for the underly-
ing binomial distribution in the case of a large population size and a small number of disease cases.
However, in certain parts of Finland the population sizes are rather small and thus Bernoulli or zero-
inflated Poisson models could be considered instead. The Gaussian process should be a reasonable
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choice to construct the intensity surface for the relative risk, since the surface is naturally smoothed
by the process and the spatial correlations between areas can be included in an explicit and natural
way into the model via the correlation function.

4. Methods

The study focus in this work is the posterior distribution of the relative risk µ = exp(f), which can
not be solved analytically because of the Poisson likelihood. In the case of GPs with a non Gaussian
likelihood the posterior inference is often conducted by using simpler parametric approximations for
the posterior of latent values, and a point estimate for the hyperparameters obtained by maximizing
the approximate marginal likelihood. Here, in order to set a golden standard for the uncertainty
estimates, the posterior of both the hyperparameters and the latent values of the Gaussian process,
are approximated by Markov chain Monte Carlo methods.

The computational time needed in Gaussian process models could be reduced with a simple
subsampling of the data, or in the case of spatial epidemiology by aggregating the data into larger
cells. In these approaches, however, the approximation is given for the data and some of its infor-
mation is lost. In order to maintain the high accuracy of the data we use the recently proposed fully
independent training conditional (FITC) sparse approximation for the GP prior. The approximation
was first introduced by Snelson and Ghahramani (2006) with the name sparse pseudo-input Gaus-
sian process, but the name and the notation used here follow the treatment of Quiñonero-Candela
and Rasmussen (2005).

4.1 Conducting the posterior inference using MCMC

The sampling from the joint posterior of hyperparameters θ =
[
l, σ 2
·

]
and the latent values f is

performed by alternate sampling from the conditional distributions, p(θ | f, D) and p(f |θ, D), via
the hybrid Monte Carlo method (Duane et al., 1987; Neal, 1996). The HMC method uses the
basic idea of the Metropolis-Hastings algorithm, where random walk behavior is reduced using the
gradient information of the negative log posterior cost function,

E = − log (p(y | f))− log (p(f |θ))− log (p(θ)) , (2)

with respect to the sampled parameters. Hybrid Monte Carlo becomes especially practical when
sampling high dimensional distributions, since it suffers the dimensionality less than, for example,
the simple Metropolis-Hastings algorithm. In the case of a GP prior, the computationally most time
consuming operation is the inversion of the covariance matrix, Kf,f, needed in the second term of
(2) and in its derivatives,

log (p(f |θ)) =
1
2

log
∣∣Kf,f

∣∣+ 1
2

fT K−1
f,f f−

n
2

log(2π),

∂ log (p(f |θ))

∂θ
=

1
2

tr
(

K−1
f,f

∂ Kf,f

∂θ

)
−

1
2

fT K−1
f,f

∂ Kf,f

∂θ
K−1

f,f f, (3)

∂ log (p(f |θ))

∂ f
= K−1

f,f f .

The inversion of the full covariance matrix needs O(n3) time , where n is the number of data points,
but with the FITC approximation discussed next the required time is only O(m2n), where m � n.
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4.2 Sparse approximation for Gaussian process

The FITC approximation is based on introducing an additional set of latent values u = [u1, ..., um]T,
called inducing variables, that correspond to a set of input locations xu , called inducing inputs.
The inducing variables are given a zero mean Gaussian prior u ∼ N (0, Ku,u) and using inducing
variables the prior of the latent values is given by the approximation

p(f) ≈ q(f) =
∫

q(f | u)p(u)du, (4)

where f is interpreted to be conditional on u through the inducing conditional q(f |u). The ex-
act conditional, which would leave the prior p(f) unchanged, would be N (Kf,u K−1

u,u u, Kf,f−Qf,f),
where Qf,f = Kf,u K−1

u,u Ku,f, and
[
Kf,u

]
i j = k(xi , [xu]j ). However, in the FITC approximation the

inducing conditional is approximated by

qFITC(f | u) = N (Kf,u K−1
u,u u, diag

[
Kf,f−Qf,f

]
),

where the diagonal matrix diag
[
Kf,f−Qf,f

]
will be denoted in the following by 3. By integrating

out the inducing variables from (4) an approximate prior over latent values is obtained as

f ∼ GP(0, Qf,f+3). (5)

Using m inducing inputs and the approximate prior, the inversion of the matrix Kf,f is transformed
into the inversion of Qf,f+3, where Qf,f is of rank m. The inverse can be evaluated effectively using
a matrix inversion lemma, or the Woodbury, Sherman and Morrison formula (e.g. Harville, 1997),

(
Qf,f+3

)−1
= 3−1

+3−1 Kf,u
(
Ku,u+Ku,f 3

−1 Kf,u
)−1 Ku,f 3

−1, (6)

where the inversion of the n × n matrix 3 is easy, since it is diagonal. Here the computationally
most time consuming operations are the matrix multiplications, which only need time O(m2n).

In the case of full GP, the evaluation of gradients of the negative log posterior cost function,
needed in HMC, is straightforward, since the entries of ∂ Kf,f

∂θ
in (3) are obtained directly from the

derivatives of the covariance function k(xi , xj ). However, in the case of FITC approximation the
gradients of Qf,f = Kf,u K−1

u,u Ku,f can not be evaluated without matrix operations and thus the calcu-
lations become more awkward. Snelson and Ghahramani (2006) have used a gradient ascent method
for optimizing the hyperparameters and the locations of the inducing inputs in their work. However,
they have omitted the calculations from their paper and thus we included the implementation of the
gradient evaluations in the Appendix A.

The inducing variables are integrated out from the approximate prior (5), but the inducing inputs
do influence the solution and the choice of their locations should be considered carefully. Here, the
inducing inputs were placed on a uniform grid that is sparser than the lattice grid of the data. The
locations of inducing inputs should be reasonable if the distance from data inputs to the nearest
inducing input is less than the length-scale. A natural approach, at least if the FITC approximation
is seen as a model in its own right, would also be to integrate over the locations of the inducing
inputs.
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4.3 Transformation of latent values

The posterior distribution of latent values is proportional to the product of the GP prior and the Pois-
son likelihood. The latent values are correlated and have a wide range of variances, which in turn
may lead to slow mixing in the sampling. To improve the mixing and speed up the sampling, latent
values are transformed with respect to their approximate posterior covariance 6 and the sampling
is conducted in the resulting f̃ = 6−1/2 f space. In the case of a full GP, the approach follows the
idea of Christensen et al. (2006) and here it is extended for the FITC sparse approximation.

By giving a normal approximation for the likelihood at its mode the approximate posterior
precision can be obtained as a sum of the precisions of the prior and the likelihood, 6−1

= K−1
f,f +

6−1
l . Here the precision of the likelihood is approximated with a second derivative of the log

Poisson in the mode 6−1
l ≈ −

∂2

∂ f 2 log(Poisson(Eµ)) = diag [E1µ1, ..., Enµn], which is the product
of the age adjusted risk and the relative risk. In the FITC approximation, Qf,f+3 replaces the prior
covariance Kf,f, and the posterior precision transforms into

6−1
FITC =

(
Qf,f +3

)−1
+ diag [E1µ1, ..., Enµn] . (7)

The transformation f̃ = 6
−1/2
FITC f could be done by evaluating the full matrix 6−1

FITC and taking a
matrix square root of it, but then the advantage of the sparse approximation would be lost. To
extend the transformation for FITC in a way that avoids evaluating the full covariance matrix, the
scaling is done only in the direction of the m largest eigenvalues of 6FITC.

To conduct the transformation we first write the inverse of Qf,f+3 as in (6), denote

3̂−1
= 6−1

l +3−1 (8)

L =3−1Kf,uchol
[
Ku,u +Ku,f3

−1Kf,u
]−1

, (9)

and write the posterior precision as 6−1
FITC = 3̂−1

−LLT. Next, 6−1
FITC is scaled to make the diagonal

elements of 3̂ equal, that is 3̂ = λI. This is done by multiplying the posterior precision by 3̂1/2

from left and right, which corresponds to transforming the latent values into f̂ = 3̂−1/2 f with
approximate posterior precision 6̂−1

FITC = I− 3̂1/2LLT3̂1/2.
In the second step of transformation we want to find the eigenvectors corresponding to the m

largest eigenvalues of 6̂−1
FITC and scale f̂ in their direction. To do this, let D2 be an m × m diagonal

matrix of these m largest eigenvalues and U an n×m matrix with corresponding eigenvectors on its
columns. The matrices satisfy the following relations (for example Harville, 1997, Section 21.10)

USUT
= 3̂1/2LLT3̂1/2

D2
= diag [1− S11, ..., 1− Smm] .

The singular value decomposition USUT can be found without explicitly forming the full n × n
matrix by first defining a helper matrix B = US1/2VT and finding the eigenvalue decomposition of
an m × m matrix

BTB = VSVT, (10)

after which the matrix of eigenvectors U can be obtained from U = BVS−1/2.
After solving U, 3̂ and D the transformation into a transformed space and back to the latent

value space can be summarized as follows
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f̃ =
(
1+ UDUT

− UUT) 3̂−1/2 f (11)

f = 3̂1/2 (1+ UD−1UT
− UUT) f̃. (12)

In order to retain the reversibility of MCMC sampling the transformation should not depend
on the sampled parameter, and thus relative risk µ = exp(f) is approximated with its prior mean
of 1 when constructing the transformation matrices in (11) and (12). This should be a reasonably
good approximation since µ’s posterior variance is usually moderate in spatial epidemiology. The
transformation is presented in algorithmic form in the appendix B.

5. Results

To test the model, we studied the spatial variations of two different diseases in Finland, the mortality
due to cerebral vascular diseases and alcohol-related diseases in the time interval 1995-1999. We
used two data sets of different sizes and in the case of smaller data set we compared the FITC
approximation to full GP via 10-fold cross-validation.

5.1 Case data sets and models

The cerebral vascular diseases comprised roughly 18 000 deaths and the alcohol-related diseases
about 5200 deaths. The data sets were aggregated in lattice resolutions of 20km × 20km and
10km × 10km resulting in 915 and 3193 data points respectively and models with four different
covariance functions were tested. In the case of smaller data set the FITC approximation was
compared to the full GP and the results are shown in the Section 5.3. The 10km× 10km lattice data
were studied only with FITC approximation and the resulting maps are presented in the Section 5.2.

The inducing inputs in the FITC approximation were placed on a uniform grid as shown in the
Figure 1 and in the case of 10km × 10km lattice data sets the number of them was 238. In the
smaller data sets the performance of the approximation was tested with 30, 36, 46, 56, 74, 100, 149
and 221 inducing inputs (see Section 5.3). The covariance functions used in the models were, in
addition to the squared exponential (1), an exponential, a Mátern ν = 3/2 and a Mátern ν = 5/2,
given respectively as

kexp(xi , xj ) = σ 2
exp exp (−r/ l) (13)

kν=3/2(xi , xj ) = σ 2
ν=3/2

(
1+
√

3r/ l
)

exp
(
−
√

3r/ l
)

(14)

kν=5/2(xi , xj ) = σ 2
ν=5/2

(
1+
√

5r/ l + 5r2/(3l2)
)

exp
(
−
√

5r/ l
)

. (15)

The covariance functions are treated more extensively, for example, by Rasmussen and Williams
(2006) and Abrahamsen (1997).

5.2 Examples of maps

The final products of the disease mapping analysis are the maps representing the spatial variations
in the relative risk. We choose to present the posterior knowledge about relative risk with maps of
the median of the relative risk and the probability of the relative risk being over 1, p(µ > 1|D).
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data point

induc. input

Figure 1: The 221 inducing inputs for lattice data with 20km × 20km grid cells.

The maps in the Figure 2 present the results for the cerebral vascular diseases obtained with
the full GP and the FITC sparse approximation with a data aggregated into a 20km×20km lattice.
In this case the models work equally well (see also Figure 4) and the maps also look similar. The
resolution in these maps is the same as in the data, but it can also be increased by predicting the
values of the posterior risk surfaces in a denser grid. A map created like this, however, is not more
informative than a map in training resolution, but it may appear visually better due to the extra
smoothing.

The results for alcohol related diseases are shown in 10km×10km resolution in the Figure 3.
The other map is a result of the FITC approximation trained with data in a 10km×10km lattice and
the other is a result of a full GP trained with data in 20km×20km grid cells and predicted into higher
resolution. The overall structure of relative risk in both maps is similar, but the boundaries between
different relative risk areas are sharper in the map of the FITC approximation. It also seems that in
the eastern parts of Finland the map from the full GP smooths the results too much.

5.3 Model comparison

The model comparison is conducted by using 10-fold cross-validation with a bias correction (e.g.
Vehtari and Lampinen, 2002). The data is divided into 10 groups so that s(i) is the set of data points
in group where the i th data point belongs. The comparison is done using the log predictive density
diagnostics

1
N

N∑
i=1

log p(Y rep
i = Yi | Y\s(i), X\s(i)),

where Y rep
i denotes the posterior predictive replicate of the number of deaths in the cell i given the

data in the groups where data point Yi does not belong, {Y\s(i), X\s(i)}, and N is the number of data
points. This is equivalent to conditional predictive ordinate diagnostics by Gelfand et al. (1992).
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(a) FITC sparse approximation
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(b) Full Gaussian process

Figure 2: The relative risk of cerebral vascular diseases. The maps are results of models using the
exponential covariance function trained with data aggregated in a 20km×20km lattice. In
the FITC approximation there was 221 inducing inputs. The resolution in the maps is the
same as in the training data. The posterior median and standard deviation of the length-
scale of the covariance function were 33.0km and 9.8km in the FITC approximation and
27.0km and 7.9km in a full GP. In case of the FITC approximation and 10km×10km
lattice data the median was 25.4km and the standard deviation 6.1km.
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(a) FITC sparse approximation trained with 10km×10km lattice data
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(b) Results of full GP trained with 20km×20km lattice data and predicted into a 10km×10km
lattice

Figure 3: The relative risk of alcohol related diseases. The FITC approximation is trained with
10km×10km lattice data and the full GP is trained with 20km×20km lattice data. Both
of the models are presented in a 10km×10km lattice and use the exponential covariance
function. The posterior median and standard deviation of the length-scale of the co-
variance function were 66.2km and 24.7km in the FITC approximation and 83.5km and
43.2km in a full GP. In case of the FITC approximation trained with data in 20km×20km
lattice data and 221 inducing inputs the median was 84.9km and the standard deviation
39.3km.
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Figure 4: The log predictive diagnostics of models in 20km×20km lattice data. 915 points repre-
sents full GP models and other FITC approximations. Differences larger than 0.01 are
estimated to be significant (see section 5.3 for details).

In the case of 20km×20km lattice data, we compared the models with FITC sparse approxima-
tion to the full GP models and the results are shown in the Figure 4. Pairwise model comparison
was performed using Bayesian bootstrap as proposed by Vehtari and Lampinen (2002). Results of
the comparison can briefly be summarized so that differences larger than approximately 0.01 are
significant. Since the model with full GP was not constructed for the 10km×10km lattice data, the
results of the FITC approximation in that case were compared to the full model only via the maps.

It can be concluded that in the case of cerebral vascular diseases the predictive performance of
the FITC approximation decreases constantly as the number of inducing inputs is decreased. In the
alcohol related diseases the predictive performance of the full GPs and the FITC approximations
are practically as good with large number of inducing inputs. As the number of the inducing inputs
is decreased the performance of the approximation starts decreasing also in this case. It was also
noticed that as the number of inducing inputs was decreased below 100 the posterior values of
the length-scale and magnitude increased in the FITC models. This can be seen as a change in the
covariance function to one with a heavier tail, and thus the spatial inference of models with different
number of inducing inputs might be different.

There is more overhead in the calculations with FITC than with the full GP, since the equations
have more matrix multiplications. Due to the overhead, the use of FITC with a small number of data
points is not reasonable, but the advantage of FITC increases as the data set increases and already
with a ratio n/m = 915/221 the time saving was approximately 50%. With larger data sets the
time saving is even more considerable and with normal office PC the use of full GP with MCMC
becomes practically impossible when the number of data points gets close to 10 000. With both
full and FITC GPs the efficiency of the posterior simulations was limited by the strong dependence
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between latent values and hyperparameters, which caused slow mixing in the sampling of the joint
posterior. Christensen et al. (2006) proposed an additional transformation to alleviate this problem,
but it did not seem to be useful in our simulations.

The model comparison results are still preliminary and the approximation and model compari-
son techniques need still to be studied in more detail. The main focus of this work, however, was
in the implementation of the FITC approximation in the disease mapping problem and the further
study of the approximation and its affect on the spatial inference are left for the future.

6. Conclusions and future work

The aim of this work was to study the usability of the FITC sparse Gaussian process in disease
mapping with high accuracy areally referenced healthcare data. The sparse Gaussian process was
implemented for a Poisson likelihood and MCMC methods were used to conduct the posterior
inference. For two test data cases the performance of the FITC approximation was similar to the
full GP and significantly faster. The performance of the FITC approximation gradually decreased
as the number of inducing inputs was reduced.

The sampling of the latent values was sped up with a transformation using their approximate
posterior precision. The transformation worked well and enabled good mixing for the latent values.
In the case of FITC the gradient evaluations needed in the hyperparameter sampling and in the latent
value transformation were performed without explicitly forming the full covariance matrix.

The results obtained here were promising and thus encourage further study of the FITC approx-
imation. As a future development we will study the practical limit of the number of regions which
can be handled, sampling of the locations of inducing inputs, the performance of the models with
fewer inducing inputs in more detail, various covariance functions, and accuracy of variational type
approximations for marginalizing over the latent values. In the future the sparse GP model will also
be tested in various other problems than disease mapping.

The work was focused on the methodology research and thus the significance of the results
for the research of spatial epidemiology in Finland remains still for further study. This will be
performed in collaboration with healthcare specialists.
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Appendix A. Gradients of the marginal likelihood in the case of FITC

The conditional distribution of hyperparameters is sampled with the hybrid Monte Carlo method,
which needs gradients of the log marginal likelihood with respect to the covariance function param-
eters θ (see eq. (2)). These gradients are obtained from

∂ log(p(f |θ))

∂θ
=tr

((
Qf,f+3

)−1 ∂(Qf,f+3)

∂θ

)
−

1
2

fT (Qf,f+3
)−1 ∂(Qf,f+3)

∂θ

(
Qf,f+3

)−1 f . (16)

which requires the expression of gradients of Qf,f = Kf,u K−1
u,u Ku,f,

∂ Qf,f

∂θ
=

(
2

∂

∂θ

[
Kf,u

]
+Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]) (
Kf,u K−1

u,u

)T
. (17)

This is an n×n matrix and thus it is not evaluated explicitly. The gradient evaluation without explicit
formation of any n × n matrix is shown below and the needed matrix algebra for the calculations
are given, for example, by Harville (1997). To shorten the notation the first and second term in the
right hand side of (16) are denoted by T and V respectively.

The gradient evaluation is begun with the term V . First, a vector b = fT (Qf,f+3
)−1 is formed

by using a matrix L from (9) and evaluating

b = fT 3−1
+
(
fT L

) (
fT L

)T
, (18)

where it should be noticed that 3 is diagonal. Now, by taking in the gradients of Qf,f from (17) the
term V can be expressed as

b
∂ Qf,f

∂θ
bT
+b

∂ 3

∂θ
bT
=

(
b 2

∂

∂θ

[
Kf,u

]
+ b Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]) (
Kf,u K−1

u,u

)T bT

+ b
∂

∂θ

[
diag

[
Kf,f

]]
bT
−b

∂

∂θ

[
diag

[
Qf,f

]]
bT, (19)

where the first term can be evaluated without forming an n × n matrix if the calculations are con-
ducted in the right order. The second term is also easy because of the diagonal matrix. In order to
proceed with the third term a diagonal matrix B = diag

[
b2

1, b2
2, ..., b2

n

]
is defined so that its diagonal

elements are the elements of b squared, after which the third term can be modified into

b
∂(diag

[
Qf,f

]
)

∂θ
bT
=tr

(
b

∂(diag
[
Qf,f

]
)

∂θ
bT

)

=tr

(
B

∂(diag
[
Qf,f

]
)

∂θ

)

=tr
(

B
∂(Qf,f)

∂θ

)
, (20)

Now, by taking in the ∂ Qf,f
∂θ

and using the fact that tr(AC) = tr(CA), where C is an m × n matrix
and A an n × m matrix, this can be modified further as follows

tr
(

B
∂(Qf,f)

∂θ

)
= 2tr

((
Kf,u K−1

u,u

)T B
∂

∂θ

[
Kf,u

])
− tr

((
Kf,u K−1

u,u

)T B Kf,u K−1
u,u

∂

∂θ

[
Ku,u

])
. (21)
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Above, the expressions inside the trace operator form an n × n matrix if the matrix multiplications
are conducted and the trace is taken after that. However, this can be avoided by noticing that the trace
of a matrix product between an n ×m matrix A and an m × n matrix C can be written as tr(AC) =

6n
i=16

m
j=1ai j cj i which is actually a dot product of vectors a = [a11, a12, ..., a1n, a21, ..., a2n, ..., amn]

and c = [c11, c21, ..., cn1, c12, ..., cn2, ..., cnm]. The evaluation of the traces in (21) can thus be
handled with a dot product of two 1× nm vectors. Furthermore, by writing the term

(
Kf,u K−1

u,u

)T bT

in (19) as
(
b Kf,u K−1

u,u

)T, the term V is obtained from

V =
[

2 b
∂

∂θ

[
Kf,u

]
+ b Kf,u K−1

u,u
∂

∂θ

[
Ku,u

]] (
b Kf,u K−1

u,u

)T
+ b

∂(diag
[
Kf,f

]
)

∂θ
bT

− 2tr
((

Kf,u K−1
u,u

)T B
∂

∂θ

[
Kf,u

])
+ tr

((
Kf,u K−1

u,u

)T B Kf,u K−1
u,u

∂

∂θ

[
Ku,u

])
,

which can be evaluated without forming any n × n matrices and enables the use of intermediate
results in several places.

The evaluation of the term T is begun by partitioning it as following

T =tr
((

Qf,f+3
)−1 ∂ Qf,f

∂θ

)
+ tr

((
Qf,f+3

)−1 ∂

∂θ
diag

[
Kf,f

])
−

tr
((

Qf,f+3
)−1 ∂

∂θ
diag

[
Qf,f

])
.

where the first term can be evaluated using the matrix inversion lemma for
(
Qf,f+3

)−1. The second

term can be evaluated by first solving diag
[(

Qf,f+3
)−1
]
, which can be done efficiently using

L from (9), and then using the fact that tr (Adiag [C]) = tr (diag [A] diag [C]). Using the same
idea as in (20) the last term can be changed into tr

(
diag

[(
Qf,f+3

)−1
]

∂
∂θ

[
Qf,f

])
. By plugging

in the derivative of Qf,f from Equation (17) and using the fact that tr(AC) = tr(CA) as above, the
expression can be modified into

T =2tr
((

Kf,u K−1
u,u

)T (Qf,f+3
)−1 ∂

∂θ

[
Kf,u

])
+

tr
((

Kf,u K−1
u,u

)T (Qf,f+3
)−1 Kf,u K−1

u,u
∂

∂θ

[
Ku,u

])
+

tr
(

diag
[(

Qf,f+3
)−1
] ∂

∂θ

[
diag

[
Kf,f

]])
−

2tr
(

diag
[(

Qf,f+3
)−1
] ∂

∂θ

[
Kf,u

] (
Kf,u K−1

u,u

)T
)
+

tr
(

diag
[(

Qf,f+3
)−1
]

Kf,u K−1
u,u

∂

∂θ

[
Ku,u

] (
Kf,u K−1

u,u

)T
)

.

Earlier it was mentioned that the evaluation of trace can be changed to a dot product of two vectors
formed of the matrices. Thus by conducting the operations above in a right order, the calculation of
T can be conducted without forming any n × n matrix. A pseudo code for the gradient evaluation
is shown in the algorithm 1.
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Algorithm 1 Calculate the gradients of minus log likelihood. Note: Here the notation C(:) repre-
sents a vector [c11, c21, ..., cn1, c12, ..., cn2, ..., cnn]T. Note: Some of the notations are from Matlab,
they are ./ (elementwise division), .* (elementwise multiplication), and some of the notations that
are matrices in the text are vectors here
Input: Kf,u, Ku,u, ∂

∂θ

[
Kf,u

]
, ∂

∂θ

[
Ku,u

]
f, k =

[
Kf,f(1, 1), ..., Kf,f(n, n)

]
1: % First evaluate helper matrices
2: b← fT (Qf,f+3

)−1 (evaluate as in (18))
3: A← Kf,u K−1

u,u
4: F← ATB
5: G← bA
6: M← AT

(
Qf,f+3

)−1 (evaluate using matrix inversion lemma)

7: q← diag
[(

Qf,f+3
)−1
]

(1× n vector of diagonal elements)

8: P← A ∂
∂θ

[
Ku,u

]
9: R← 2diag

[(
Qf,f+3

)−1
]

∂
∂θ

[
Kf,u

]
(use vector q)

10: W← diag
[(

Qf,f+3
)−1
]

P

11: % Then evaluate the gradient
12: V ← 2 ∗ ∂

∂θ

[
Kf,u

]
+G ∗ ∂

∂θ

[
Ku,u

]
13: V ← V ∗GT

+ (b.*k) ∗ bT

14: V ← V + 2 ∗
(
FT(:)

)T
∗

∂
∂θ

[
Kf,u(:)

]
+
(
FT(:)

)T
∗ P(:)

15: T ← 2 ∗ (MT(:))T
∗

∂
∂θ

[
Kf,u(:)

]
+ (MT(:))T

∗ P(:)+ q ∗ kT

16: T ← T + RT(:))T
∗ AT(:)+WT(:))T

∗ AT(:)

17: return T + V
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Appendix B. Algorithm for latent value transformation

Algorithm 2 Transformation and re-transformation of latent values with their approximate posterior
covariance.
Input: f, E, Kf,u, Ku,u, k =

[[
Kf,f

]
11 , ...,

[
Kf,f

]
nn

]
1: if transform from f to f̃ then
2: q← diagonals of Qf,f (evaluated efficiently from chol(Ku,u) \Kf,u

T)
3: 3← k − q (vector diag[3] of length n)
4: 3̂−1

← E+1./3; (vector diag
[
3̂
]
, eq. (8)

µ = exp(f) = 1 )
5: K← 3−1 Kf,u (note that 3 is diagonal)

6: L← K
((

chol
[
Ku,u+Kf,u K

])−1
)T

(This is faster and numerically more

stable than Kchol
[(

Ku,u+Kf,u K
)−1
]
)

7: B← L*3̂1/2

8: S← eigenvalues of BTB (a vector of length m eq. (10))
9: V← eigenvectors of BTB (m × m matrix eq. (10))

10: U← BV/S1/2

11: D← (1− S)1/2 (this is a vector and thus the square root
can be evaluated pointwise)

12: save D, U and 3̂ (for use in re-transformation)
13: f̂← 3̂

−1/2 f
14: f̃← f̂+ U

[(
DUT
− UT

)
f̂
]

15: return f̃
16: end if

17: if transform from f̃ to f then
18: load D, U and 3̂

19: f← 3̂
1/2
[
f̃+ U

(
(D−1UT

− UT)f̃
)]

20: return f
21: end if
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