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Abstract

Of all of the challenges which face the selection of relevant features for predictive data
mining or pattern recognition modeling, the adaptation of computational intelligence tech-
niques to feature selection problem requirements is one of the primary impediments. A new
improved metaheuristic based on Greedy Randomized Adaptive Search Procedure (GRASP)
is proposed for the problem of Feature Selection. Our devised optimization approach pro-
vides an effective scheme for wrapper-filter hybridization through the adaptation of GRASP
components. The paper investigates, the GRASP component design as well as its adapta-
tion to the feature selection problem. Carried out experiments showed Empirical effective-
ness of the devised approach.

Keywords: Feature selection, Combinatorial optimization, Hybrid modeling, GRASP,
Local Search.

1. Introduction

Researchers in machine learning, data mining, pattern recognition and statistics have devel-
oped a number of methods for dimensionality reduction based on usefulness and classifica-
tion accuracy estimates of both individual features and subsets. In fact, Feature Selection
(FS) tries to select the most relevant attributes from raw data, and hence guide the con-
struction of the final classification model or decision support system. From one hand, the
majority, of learning scheme, are being relying on feature selection either as independent
pre-processing technique or as an embedded stage within the leaning process (Guyon and
Elisseff, 2003). On the other hand, both feature selection and data mining techniques strug-
gle to gain the attended reliability, especially, when they face high dimensional data (Liu
and Motoda, 2008).

In this paper, we propose, a new hybrid search technique through the adaptation of
the GRASP heuristic to the FS problem. The devised approach investigates the effective
wrapper-filter combination by exploiting the intrinsic properties of the GRASP heuristic.
The main motivations for this proposal are three folds: (i) filter-wrapper collaboration
might enhance the relevance of the selected feature subsets (ii) local search approaches have
shown their effectiveness in FS with both sequential deterministic procedures (i.e. SFFS
(Somol et al., 1999), IFFS (Nakariyakul and Casasent, 2009), etc) and stochastic approaches
(i.e. Hill Climbing (Kohavi and John, 1997), Simulated Annealing (Guyon et al., 2006) and
Tabu search (Yus, 2009)). The GRASP is a multi-start heuristic based on local search (iii)

c©2010 Esseghir.



Esseghir

endowing basic sequential search procedures with both filter guidance and the stochastic
ability to alleviate FS challenging problems like local minimas and nesting effect (Guyon
et al., 2006; Liu and Motoda, 2008).

The remainder of this paper is organized in five sections. Section 2 formalizes the
feature selection problem and gives an overview of representative approaches. Section 3
briefly introduces the GRASP heuristic as well as its recent application to feature selection.
Section 4 details the devised GRASP for FS. Section 5 compares and assesses GRASP
alternatives behaviors empirically. Finally, Section 6 concludes the paper and provide some
directions of future research.

2. Feature selection: basics and background

Let D be a data set with F as a set of features such that |F | = n, and let X (X ⊆ F ) be
a subset of F . Let J(X) the function that assesses the relevance of the features subset X.
The problem of feature selection states the selection of a subset Z such that:

J(Z) = maxX⊆FJ(X) (1)

In other words, the retained feature subset should be compact and representative of the
dataset objects or the underlying context. This might be done by both removing redundant
noisy or/and irrelevant attributes by keeping the minimal information loss.

For a given dataset of n features, the exploration would require the examination of
2n possible subsets. Consequently, the search through the feasible solutions search space
is a np-hard combinatorial problem (Liu and Motoda, 2008). An exhaustive exploration
of the feature space seems to be impractical, especially, when n became large or even
moderate. Numerous reference approaches have been proposed for the identification of
salient features with the highest predictive power (Guyon et al., 2006; Liu and Motoda,
2008). The representative approaches could be, broadly, categorized into two classes: filters
and wrappers (Guyon and Elisseff, 2003; Guyon et al., 2006).

Filters

Considered as the earliest approaches to feature selection, filter methods discard irrele-
vant features, without any reference to a data mining technique, by applying independent
search which is mainly based on the assessment of intrinsic attribute properties and their
relationship with the data set class (i.e. Relief, Symmetrical uncertainty, Pearson corre-
lation, etc) (Liu and Motoda, 2008). The main advantage of the filter methods is their
reduced computational complexity which is due to the simple independent criterion used for
feature evaluation. In most of the cases, filters provide a ranking based on scores reflecting
attribute usefulness to the class.

Wrappers

When feature selection is based on a wrapper, attributes are simultaneously evaluated
using a classification algorithm. The subset exploration requires a heuristic search strat-
egy. Kohavi et al. (Kohavi and John, 1997) were the first to advocate the wrapper as a
general framework for feature selection in machine learning. Numerous studies have used
the above framework with different combinations of the evaluation and search components.
Featured search technique are ranging from greedy sequential attribute selection methods
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(i.e. SFS, SBE, Floating search (Somol et al., 1999)) to randomized and stochastic meth-
ods (i.e. GRASP (Yus, 2009), TABU, BEAM, Genetic Algorithm (Guyon et al., 2006)) .
The wrapper methods often provide better results than filter ones because they consider
a classifier within the evaluation process. We should note that feature selection methods
based on wrappers are computationally expensive compared to filters, due to the cost of
iterative running of the classification algorithm (Guyon and Elisseff, 2003).

The motivation to hybrid approaches design is the exhibited multidisciplinary problem
nature and the need to overcome the pitfalls of one approach by the advantage of the other
one. The simplest form of recombination is to use both filters and wrappers. The common
scheme of combination entails a couple of steps. The first one applies filter to reduce the
search space, while the second step explores with a wrapper the subsets built from the
yielded features returned by the first step (Liu and Motoda, 2008).

3. GRASP

This section covers paper materials by introducing GRASP heuristic principle, components
and its recent application to feature selection modeling. The Greedy Randomized search
procedure (GRASP) is meta-heuristic for combinatorial optimization problems (Resende,
1999; Resende et al., 2002). Usually known as multi-start procedure, GRASP is based on
an iterative process which constructs a solution then fine tune it, through a local search.
The multi-start property enlarges the search coverage by exploring different regions of the
search space without being influenced by the previous solutions found.

GRASP heuristic was successfully applied to numerous combinatorial problem ranging
from scheduling (Aiex et al., 2003) and quadratic assignment (Ahuja et al., 2000) to data
mining (Ahmadi and Osman, 2005).

3.1 GRASP Components

The recent optimization scheme proposed by GRASP (Resende, 1999) applyies an iterative
local search scheme based on incremental solution construction and neighborhood explo-
ration. The iterative process consists of two stages: the construction of a feasible solution
and local search.

The construction stage builds a solution, incrementally, using a Restricted List of Can-
didates RCL The RCL is, generally, formed by the best solution elements (i.e. elements
which can improve the current solution). Solutions are built using a random selection from
the RCL.

Once the solution is generated, it passes through the second stage. Within the second
stage the solution is iteratively, refined by local search until it reaches a local optima. This
procedure is mainly based on neighborhood generation and the exchange of the current
solution by the best solution among neighbors. The procedure restarts until no improvement
could be gained. The pseudo-codes of both GRASP local search (LS) procedures adapted
to the problem of FS will be detailed, below, by Algorithm 1 and 2 in the following section.

The multi-start property of GRASP allows the search process to be not trapped in local
minima and to explore different regions of the search space, without being constrained or
influenced by the best solution found.
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Algorithm 1: G.R.A.S.P.

Input:
F : Initial Feature set
C: Target class Attribute
β: Threshold
d: number of attributes to select
nmax: attempts number
Output:
Sbest : Selected Features
Begin1

S ← ∅2

Sbest ← S3

While Stop Criterion not4

Satisfied do
//Construction stage5

Foreach fi ∈ F do6

gi ← IGV (fi, C)7

Sollist ← ∅8

repeat9

S ← ∅10

repeat11

min← argmini(gi),12

max← argmaxi(gi)
RCLlist = {vj , gj ≤13

α.gmax + (1− α)gmin}
Randomly select vj ∈14

{vj ∈ RCLlist, vj /∈ S}
S ← S ∪ {vj}15

RCL← RCL \ {vj}16

until |S| == d;17

S.fitness=Evaluate(S,Cla)18

Sollist ← {S} ∪ Sollist19

until |Sollist| = nmax;20

S ← getBest(Sollist);21

// iterative local search22

S ← LocalSearch(S)23

If S.fitness > Sbest.fitness24

then
Sbest ← S25

Return (Sbest)26

End27

Algorithm 2: Iterative Local Search
procedure

Input:
F : Initial Feature set
C: Target class Attribute
Cla: a classifier for solution evaluation
S: input Solution
Output:
S’ : result of local search
Begin1

S1← S , Sbest ← S12

Stop ← false3

repeat4

Sollist ← NH(S1, F )5

∀X ∈ Sollist, Evaluate(X,Cla)6

S1← getBest(Sollist)7

If S1.fitness > Sbest.fitness8

then
Sbest ← S19

Else10

Stop ← true11

until (Stop = true);12

S’← Sbest13

Return (S’ )14

End15
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3.2 GRASP for Feature Selection

The application of GRASP to the FS problem was, recently provided by Yusta in (Yus,
2009). The proposed GRASP was compared to effective FS search techniques like to genetic
algorithms, tabu search and SFFS.

The GRASP proposed in (Yus, 2009), is illustrated by Algorithm 1. The algorithm
is based on two main stages, namely solution construction (Lines 6-21) and local search
procedure (see Algorithm 2). The first stage constructs a fixed number of solutions (nmax),
and the best one will be selected as a candidate for the second stage.Solution are constructed
according to the attributes retained by the RCL list. The RCL is based on the In-Group
Variability (IGV function) criterion (see eq. 2).

IGV (fj , C) =
∑
i

(f ij − µC(i))
2 (2)

Where f ji and µC(i) denote respectively the i-th value of the attribute fj and the mean
µC(i) of fj values for the instances belonging to the same class as the instance i. Besides
the attribute selection, is controlled by the parameter α (Lines 11-17). In fact, it controls
the degree of randomness of the procedure.

The second stage applies a hill climbing procedure to the solution provided by the first
stage. The pseudo-code of the iterative LS is illustrated by algorithm 2. Each iteration
generates neighborhood solutions and exchange current solution with best neighbors if it
can improve classification accuracy. The neighborhood structure proposed, by Yusta in
(Yus, 2009), is based on attribute replacement and is given by the equation 3:

NH(S) = {X,X = S ∪ {fi} \ {fj},∀fi ∈ F \ S, ∀fj ∈ S} (3)

Such a neighborhood structure NH(S) consider all combinations of attribute exchange.
Consequently, LS is sensitive to the number of selected features. The neighborhood explo-
ration becomes prohibitive even for moderate value of n. The computational complexity is
in the order of O(p ∗m). 1

4. Proposed GRASP-FS

In this section, we investigate, the proposed a new GRASP schemata for FS. We focus on
a set commonly used local search procedures and filters. Next, we try to adapt and deploy
them as GRASP components.

Since the GRASP scheme is based on a restricted list of candidates, this list could be
represented by features that seems to be relevant or those that might provide incremental
usefulness to the selected feature subset. For the GRASP construction stage we opt for
selection scheme capable of generating attribute ranking. Hence, the score associated to
features will serve as selection criterion for the RCL generation. The second stage of GRASP
tries to enhance solutions by an iterative neighborhood exploration. The subsets are assessed
according to a classification criterion (i.e. generalization error rate). The quality of solution
fine-tuning, mainly, depends on the nature of the involved neighborhood structure of LS.

1. p and m respectively denote the number of selected and non-selected features (p + m = n).
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We devise a number of LS procedures based on different neighborhood structures in-
spired from well known sequential search procedures. The following two sections, detail
different design alternatives for both RCL and local search GRASP component.

4.1 RCL generation

Comparatively to the GRASP scheme proposed by Yusta in (Yus, 2009), the same con-
struction phase steps (see Algo. 1 Lines 6-21) are adopted, except the procedure which
generates the RCL the (see Algo. 1 Line 6-7).

Any filter criterion could be, instead, used to build RCL. In this paper, we opt for three
well known and different selection schema: ReliefF (Robnik-Sikonja and Kononenko, 1997),
Symmetrical Uncertainty (SU) (Guyon et al., 2006), and FCBF (Yu and Liu, 2003).

Typically, filters return solutions based on the selection of features with the highest
scores. Once the initial RCL is generated2 , the variables are randomly selected to build
GRASP first stage solutions. Such a selection schema have, at least, tow benefits: (i)
reducing the risk of selection of, only, highly correlated relevant features (ii) the combination
of features with moderate usefulness, which are not highly relevant to the target, might
promote interaction among selected attributes.

4.2 Local Search Procedures

The local search (LS) is applied at the second stage of the GRASP. It aims at the improve-
ment of the solution provided by the GRASP first stage process. An interesting aspect
that could motivate the wrapper choice as component of the GRASP second stage, is the
successful application of local search methods in FS modeling (i.e. Tabu search, Simulated
annealing, Hill climbing) (Guyon et al., 2006).

In this paper, we devise effective LS procedures inspired from successfully search tech-
niques adapted to the FS. The following paragraphs detail the neighborhood structures that
will be deployed within the local search procedures. They will be, also, discussed in the
context of FS search space exploration.

Bit-Flip Local search (BF) explores neighboring solutions by adding or removing one
feature at a time. For solutions encoded with binary strings this operator inverts one bit
value for each neighbor. In comparison to the sequential search procedures, the generated
neighborhood covers both solutions explored in SFS (see eq. 5) and SBE (see eq. 6) The
bit-Flip operator (BF) neighborhood is illustrated by the equation 4.

NHBF (S) = {X|X = NH+(S) ∪NH−(S)} (4)

NH+(S) = {X|X = S ∪ {fi},∀fi ∈ F, fi /∈ S} (5)

NH−(S) = {X|X = S \ {fi},∀fi ∈ S} (6)

The problem of nesting effect encountered with both sequential forward and backward
procedures is alleviated by the merge of the neighborhoods explored by both procedures.

2. using filter criterion
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Attribute-Flip (AF) local search procedure constructs neighborhood using a per-
mutation between a selected and a non-selected features (see eq. 3). This neighborhood
structure was used, by Yusta in (Yus, 2009), as a local search procedure. The two opera-
tors explore different region of the current solution neighborhood. There is no overlapping
regions (NHBF (S)∩NHAF (S) = ∅) and the second neighborhood structure is much larger
than the first which would require more computational time.

Local search based floating search (SFFS1). Since, SFS and SBE approaches
could be seen as local search procedures, floating searches (SFFS and SFBS) could be also
considered as an improved version of both sequential procedures and their associated local
search. In fact, solutions explored by an iteration of SFFS are those generated by the
union of NH1 = NH+(S) and the conditional application of the backward search to the
best improvement provided by NH1. Note that the LS based on SFFS1 neighborhood is
not comparable to that using AF local search. AF applies NH+(.) and NH−(.) to the
same initial solution while, with SFF1, NH−(.) is applied to the improved solution after
the application of NH+(.). Besides, there is no risk of cycling, because the Neighborhood
procedures are only applied to improved solutions.

Local search based floating search 2 (SFF2) In the case of SFF2, the same floating
search scheme as in SFF1 is adopted, however the backward procedure NH−(.) is not
applied once but the backtrack is applied iteratively repeated until no improvement can be
reached. Comparatively to SFF1, SFF2 requires more computational time than the first
floating alternative but might lead to more compact subset size.

5. Empirical study

In this section, we empirically assess the behavior of proposed GRASP schema as well
as a selection of the devised components. They will be, also, compared to the baseline
GRASP 〈IGV,AF 〉 proposed by Yusta in (Yus, 2009), where reported results have confirmed
the superiority of GRASP over Tabu search, Genetic and Memetic algorithms, and SFFS
approach.

Five benchmark datasets were used to validate GRASP components: Sonar, Ionosphere,
SpamBase, Audiology and Arrhythmia with respectively 60, 34, 57, 69 and 279 attributes.
These datasets are provided by the UCI repository (Blake and Merz, 1998). Reported
results, correspond to the average values of at least 50 trial runs. Means, Standard deviation
and statistical test validation (t-Test with confidence level of 97.5%) are also provided.

Two types of results are proposed: (i) those corresponding to the best solution fitness
(generalization error rate) yielded from the GRASP search. K-Nearest Neighbors (KNN) is
used as wrapper classifier (K = 3) (ii) the validation on independent data set instances of
the resulting features subsets using Artificial neural network (ANN) and Naive Bayes(Guyon
et al., 2006). The selection of different classification paradigms for both search and vali-
dation make the validation less biased and independent of wrapper classifier. Besides, the
validation stage is based on 10-folds cross-validation technique.
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Data Model Fitness (%) Validation Error (%) CPU Time(s) Gain %
RCL LS ANN NB (Yus, 2009)

Sonar IGV AF 15,89(1,71) 32,83(3,40) 40,30(3,01) 14183,88(7196)
Relief AF 14, 29(1, 88)+ 31,31(3,66)+ 39,85(2,71)+ 14915,13(7493) 10,07%
SU AF 12,79(1,13)+ 30,54(3,06)+ 39,53(2,51)+ 15867(8524) 19,51%
FCBF AF 13,46(0,00)+ 31,32(1,30)+ 37,27(1,70)+ 14920(7450) 15,29%

Audiology IGV AF 49,12(1,96) 52,4(3,14) 54,05(0,15) 343915(280683)
Relief AF 46,74(3,92)+ 51,54(4,47)+ 54,09(0,22) 337756(248912)− 4,85%
SU AF 33,36(3,2)+ 40,52(4,55)+ 54,16(0,25) 350761(267582) 32,08%
FCBF AF 36,08(4,72)+ 40,53(6,91)+ 54,06(0,14) 338687(258913) 26,55%

Arrhythmia IGV AF 39,72(1,57) 41,98(2,04) 43,61(1,65) 183959(132900)
Relief AF 40,17(1,76) 42,7(2,05) 44,22(1,74) 170925(114978)+ -1,13%
SU AF 36,15(1,89)+ 39,73(2,42)+ 44,56(1,79) 173505(115749)+ 8,99%
FCBF AF 33,82(1,26)+ 39,33(2,11)+ 43,54(1,76)+ 176065(117012) 14,85%

Ionosphere IGV AF 5,63(0,91) 16,34(1,98) 17,9(2,13) 22316(12626)
Relief AF 5,95(1,00) 15,51(2,26) 16,97(2,04)+ 21855(12081) -5,68%
SU AF 5,76(0,98) 15,21(2,48)+ 17,31(2)+ 24031(14531) -2,31%
FCBF AF 3,51(0,32)+ 16,33(0,92)− 15,73(0,89) 21973(11873)+ 37,66%

SpamBase IGV AF 16,47(1,04) 19,91(1,50) 20,23(1,57) 347062(190196)
Relief AF 16,43(1,05)− 19,59(2,19)+ 19,58(1,72)+ 338671(185750)+ 0,24%
SU AF 14,18(1,12)+ 15,89(1,66)+ 17,13(2,27)+ 311037(156931) 20,77%
FCBF AF 13,05(0,84)+ 15,96(2,18)+ 15,31(1,88)+ 331498(181414) 20,97%

3rests format: m(sd)+/−:m: Mean; sd:Standard deviation;(+/−):T-test validity

Table 1: GRASP with RCL based filters

Data Model Fitness (%) Validation Error (%) CPU Time(s) Gain %
RCL LS ANN NB (Yus, 2009)

Sonar IGV AF 15,89(1,71) 32,83(3,40) 40,30 (3,01) 14183(7196)
IGV BF 28,68(1,58) 33,59(4,90) 41,22(4,19) 15215(7922) -80,49%
IGV SFF1 5,92(2,05)+ 31,14(3,47)+ 40,05(3,08)+ 14481(6652) 62,74%
IGV SFF2 6,6(1,9)+ 31,26(3,38)+ 38,75(3,62)+ 12208(5244)+ 58,46%

Audiology IGV AF 49,12(1,96) 52,4(3,14) 54,05(0,15) 343915(280683)
IGV BF 68,78(1,34) 69,59(2,87) 72,64(2,4) 322789(248574)+ -40,02%
IGV SFF1 29,41(1,47)+ 41,78(3,96)+ 54,09(0,22) 234579(98248)+ 40,13%
IGV SFF2 30,99(1,21)+ 41,12(2,81)+ 54,08(0,17) 209670(111471)+ 36,91%

Arrhythmia IGV AF 39,72(1,57) 41,98(2,04) 43,61(1,65) 183959(132900)
IGV BF 49,47(1,02) 44,8(1,98) 46,34(1,59) 160659(96674)+ -24,55%
IGV SFF1 25,38(2,57)+ 38,27(2,9)+ 43,41(1,81)+ 156343(73463)+ 36,10%
IGV SFF2 24,42(2,67)+ 36,64(2,99)+ 42,64(1,71)+ 152719(89546)+ 38,52%

Ionosphere IGV AF 5,63(0,91) 16,34(1,98) 17,9(2,13) 22316(12626)
IGV BF 12,63(0,67) 15,78(3,01)+ 17,38(2,03)+ 21374(11603)− -124,33%
IGV SFF1 2,27(0,52)+ 14,77(1,64)+ 17,35(1,2)+ 18561(8464)+ 59,68%
IGV SFF2 2,48(0,56)+ 15,42(1,44)+ 17,66(1,03)+ 16035(6597)+ 55,95%

SpamBase IGV AF 16,47(1,04) 19,91(1,50) 20,23(1,57) 347062(190196)
IGV BF 23,72(1,1) 22,38(3,46) 21,59(2,43) 328341(17611) -44,02%
IGV SFF1 6,85(0,73)+ 12,28(1,27)+ 14,90(2,66)+ 532610(281813) 58,41%
IGV SFF2 6,87(0,84)+ 12,05(1,26)+ 15,11(2,75)+ 496728(206866) 58,29%

4rests format: m(sd)+/−:m: Mean; sd:Standard deviation;(+/−):T-test validity

Table 2: GRASP with different local search procedures
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5.1 Construction Phase

In the first stage of the empirical study, we assess the behaviors of the baseline GRASP
with the devised GRASP scheme which is based on Filters to both built RCL and construct
solutions.

For each experiment we present, for each dataset, on columns, best solution fitness (low-
est error rate %), test accuracy on independent dataset, average runtime CPU, cardinality
of best solution (#features) and the gain Toward Baseline GRASP fitness. In Addition
to the, average , standard deviation values of the different trials, t-test was used for the
assessment of the statistical validity of the obtained results toward the baseline method.
Table 1 provides results for each data set. Globally, according to the gain (last column)
obtained with a GRASP scheme generating the RCL with filters, the baseline method is
outperformed in most of the cases.

Fortunately, the improvement obtained with fitness values is confirmed with validation
stage (independent data, and different classification techniques for validation). In most of
the cases the mean values and t-tests showed decrease of the generalization errors. The
overall improvement, points out the reliability of the approach, particularly the filters en-
listed in the selection of suitable features. All filters enhance at least once, both fitness and
validation accuracies. Surprisingly, Relief scores used in the RCL build, seems to be the
less relevant filter used in the first stage of GRASP whereas GRASP alternatives based on
FCBF confirm a slight superiority over those ones using SU.

5.2 Local search enhancement

The local search of the baseline method uses Attribute Flip neighborhood whereas the pro-
posed GRASP uses local search procedures inspired from deterministic sequential searches.

The devised local search procedures are deployed within new GRASP instances using
the IGV criterion on the First stage. Table 2 compare and evaluate the fours GRASP
instances. Even though, the solutions provided by the first GRASP stage are based on
IGV criterion, some of the devised local search procedures have succeed to outperform the
baseline algorithm. Indeed, local search alternatives adopting floating selection, have empir-
ically confirmed their superiority over Yusta GRASP. On the other hand, the neighborhood
structure based on the selection or removal of one attribute (NHBF ), the less effective fine
tuning scheme.

Besides, the overall improvement of the new devised GRASP local search procedures
are most significant that the improvements afforded by the use of filters. In any case, the
adapted new GRASP scheme is based have empirically shown that enhancements could be
afforded by filters in first stage as well as wrappers in second stage.

6. Conclusion

We devise a new GRASP approach for feature selection capable of hybridizing filters and
wrappers. The effectiveness of the different GRASP components combinations were assessed
empirically. Carried out results, confirms the robustness of the hybridization schemata and
motivates us to investigate in depth both algorithmic and behavioral aspects of further
combinations issues, scalability study, and adaptation to high dimensional problems.
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