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Abstract

The paper analyzes peculiarities of preprocessing of learning data represented in object
data bases constituted by multiple relational tables with ontology on top of it. Exactly
such learning data structures are peculiar to many novel challenging applications. The
paper proposes a new technology supported by a number of novel algorithms intended
for ontology-centered transformation of heterogeneous possibly poor structured learning
data into homogeneous informative binary feature space based on (1) aggregation of the
ontology notion instances and their attribute domains and subsequent probabilistic cause-
consequence analysis aimed at extraction more informative features. The proposed tech-
nology is fully implemented and validated on several case studies.

Keywords: ontology, object data base, feature aggregation, cause-consequence depen-
dency, non-classical probabilistic space

1. Introduction

The paper proposes automatic feature extraction algorithm in machine learning for classifi-
cation or recognition. Specificity of the problem statement is that it assumes that learning
data (LD) are of large scale and represented in object form, i.e. by multiple tables of rela-
tional database with ontology on top of it. Existing techniques for feature extraction and
machine learning are mostly oriented to LD represented in the form of a flat table. In case
of data stored in object data base, a lot of new problems emerge. Indeed, to extract par-
ticular instance (object), it is necessary to use specific query language (Jean et al., 2006).
But what is actually challenging here is that various objects can be of various formats and
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structures. Every object instance structure is composed of formidable number of concept
instances, and each concept can be specified with a lot of heterogeneous attributes, e.g.
categorical, Boolean, real valued, and even with a text thus making feature selection and
detection of most informative ones a challenging problem.

On the other hand, object data, in its nature, is much more informative in comparison
with LD represented in relational data base or in flat table. The main advantage of object-
based LD representation is that object data base instances contain rich context embedded
in it via object structure and object attributes. In fact, each object instance is a piece
of knowledge compatible with ontology formalizing meta-knowledge. This is a reason why
learning of classification using LD in object form is very perspective and productive although
complex research direction.

The paper proposes an original technology for preprocessing of ontology-based LD in-
tended for its transformation into a compact binary-valued flat table representing LD object
instances in terms of highly informative features. This technology is demonstrated by a case
study, electrical machine diagnosis based of vibro-acoustic data measurements. In the rest
of the paper, Section 2 describes briefly the aforementioned case study and its ontology
specifying meta-knowledge. Section 3 outlines the proposed technology of ontology-based
LD aggregation for feature extraction and filtering. It is worth to note here that the main
peculiarity of this filtering algorithm is that the resulting sets of features are class-specific.
Section 4 outlines the final step of the feature sets and LD transformation to more informa-
tive and compressed form via extraction cause-consequence rules. Section 5 concludes the
paper and outlines technology perspectives.

2. Cases Study and Domain Ontology

The case study is taken from UCI repository (4, 1990). The task objective is classification
of states of electrical pumps using measurements of vibro-acoustic data (VAD) in different
measurement points (key points) of pumps in different lines (directions). These data are
very multidimensional and have complex structure that is represented by the developed
ontology (Fig. 1). Let us describe this ontology while explaining, in parallel, the ontology-
based structure of learning data.

For any Electric Pump (EP) Electric pump having own Shaft speed and state Machine
state, measurement data Measuring data assigned a time stamp is done. This data is
presented in the form of VAD Vibroacoustic measuring. VADs are measured in several key
points Measure keypoint along several orthogonal lines (directions). The VADs, in turn,
are represented as spectral data Spectral data obtained by several filters. As a rule, no
more than three filters are used in every key point along every direction. Spectral data
are presented by amplitudes Amplitude mapped to several values of frequency Frequency
for current value of time stamp and Preceding amplitude in the same key point and along
the same line corresponding to the immediately previous value of time stamp. The total
number of combinations of used filters and measurement directions is fixed; it is equal to
9. These combinations are introduced as the values of a specific feature “direction-filter”
Direction-Filter. Example of measurement data instances at a time instant is presented in
Fig. 2.
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Figure 1: Vibro-acoustic data ontology.

In addition to the above described ontology, so-called ontology of secondary features is
introduced by the expert. They can be of two categories, auziliary features and secondary
features involved in learning. Auxiliary features are the ones corresponding to the initial
real-valued measurements of spectral data transformed into categorical measurement scale.
This transformation was made using overlapping spectral data domain quantization with the
total number of intervals equal to 20 with overlapping ratio 10 %. For the secondary features
involved in learning, a new feature type is introduced, Pair-wise of any measurements. Such
feature type contains two positions mapped correspondingly two connected concepts. In
general case, components of any pair-wise measurement can be categorical, ordered, or real
valued. The secondary feature ontology is given in Fig. 3. In the case study, the following
features of the standard or Pair-wise of any measurements involved in learning are used:

Secondary features of standard type:

— Nominal amplitude; ‘ — Nominal difference of amplitudes.
Secondary features of pair-wise type:
— Frequency—Nominal amplitude — Key point—Frequency
— Frequency—Nominal difference of amplitudes — Shaft speed—Frequency
— Nominal amplitude-Nominal difference of amplitudes — Key point—“Direction-filter”
— “Direction-filter” — Nominal difference of amplitudes  — “Direction-filter” — Nominal amplitude

Let us note that in the case study the components of all secondary features are categor-
ical.

It can be seen that structure of LD, in the case study in question, is rather complex and
multidimensional. Due to introduced preliminary expert-based transformation of spectral
data it is reduced to a structure of categorical data. Later on, it is used for demonstration
of the developed feature extraction procedure.
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Figure 2: Instance of learning data represented in ontology-based form (in object data base).

3. Technology for Ontology-Based Feature Extraction
3.1 Ontology-Based Learning Data Transformation and Feature Aggregation

The proposed technology is designed for learning of classification with LD stored in object
data base. In the case study, such data are structured according to the domain ontology. In
general case, LD can also include poorly-structured data in the form of texts on a natural
language.

The technology itself illustrated by Fig. 4 is composed of several phases while assuming
that ontology can be either given as input information or developed by expert (the last
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BaseRFeature

-m_nld : int
-m_fLowBorder : float
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Figure 3: Secondary feature ontology.

case takes place in the case study in question). The first phase is expert-based selection of
preliminary feature space and transformation of the initial structure of LD to this space.
The expert is permitted to select any number of potentially relevant features without any
care about types of them or dimensionality, up to thousands. The mandatory requirement
here is that the selected features have to be concepts or/and attributes of the ontology.
This is important because such features are semantically interpretable and their structure
determined by the ontology constitutes particular context of any LD instance. When such
preliminary set of features is selected, any instance of LD can be extracted using an object
data base query language (Jean et al., 2006). Through such queries all LD instances are
transformed into the space of the preliminary selected (potentially redundant) feature space.
According to the technology, the resulting LD are represented as “star”-structured set of
tables, in which columns of fact tables corresponds to elements of the designated preliminary
feature set with one row in kernel table per every LD instance assigned a class label. This
representation is context-dependent where different LD instances can be of different formats
since some features introduced by expert can be irrelevant to particular instances. Therefore
any table of star structure can contain “missing-like” values to be interpreted as “irrelevant”
to the corresponding object instance.

The second phase is aggregation and filtering of the features selected at the first phase,
as well as representation of filtered set of aggregated features in unary predicate form.
The final procedure of the second phase is transformation of LD obtained at phase 1 to
new class-centered feature space. Let us briefly explain the mathematical idea of feature
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Figure 4: Ontology-based classification system technology.

aggregation procedure while using following denotations: Q = {w1,...,wn} stands for the
set of classes labels that can be assigned to an LD instance, e.g. € = {1,...,6}, in the
case study; X = {X1,...,X,} — the set of feature identifiers (ID), where X; stands for
particular feature ID; 2¢ — particular value of the feature with ID X;, and ®; — domain
of the feature X;, i.e. 2% € N;. Let us note that cardinality of any feature X; domain
may be huge (if either categorical, or numeric, or real valued). For example, categorical
feature “Key male role in a movie” in the NetFliX task (5) can possesses thousands of
values corresponding to particular actors’ names. Let also symbol > stands for the set of
LD instances in the target filtered feature space.

Feature aggregation and filtering is realized by single procedure. For a value % of feature
X, % € X; and a class wg, an aggregate N;(wy) € X; is defined as follows:

z' € Ny(wy) if and only if for Vw, € Q, v #k: plwp/x8) > plw,/2L) + A, (1)

where A is a positive real value defining a dominance threshold. The inequality (1) states
that conditional probability of the class wy, p(wy /%), if the feature X; is instantiated by
the value z% is larger than the same conditional probability for any other class. Thus, to
compute an aggregate N;(wy), it is necessary to check the inequality (1) for Yzl € ®; and
Vw, € Q for all v # k. Each such aggregate can be computed using sample » .

Finally, at the second phase, let us introduce unary predicates B;(wy) that are instanti-
ated by the truth value “true” if and only if 2% € N;(w), and “false”, otherwise. The truth
domains of these predicates are determined uniquely by aggregates with the same subscripts
and argument wy, values. Thus, the results of the second phase are the aggregates N;(wy)
and corresponding unary predicates B;(wy), i € I(wy), where I(wy) is the subset of indexes
of features X; successfully passed the test (1) for fixed wy.
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Using inequality (1) and definition of the predicates B;(wy), the LD sample ) is trans-
formed to the set of samples > (w1),...,> (wm), representing LD in the space of binary
features that are predicates B;(wy).

The authors’ experience based on prototyping of several applications where the devel-
oped technology was used showed that, as a rule, the procedure (1) filters many features of
the set {X1,..., X, } that are not satisfied with (1) for any wy € €. Let us also note that
the value A of the dominance threshold can be used as a means to restrict the total number
of the finally extracted features (either aggregates N;(wy), or unary predicates B;(wyg)) to a
predefined limit.

Thus, in result of the phases 1 and 2 the source high dimensional heterogeneous LD
of a complex structure is transformed to a homogeneous binary feature space of desirable
dimension.

3.2 Cause-Consequence Rule Extraction

Phase 3 starts when aggregates N;(wy ), unary predicates B;(wg), ¢ € I(wg), wk € 2 and LD
samples > (w1),...,» (wn) are formed. In Fig. 4 this phase is denoted as phase 3. Its ob-
jective is to find cause-consequence dependencies (rules) between conjunction of predicates
Bi(wj), i € I(wj), @ = {wr,...,wn} and w; € Q. For this purpose, a probabilistic approach
is used. Let us describe it for particular wy € Q.

For wy € ) probabilistic space is introduced as follows. The set of aggregates N;(w;)
is considered as a family set {¥;(w;)}|icr( m,» where each set N;(w;) is mapped a
probabilistic measure

Wk),j:17...7

P(Ri(w;)) = [Riw;)[/ 1Nl (2)

where | | denotes cardinality of the corresponding set. It is clear that
P(Bi(wj)) = p(Ri(w;)) (2')

Since the aggregates N;(w;) can overlap with N;(w,), j # r these aggregates and correspond-
ing random events can be dependent. Each set N;(w;) of the family set
{Ri(wj) Hier(wy),j=1,..m» can also be correlated with any wy € €, which are also consid-
ered in the model as random events with predefined a priory probabilities. Therefore the
sets of family {{wg}[7L;, {Ni(w))}Hier(wy),j=1,..m}, cannot be used as elementary random
events and thus probabilistic space cannot be defined here in the classical manner. In this
work, “non-classical” definition of the probabilistic space and corresponding non-classical
probability space axiomatics are used (Halpern, 2003).

While omitting some algebraic details, this probabilistic space projected to the subspace
taking into account only wy, can be modeled as an upper v,/ =< {wg, {Ri(w)) Hierwp),j=1,..m >
>> or lower v, =< {wk, {Ni(wj)}Hicr(wy),j=1,..m }> <> semi-lattice, where order relation is
defined in usual theoretic-set sense. In this semi-lattices, any node is mapped a probability
of the corresponding random event. Further on, the lower semi-lattice is used. In this semi-
lattice, wy is the class label node called below “target node”. The model described below is
identical for any wy € €.

Definition. Hasse diagram of the lower semi-lattice 7' =< {wy, {Ri(w)) Hier(wp),j=1,..m >
<> is below called Associative Bayesian Network (ABN).
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Figure 5: Example of Associative Bayesian Network for case study, representing cause —
consequence rules for class wy.

Let us note that this notion was introduced in the paper (Gorodetski, 1992). Fig. 5 gives
an example of a fragment of ABN built for the case study described in Section 2. Semantics
of the aggregates is also described in that section.

Let us consider the set {wr, { Bi(w;) }Hicr(wy),j=1,...m } as the basic set (nodes) of the lower
semi-lattice ;, that is isomorphic with the semi-lattice v, =< {wg, {¥i(w;) Hicr(wy)j=1,..m }»
<>. General idea of the developed algorithm of cause-consequence (CC)— rule extraction
consists in iterative construction of ABN which nodes represent premises of the cause-
consequence rules (CC-rules) in the form <conjunction of a subset of the basic predicates
of ABN with negation or without it> = wj only. This algorithm is iterative and the
number of particular iterations coincides with the length of conjunctive premises generated
at corresponding iteration. Below very short and slightly simplified outline of CC-rule
extraction algorithm is done (due to limit of the paper space). Below the denotation B;(w;)
is used predicate identifier (literal) that can take two values: Bj;(wj) if it is considered
without negation and B;(w;) with negation.

—

L. Generation of the rule set containing 1-literal premises. Let {wk, Bi(wj) }ier(wy).j=1,...m
be all the pairs composed of a literal /B;(wj)’iel(wk),j:l,...m and the target node wg. The first
to be done is to assess joint probabilities p(/B\i(Wj)wk) for every assignment of the literal
/B\i(wj). Three filters applied to p(/B\i(wj)wk) described below are sequentially used to filter
the above pairs that can be the sources of rules in the form “If /B\i(wj) then wy” assigned
confidence measure p(wk//B\,-(wj)) where /B\i(wj) € {Bj(wj), Bi(w;)} (positive and negative
literals respectively).

Filter 1 (filters the rules containing independent premises and consequents)

I(Bi(wj),wr) = [p(Bi(wj)wi) — p(Bi(w;))p(wi)|/[p(Bi(w;))p(wk)] > Omin >0—a  (3)
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selection threshold. Otherwise, the corresponding 1-literal rule is non-interesting.
Filter 2 (filters the rules that are dependent but do not correspond to the CC-dependencies)

—~

R(Bi(w;),wr) = [p(wr/Bi(w;)) — pwr/Bi(wi))|/{p(Bi(w)))[1 = p(Bi(w;)]} =

= |p(Bi(w;)wr) — p((Bi(w))))p(wi)|/{p(Bi(w;)1 — p(Bi(w;))] > dmin, Omin > 0 —a  (4)

selection threshold value, E(wj) € {Bi(wj), E(wj)}; Otherwise, the corresponding 1-literal
rule is non-interesting.

Notice: In fact, this filter is more complex. The filtration has to be done not only
for any possible assignments of random event B;(w;) € {B;(w;), Bi(w;)}, but also for two
assignments of random event wy € {wy,wy} in order not to lose the rules in the form
E(wj) = wy. If , at least, for one of variant of assignment of above mentioned random
events the filtration is successful then corresponding 1-literal rule remains to be a candidate,
otherwise it is deleted from the candidate set. Here and at the subsequent steps of CC-
rule extraction such additional checks are assumed on default and are not described due to
limitation of the paper space. -

Let us note that measure R(B;(w;),ws) is well known in probability theory and mathe-

matical statistics as regression coefficient of the random events /B\i(wj) and wy.
Filter 3 (filters CC-rules with low confidence)

p(@k/Bi(w))) = p(Bi(w;)@r) /p(Bi(w;)) = Yuuin (5)

at least, for one of assignments of the random events /B\i(wj) and Wg, Ymin > 0 — a selection
threshold value. Otherwise, the corresponding 1-literal rule is non-interesting .

Let us denote the chosen set of 1-literal premises as C1. It is a set of literals B;(w;),
i € Ii(wj) that remain to be the candidates of potential 1-literal premises of the rules
E(wj) = Wy, or premises of more length. Other literals E(w])z ¢ I (wj), are not anymore
considered in the subsequent algorithm.

2. Generation of the rule set containing 2-literal premises. In general, this step is about
the same as the previous step with the two differences. Due to limit of the paper space, let
us not describe this and subsequent steps but formulate only the differences.

First difference is that, at this step, all the conjunctive pairs E(wj) A E\] (wr), E(wj),
E (wr) € Cy are considered as the 2-literals CC-rule premises candidates. They are sub-
jected to the analogous three step filtration used for 1-literal rules, and then, like C7, the
set Cy of 2-literals premises containing the chosen conjunctive pairs E(wj) A E;(wr) € Oy,
i,7 € Ia(wg) is formed (wy is target node).

Second difference is that additionally, at this (and, in analogy, at the subsequent steps
t00), the set of non-chosen predicate literals E(wj) are united in the set A;(wy) that is the
set of 1-literal premises of the rules R (wy) in the form E(wj) = wg, ¢ € I1(wy), containing
wy in the consequences.

The process stops when either the set Cj of k-literals candidates became empty, or a
predefined number of rules is found. The latter often is a good choice in order to prevent
an over-fitting. Control attribute A in the equation (1) plays the same role. The resulting
set A(wg) = Uf,\]:1 A, (wy), is the target set of features forming new feature space.
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4. Some Experimental Results

An extended experiment was performed for the case study described in Section 2. Let us
first note that in UCI repository (4, 1990) only results obtained by the benchmark authors
are given. In fact, this task is too complex for existing approaches due to very complex
data structure. Unfortunately the benchmark contains very limited number of instances
(objects instances). They were divided into training and testing sets and the latter were
not involved in learning procedure. The results of testing of the produced classifier on
training data are presented in Tab. 1, whereas the results of its testing on the data that
was not used in training are done in Tab. 2. Let us comment shortly these results. It is
important to note that training data set has much less training instances as compared with
testing one. One of our ideas of such decision was to check performance of the developed
feature selection technology on relatively small training sample. It can be seen from the
Tab. 1 that classification quality with regard to training sample is rather good. What
concerns testing sample, it is important to note that the resulting algorithm has practically
no misclassification, but in a large number of cases it refused to decide in favor of particular
class. But classification algorithm was not carefully designed due to the fact that the paper
objective is other than design good classification algorithm. More important, for this paper,
is that the features designed according to the proposed technology found out informative
and even for not carefully designed classifier provides the decision quality that is not worth
in comparison of the results provided in UCI repository.

Table 1. Contingency matrix for testing Table 2. Contingency matrix for testing
of classifier on training data of classifier on new data
1]2[3[4]5]6 |Refusal 1]123/4]5 |6 |Refusal

1115 1 1(17 46
2 16 2 16 53
3 7 1 3 7 7
4 10 411 10 7
5 10 5 10 7
6 15 1 6 15 13

5. Conclusion

The authors’ practical experience proved that the proposed feature space synthesis approach
works well in very “heavy” high dimensional learning tasks using heterogeneous relational
data with ontology on top of it. One of the important advantages of the developed approach
is that the resulting feature space is homogeneous (binary) and most of the existing classi-
fication mechanisms can be used at decision making step. The proposed feature extraction
approach was fully implemented and validated using several applications. It was also used
in design and implementation of an ontology-based profiling and recommending system. In
particular, intelligent e-mail assistant for incoming e-mail sorting was prototyped.
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