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Abstract

L1 (also referred to as the 1-norm or Lasso) penalty based formulations have been shown to
be effective in problem domains when noisy features are present. However, the L1 penalty
does not give favorable asymptotic properties with respect to feature selection, and has
been shown to be inconsistent as a feature selection estimator; e.g. when noisy features are
correlated with the relevant features. This can affect the estimation of the correct feature
set, in certain domains like robotics, when both the number of examples and the number of
features are large. The weighted lasso penalty by (Zou, 2006) has been proposed to rectify
this problem of correct estimation of the feature set. This paper proposes a novel method
for identifying problem specific L1 feature weights by utilizing the results from (Zou, 2006)
and (Rocha et al., 2009) and is applicable to regression and classification algorithms. Our
method increases the accuracy of L1 penalized algorithms through randomized experiments
on subsets of the training data as a fast pre-processing step. We show experimental and
theoretical results supporting the efficacy of the proposed method on two L1 penalized
classification algorithms.

Keywords: Feature selection, L1 penalized algorithms

1. Introduction

Feature selection using the L1 penalty (also referred as 1-norm or Lasso penalty) has been
shown to perform well when there are spurious features mixed with relevant features and
this property has been extensively discussed in (Efron et al., 2004), (Tibshirani, 1996)
and (Zhu et al., 2003). In this paper, we focus on feature selection via the L1 penalty
for classification, addressing open problems related to feature selection accuracy and large
datasets. This paper is organized as follows, Section-2 presents motivation and background,
primarily focusing on the fact that asymptotically L1 penalty based method might include
spurious features. Based on the work in (Zou, 2006), we show that random sampling can
find a set of weights that improves accuracy over the unweighted (which is normally used)
L1 penalty methods and we detail this in Section-3. In Section-4, we show results on two
different classification algorithms and compare the weighted method proposed in (Zou, 2007)
with the random sampling method described in our paper. Our method differs from Zou’s
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method as it hinges on random sampling to find the weight vector instead of using the L2

penalty. The proposed method is shown to give significant improvement in accuracy over a
number of data sets. Section 5 summarizes the results and concludes with future work.

The contribution of our work is as follows: we show that a fast pre-processing step can
be used to increase the accuracy of L1 regularized models and is a good fit when the number
of examples are large; we connect the theoretical results from (Rocha et al., 2009) showing
the viability of our method on various L1 penalized algorithms and also show empirical
results supporting our claim.

2. Background Information and Motivation

Consider the following setup in which information about n examples, each with p dimen-
sions, is represented in a n x p design matrix denoted by X , with y ∈ Rn representing
target values/labels, and β ∈ Rp representing a set of model parameters to be estimated.
For our paper, we consider classification based linear models with a convex loss function and
a penalty term (a regularizer). In (1), we show a regularized formulation that can be used
to generally describe many machine learning algorithms. The metric or loss, L(X, y, β),
may represent various loss functions including ‘hinge loss’ for classification based Support
Vector Machines (SVMs) and ‘squared error loss’ for regression.

β = argmin
β
L(X, y, β) + λJ(β) (1)

where L(X, y, β) = loss function , J(β) = penalty function and λ ≥ 0

Popular forms of the penalty functions (J(β)) are by using the L2 and L1 norm on β and
are termed Ridge and Lasso penalty respectively in literature (refer to (Tibshirani, 1996)).

2.1 Asymptotic properties of L1 penalty

Many papers including (Tibshirani, 1996), (Efron et al., 2004) and (Zhu et al., 2003) discuss
the merits of the L1 penalty. The L1 penalty has been shown to be efficient in producing
sparse models (models with many of the β’s set to 0) and this feature selecting ability
makes it robust against noisy features. In addition, the L1 penalty is a convex penalty and
when used in conjunction with convex loss functions, the resultant formulation has a global
minimum.

As the L1 penalty is used for simultaneous feature selection and correct estimation,
a topic of interest is to understand whether sparsity holds when n → ∞, n=number of
examples. Intuitively, given enough samples, the estimated parameters βn should approach
the true parameters β0.

y = Xβ0 + ε (2)

Assume that the data is generated as shown in (2), with ε being gaussian noise of zero
mean and β0 being the true generating model parameters. Also, βjk represents the jth

feature for βk. If A0={j | βj0 6= 0} is the true model and An is the model found for n→∞.

For consistency in feature selection, we need An={ j | βjn 6= 0} and lim
n→∞

P (An = A0)= 1,

that is we find the correct set of features A0 asymptotically. (Zou, 2006) showed that lasso
estimator is consistent (in terms of βN → β0) but can be inconsistent as a feature selecting
estimator in presence of correlated noisy features.
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2.1.1 Hybrid SVM

(Zou, 2006) showed that weighted lasso penalty as shown in (3) and which is termed as
the weighted lasso regression, can be used for simulataneous feature selection and creating
accurate models. In (Zou, 2007), the same properties are applied in case of classification and
referred to as ‘Improved 1-norm SVM ’ or ‘Hybrid SVM’. The weighted lasso formulations
for regression and classification are shown in (3) and (4) respectively. In (3), β(OLS)
denotes the weights found via least squares regression. For the weighted lasso penalty, the
formulations in (3) and (4) are still convex and will require almost no modification to the
(unweighted) lasso penalty based algorithms. Refer to (Zou, 2006) for the modifications that
are needed. Intuitively, the weights found via the L2 penalty are inversely proportional to
the true model parameter β0. If those weights are lower (i.e. the true model magnitude is
higher) then in the weighted lasso penalty we are penalizing those corresponding features
lesser and thereby encouraging those features to have higher magnitude in the weighted L1

models and vice-versa for noisy features.

Weighted Lasso Regression: min
β
||y −Xβ||2 + λ

∑
j

Wj |βj | s.t. Wj = |β(OLS)j |−γ , γ > 0 (3)

Improved 1-norm SVM: min
β,β0

∑
i

[1− yi(x:,iβ + β0)]+ + λ
∑
j

Wj |βj |, (4)

where Wj = |β(l2)j |−γ , γ > 0, β(l2) = arg min
β,β0

∑
i

[1− yi(x:,iβ + β0)]+ + λ2
∑
j

||βj ||22

Improved SVM2: min
β,β0

∑
i

[1− yi(x:,iβ + β0)]2+ + λ
∑
j

Wj |βj |, (5)

where Wj = |β(l2)j |−γ , γ > 0, β(l2) = arg min
β,β0

∑
i

[1− yi(x:,iβ + β0)]2+ + λ2
∑
j

||βj ||22

{x:,i, yi} represents an example, λ, λ2 are regularizing parameters. v+ = max(v, 0) in the above equations.

2.2 Motivation for our Method

The weighted lasso penalty is dependent on obtaining suitable weights ‘W ’. (Zou, 2006,
2007) shows that the ordinary least squares estimates and the estimates from SVM with the
L2 norm penalty can be used to find the weights as shown in (3) and (4). For our paper, we
obtain these weights via feature selection on randomized subsets of the training data. If the
accuracy is higher than the unweighted case, it means that the features are appropriately
(and correctly) weighted.

One of our goals was to see the translation of results from (Zou, 2006) to other linear
formulations and thus we also experimented on the weighted SVM2 formulation shown
in (5) (unweighted formulation is shown in (7)). The SVM2 formulation is referred to in
literature as Quadratic loss SVM (but with L2 penalty) or 2-norm SVM (refer to (Shawe-
Taylor and Cristianini, 2004)). It is squared hinge loss coupled with the L1 penalty.

2.2.1 Efficient Algorithms to solve formulations with L1 norm penalty

(Efron et al., 2004) showed an efficient algorithm for lasso regression called Least Angle
Regression (LARS), that can solve for all values of λ, that is 0 ≤ λ ≤ ∞. In (Rosset and
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Zhu, 2007), a generic algorithm, for which LARS is a special case, is documented that can
be used for all double differentiable losses with the L1 penalty. For our experiments, we
resort to specific linear SVM based formulations for which entire regularization paths can be
constructed. (6) is the penalized formulation for ‘1-norm SVM’. (Zhu et al., 2003) showed
a simple piecewise algorithm to solve for 0 ≤ λ ≤ ∞ in the 1-norm SVM. As the loss and
the penalty function are both singly differentiable, a piecewise path cannot be constructed
as efficiently as in LARS but linear programming can be employed to calculate the step size.
(7) is an equivalent to (6) and similar to the formulation seen in literature except with the
L2 loss function instead of the L1 loss function. (7) is the penalized formulation for squared
hinge loss (or Quadratic loss SVM) with the L1 penalty. As the loss function is doubly
differentiable, via the method described by (Rosset and Zhu, 2007), an efficient piecewise
algorithm that be constructed to solve for 0 ≤ λ ≤ ∞. Our vested interest in using such
piecewise algorithms, is to help understand whether better (entire) regularization paths are
created or not for the weighted L1 penalty.

1-norm SVM: min
β,β0

∑
i

[1− yi(x:,iβ + β0)]+ + λ
∑
j

|βj |, (6)

Equivalent to (6) : min
β,β0

||β||1 + C
∑
i

ξi, s.t. yi(x:,iβ + β0) ≥ 1− ξi, ξi ≥ 0

SVM2: min
β,β0

∑
i

[1− yi(x:,iβ + β0)]2+ + λ
∑
j

|βj |, (7)

v+ = max(v, 0) in the above equations.

3. Randomized Sampling (RS) Method to Create Weight Vector

Our randomized sampling method depends on a small random subset of training data. We
assume that the subset of the training data is small, i.e. it is computationally cheap to act
on such a set in a reasonable time. Also, such randomized sampling is done multiple times.

3.1 Randomized Sampling (RS) Method

Our randomized sampling algorithm is described below in Algorithm-1: Randomized
Sampling Method. The algorithm can be explained as follows: We choose a subset of
m examples out of the presented n examples such that m << n. We train a L1 penalty
based algorithm (e.g. 1-norm SVM (Zhu et al., 2003), SVM2, etc.) so that we can find a
set of relevant features. We keep a note of the features that we found in that particular
experiment. After many such randomized experiments, the counts of the number of times
a feature was found in these randomized experiments is summed up and normalized and
denoted by V .

This count vector, denoted by V , is then inverted and used as weights for the weighted
version of the algorithm; i.e. weights used in the weighted formulations are W = 1/V .
Intuitively, if a feature is important and is found multiple times via the RS method, then
the corresponding weight for the feature is less and thus it is penalized lesser, encouraging
higher magnitude for the feature.
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Algorithm-1: Randomized Sampling (RS) Method:

Input: n examples each with p features, K randomized experiments, B (Block)
number of examples used to train model in each randomized experiment.

Output: Count vector W (1xD vector) representing number of times features were
selected in K randomized experiment.

Divide N examples into K randomized sets each of size B and denote them as
Ntrni, i = 1 . . .K and let V ←− 0
for i = 1 . . .K do

Get Ntrni, construct Ntsti and Nvali set.
Train Modeli = L1 Algorithm(Ntrni, Ntsti, Nvali)
Si = selected features in Modeli via validation data.
V ← V + {x, x ∈ RD|xj = 1 if j ∈ Si else xj = 0}

end

3.2 Consistency of choosing a set of Features from Randomized Sampling
(RS) Experiments

Our method is dependent on finding some set of relevant features and their counts for a
given dataset via the RS method. Our experimental results are restricted to the weighted
and unweighted formulation for SVM2 and 1-norm SVM, but our theoretical results are
applicable to all linear models with twice differentiable loss function with the L1 penalty.
We next mention results, regarding the asymptotic consistency and normality properties
in n (number of examples) for L1 penalized algorithms, which can help understand the
consistency of our method.

Lemma 1: This result is from Theorem-5 in (Rocha et al., 2009). If the loss function
L(X, y, β) shown in (1) is bounded, unique and a convex function, with E|L(X, y, β)| <∞
and furthermore L(X, y, β) is twice differentiable with a positive hessian H matrix, then
the following consistency condition defined for the L1 penalty when using the formulation
in (1) and true model in (2):

||HAc,A[HA,A −HA,β0H
−1
β0,β0

Hβ0,A]−1sign(βA)||∞ ≤ 1, where Hx,y =
d2L(X, y, β)

dxdy
(8)

Where Ac = {j ∈ 1...p|βj = 0} , A = {j ∈ 1...p|βj 6= 0} and β0 is an intercept.

• if λn is a sequence of non-negative real numbers such that λnn
−1 → 0 and λnn

−(1+c)/2 →
λ > 0 for some 0 < c < 1/2 as n → ∞ and the condition (8) is satisfied then
P [sign(βn(λn) = sign(β)] ≥ 1 − exp[−nc]. βn is parameter found for number of
examples=n .

• If the condition in (8) is not satisfied then for any sequence of non-negative numbers λn
lim
n→∞

P [sign(βn(λn)) = sign(β)] < 1. The probability of choosing incorrect variables

is bounded to exp(−Dnc), where D is a positive constant (shown in the proof of
Theorem 5 of (Rocha et al., 2009)).

If the condition in (8) is fulfilled, it means that the interactions between relevant and noisy
features are distinguishable and the L1 penalty can correctly identify the signs in β. If
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the condition in (8) is not fulfilled, then noisy features will be added to the model with a
probability away from 1. Also, note that the above conditions are applicable for 1-norm
SVM, as shown in (Rocha et al., 2009).

Lemma 2: We use b to specify the size of the subset and assuming b → ∞, then from
Lemma-1, when condition of consistency (8) is satisfied then P [sign(βb(λb) = sign(β)] ≥
1− exp[−bc] ≈ 1, where βb and λb represent the parameters for the subset of size b. For k
such subsets V , as depicted in the algorithm in Section 3.1, is bounded to k(1−exp[−bc]) ≈
k, b → ∞. When the condition in (8) is not satisfied then the probability of choosing
noisy variables in a subset is upperbounded to exp(−Dbc) and for k subsets, sum(Vj) ≤
k · exp(−Dbc) and Vj ≈ 0, b → ∞, (where Vj are indices of noisy variables). Thus, the
noisy variables have a probability of having a low count in V and a large weight in W , thus
penalizing the noisy features heavily .

Table 1: Mean ± Std. Deviation of Error Rates in % on Models 1 & 4 by SVM2
q p 2-norm SVM2 1-norm SVM2 Hybrid (Zou) RS(20%) RS(30%) RS(40%)
2 14 9.64±2.30 7.92±1.89 7.88±2.09 7.69±1.71 7.67±1.66 7.68±1.69
4 27 10.90±2.41 8.01±1.84 7.88±2.09 7.73±1.59 7.73±1.59 7.71±1.60
6 44 12.17±2.64 7.93±1.79 7.79±1.69 7.64±1.60 7.64±1.59 7.64±1.52
8 65 13.45±2.96 8.13±2.10 7.87±1.84 7.82±1.85 7.83±1.85 7.81±1.83
12 119 16.91±3.24 8.11±1.95 8.05±1.94 7.78±1.71 7.78±1.70 7.76±1.66
16 189 17.93±3.32 7.87±1.78 8.29±2.41 7.66±1.57 7.66±1.63 7.66±1.63
20 275 19.31±3.32 8.06±2.14 8.04±2.01 7.69±1.81 7.74±1.89 7.77±1.87

Random Sampling is Subsampling: To better quantify our random sampling method,
we explain it in terms of subsampling (refer to (Politos et al., 1999)). Subsampling is a
method of sampling m examples from n total examples with m < n, unlike bootstrap that
samples n times with replacement from n samples. Let estimator θ be a general function of
i.i.d data generated from some probability distribution P . In our case of feature selection,
this estimator is the feature set. We are interested in finding an estimator and it’s confidence
region based on the probability P of the data and we define it as θ(P ). When P is large
then we can construct an empirical estimator θ̂n of θ(P ) such that θ̂n = θ(P̂n), where Pn
is the empirical distribution; that is estimate the true feature set empirically. We define a
root of form τn(θ̂− θ), where τn is some sequence (like

√
n or n) increasing with n (number

of examples), and we are looking at the difference between the empirical estimator θ̂n and
the true estimator θ. We define Jn(P ) to be the sampling distribution of τn(θ̂−θ(F )) based
on a sample size of n from P and define the CDF as

Jn(x, P ) = ProbabilityP {τn(θ̂n − θ) ≤ x}, x ∈ R (9)

Lemma 3: From (Politos et al., 1999), for data generated via i.i.d., there is a limiting law
J(P ) such that Jn(P ) converges weakly (in probability) to J(P ) and τb(θn − θ) → 0 as
n→∞ with the conditions that τb/τn → 0, b→∞ and b/n→ 0, where b is the number of
examples in the subsample experiment and n is the total number of available examples.

Lemma 3, has remarkably weak conditions for subsampling and it requires that the root
has some limiting distribution and the sample size b is not too large (but still going to
infinity) compared to n . In our case, the subsets are of size b → ∞, b << n and for the
rate of estimation at τn ∝ nc, τb ∝ bc, 0 < c ≤ 1, then τb/τn → 0. For the RS method,
we create weight vector whose index for a feature is non-zero if that feature was found in
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Table 2: Mean ± Std. Deviation of Error Rates in % on on Models 1 & 4 by 1-norm SVM

q p 2-norm SVM 1-norm SVM Hybrid (Zou) RS(20%) RS(30%) RS(40%)
2 14 8.74±1.30 7.64±0.09 7.64±1.02 7.63±1.02 7.64±1.01 7.53±0.09
4 27 9.76±1.75 7.85±1.14 7.95±1.34 7.83±1.28 7.79±1.24 7.69±1.19
6 44 10.57±1.95 7.85±1.01 7.92±1.12 7.79±1.12 7.77±1.18 7.69±1.23
8 65 11.47±2.31 7.81±0.99 7.99±1.36 7.75±1.13 7.74±1.15 7.63±1.09
12 119 13.27±2.48 7.91±0.98 8.04±1.35 7.77±1.16 7.82±1.21 7.63±1.00
16 189 15.58±2.94 7.94±1.15 7.87±1.21 7.74±1.31 7.75±1.23 7.64±1.14
20 275 17.14±2.96 7.90±1.00 7.85±1.11 7.77±1.20 7.80±1.27 7.69±1.19

a particular experiment. θ̂n is the sample mean of n such RS experiments weights, having
mean converging to θ(P ) (due to Lemma-2). Thus estimating the true feature set on basis
of random sampling of subsets of data is weakly convergent. (Zou, 2006) used a root-n-
consistent estimator’s weight (from the L2 penalty) but mentions that the conditions can be
further weakened and if there is an an such that an →∞ and an(θ̂−θ) = O(1) then such an
estimator can also be used. By Lemma-3, our RS estimator is one such consistent estimator
and thus can be used as a valid estimator for usage with the weighted lasso penalty.

4. Algorithms and Experiments

In this paper, we limit ourselves to an empirical study of data block sizes for the RS
estimator. We replicate the experiments from ‘An Improved 1-norm SVM for Simultaneous
Classification and Variable Selection’ by (Zou, 2007) and report on 1-norm SVM and SVM2.

Method for choosing Weights (for Hybrid and RS) and Validation data (for
RS): For the Hybrid SVM, in order to find the optimal weights via L2 penalty, we use
the method described by (Zou, 2007). We first find the best SVM (or SVM2) algorithm
model weights (β(l2)) with the L2 penalty via a parameteric search over costs C={0.1, 0.5,
1, 2, 5, 10}. We then create entire piecewise paths for various weight values |β(l2)|−γ , γ =
{1, 2, 4}; choose the best performing model on validation data and then report on the test
dataset. Description on how we chose training set for the RS method is given in individual
experiments. Our RS experiments need validation data to help choose the relevant features
for each of the RS training set. We do the following: if n is the size of the training set
and we choose m of those examples for the current RS training set, we just use the left
out n−m examples (as validation) for choosing the best features from the piecewise paths
generated by the L1 algorithm on the m examples. In case, if a held out validation set was
present, we use that instead.

4.1 Synthetic Datasets

We simulate two synthetic datasets, one akin to “orange data” described in (Zhu et al.,
2003) and another a bernoulli distribution based dataset. The following notation is used
for some of the tables: We use “C” and “IC” to denote the mean number of correctly
and incorrectly selected features, respectively. Also, we resort to reporting to mean and
std. deviation as the median of the incorrectly selected features was 0 for many experi-
ments. “PPS” stands for the probability of perfect selection, i.e the probability of
only choosing the correct feature set.
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Models 1 and 4 from (Zou, 2007): The “orange data” has two classes, one inside
the other like the core inside the skin of the orange. The first class has two independent
standard normals x1 and x2. The second class also has two independent standard normals
x1 and x2 but is conditioned on 4.5 ≤ x21+x22 ≤ 8. To simulate the effects of noise, there are
‘q’ independent standard normals. The Bayes rule is 1-2I(4.5 ≤ x21 + x22 ≤ 8), where I() is
an indicator function and the Bayes error is about 4%. We resort to an enlarged dictionary
D = {

√
2xj ,
√

2xjxk, x
2
j , j, k = 1, 2, . . . , 2 + q} as the original space is not linear. We have

independent sets of 100 validation examples and 20000 test examples and. ‘q’ is set to 2, 4,
6, 8, 12, 16, 20 and we report on 500 experiments.

For the RS method, block sizes were set to 20%, 30% and 40% of the total training
size and performed 10/(%size of each block/100) total experiments; i.e. for 20% we gener-
ated 10/0.2=20 total randomized training sets each of size 0.2*(total training data). The
weighted vector was created via the RS method described earlier and then used to train the
weighted 1-norm and SVM2 algorithms.

Table 3: Variable Selection Results on Models 1 & 4 using SVM2
q 6 8 12 16 20
p 44 65 119 189 275

1-norm SVM2
IC 1.5±2.59 1.42±2.44 1.67±3.4 1.58±2.95 1.71 ±3.52

PPS 0.554 0.544 0.536 0.564 0.592

Hybrid SVM2
IC 1.05±1.87 1.03±1.79 1.19±2.05 1.35±2.51 1.13±2.21

PPS 0.596 0.598 0.554 0.576 0.596

RS(20%)
IC 0.65±1.15 0.62±1.15 0.8±1.48 0.61±1.17 0.54±1.04

PPS 0.636 0.646 0.600 0.686 0.666

RS(30%)
IC 0.69±1.18 0.73±1.15 0.70±1.27 0.63±1.25 0.56±1.06

PPS 0.626 0.604 0.626 0.666 0.662

RS(40%)
IC 0.62±1.05 0.61±1.01 0.68±1.29 0.66±1.25 0.55±1.02

PPS 0.644 0.636 0.650 0.668 0.672

RS(50%)
IC 0.67±1.11 0.65±1.19 0.69±1.31 0.62±1.36 0.59±1.14

PPS 0.628 0.628 0.630 0.670 0.670

*C (mean of Correct features)=2 for all above experiments

We depict error rates in Table 1 & 2 for SVM2 and 1-norm SVM respectively. q depicts
the number of noise features in original space and p represents the number of features in
the new space via the dictionary D. The L2 algorithm version, in the 3rd column, show
increasing error rates as the number of noisy features increase. The L1 algorithm version,
in the 4th column is much more robust to noise and the error rates do not degrade at all.
Hybrid SVM perform usually better than the unweighted 1-norm SVM (except for couple
of times for in Table 2). For all different block sizes, the RS method performs best. The
feature selecting ability of individual algorithm is depicted in Table 3 (Note: 1-norm SVM
results were omitted for space constraints and the results were similar to those of SVM2).
We can see that the probability of finding the best model is high for all the algorithms.
Hybrid is better at that compared to the 1-norm and the RS method performs best.

Models 2, 3 and 5 from (Zou, 2007): Models 2, 3 and 5 are simulated from the model
y ∼ Bernoulli{p(u)} where p(u) = exp(xTβ+ β0 + ε)/(1 + exp(xTβ+ β0) + ε)} with ε being
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a standard normal representing error. We create 100 training examples, 100 validation
examples, 20,000 test examples and report on 500 randomized experiments.

Model 2 (Sparse Model): We set β0 = 0 and β = {3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3}. The
features x1, ...x12 are standard normals and experiments are done with correlation between
xi and xj set to ρ = {0, 0.5}. The Bayes rule is to assign classes to 2I(x1 + x6 + x12)− 1.

Model 3 (Sparse Model): We use β0 = 1 and β = {3, 2, 0, 0, 0, 0, 0, 0, 0}. The features
x1, ...x12 are standard normals and experiments are done with correlation between xi and
xj set to ρ = {0, 0.5}|i−j|. The Bayes rule is to assign classes to 2I(3x1 + 2x2 + 1)− 1.

Model 5 (Noisy features): We use β0 = 1 and β = {3, 2, 0, 0, 0, 0, 0, 0, 0}. The features

x1, ...x12 are standard normals and experiments are done with correlation set to ρ = 0.5|i−j|.
We added 300 independent normal variables as noise features to get a total of 309 features.

Table 4: Mean Error rates in % for Models 2, 3 & 5 using SVM2

Exp. Name Correlation Bayes 2-norm 1-norm Hybrid RS(20%) RS(30%) RS(40%)

Model 2
ρ = 0 6.04 9.77 8.14 7.46 7.51 7.53 7.55
ρ = 0.5 4.35 7.74 6.43 5.96 5.97 5.86 5.86

Model 3
ρ = 0 8.48 11.04 9.79 9.54 9.46 9.46 9.45
ρ = 0.5 7.03 8.49 9.51 8.45 8.17 8.17 8.20

Model 5 ρ = 0.5|i−j| 6.88 31.31 9.32 8.5 8.6 8.56 8.22

*range of std. deviation in accuracy for above table was between 1.02 to 1.96.

For Models 2, 3 and 5: error rates are reported in Table-4 for SVM2 (results for 1-norm
SVM were similar and hence skipped). Note, weighted models are consistently better than
both of their 1-norm and 2-norm unweighted counterparts. The RS method has equal or
greater accuracy than the Hybrid version.

4.2 Real World Datasets

UCI datasets: In Table 5, results on the Spam, WDBC and Ionosphere datasets from UCI
repository, by (Asuncion and Newman, 2007), are reported. For WDBC and Ionosphere
dataset, we split the data into 3 parts with 2 parts used for training (and validation) and
the 3rd remaining part for testing. For the Spam dataset, indicators for test (1536 exam-
ples) set and training set can be obtained from http://www-stat.stanford.edu/~tibs/

ElemStatLearn/. For our RS method we generated smaller datasets from the training set
as follows: If the training set size is N and size for individual RS set is K, then the number
of datasets generated are 10 ∗N/K. We also show the size of the RS training set as Block
in the table. For Hybrid SVM, the best parameter for γ and C are chosen as described
earlier in Section 4. We report on 50 randomized experiments. In Table 5, error rates for
both SVM2 and 1-norm SVM are shown. The use of weights via Hybrid and RS method,
always increases the accuracy from the unweighted case. Also, as seen on both synthetic
and real world datasets, RS blocksize does not create that much variability in the results.

Robotic Dataset: We now discuss a novel use of our subsampling method on robotic
datasets (Procopio, 2007). These datasets are created by hand labeling 100 images ob-
tained from running the DARPA LAGR robot in varied outdoor environments. The classes
labeled are robot traverseable path and obstacles. The authors provide pre-extracted color
histogram features for the dataset at (Procopio et al., 2009). We used a subset (12,000
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Table 5: Mean ± Std. Deviation of Error Rates on Real world Datasets

Dataset Algorithm
Without Randomized Hybrid

2-norm SVM
Weighting Sampling SVM

(Name/Block) Weighting

WDBC

1-norm (100)
3.66 ± 1.17

2.79 ± 0.93 2.89 ± 0.79

4.05 ± 1.36
1-norm (150) 2.79 ± 0.90 3.16 ± 1.22
SVM2 (100)

3.55 ± 1.81
2.78 ± 1.03 2.73 ± 1.01

SVM2 (150) 2.90 ± 1.15 2.91 ± 1.13

SPAM

1-norm (200)
9.09 ± 0.878

8.18 ± 0.49 8.31 ± 0.61

7.06 ± 0.04
1-norm (1000) 7.53 ± 0.17 8.19 ± 0.73
SVM2 (200)

8.45 ± 3.43
7.38 ± 0.52 7.39 ± 0.30

SVM2 (1000) 7.70 ± 2.73 7.48 ± 0.52

Ionosphere

1-norm (50)
12.38 ± 2.04

11.52 ± 1.39 11.84 ± 1.38

13.03 ± 2.86

1-norm (75) 11.25 ± 1.98 11.56 ± 1.73
1-norm (100) 11.29 ± 1.65 11.72 ± 1.23
SVM2 (50)

12.69 ± 2.82
11.43 ± 2.52 11.21 ± 2.66

SVM2 (75) 11.61 ± 2.50 11.22 ± 2.58
SVM2 (100) 11.37 ± 2.67 11.26 ± 2.68

Table 6: Avg. Error rate on Robotic Datasets from (Procopio, 2007)
DS1A DS2A DS3A

Unweighted SVM2 8.92 4.36 1.24
Weighted SVM2 6.41 4.13 1.15

examples) of the available data for each of the 100 frames. Each example is 15 dimen-
sional. We set our experimentation as follows: for each frame Fi, i is the index of the
frame, we divide the obtained examples (12K examples) into 8 folds (9.6K examples) for
training, 1 fold (1.2K examples) for validation and 1 fold (1.2K examples) for testing. We
train/validate/test on the unweighted SVM2 algorithm. For the weighted experiment, we
train via our RS method, by dividing the training into 10 subsets (each 960 examples) and
finding the weight vector. This weight vector is then used to create the weighted SVM2
models and we report on the test set. Now, instead of discarding weights when a new frame
arrives, we use the weights found in frame Fi again in Fi+1, i.e. if weights in frame Fi are
noted as Wi then:

Wi+1 ← {Wi + weight results of RS for frame Fi+1}
This is one experimental environment, where creating L2 models for the entire data is not

feasible and the RS estimator is a potential approach. Also, propagating feature importance
between frames is an advantage for the RS estimator. In Table-6, we show overall results for
100 frames for 3 datasets done 10 times. We propagate the weights for the weighted SVM2
between frames. As shown, there is a drop in error rates (between 5-28%) for the weighted
SVM2 compared to the unweighted SVM2. The overhead of computing the weights via RS
was < 10% that of computing a model for the entire training set.

5. Conclusions and Future work

A Random Sampling framework is presented and is empirically shown to give effective
feature weights to the lasso penalty, resulting in both increased model accuracy and feature
selection accuracy. The proposed framework is at least as effective (and at times more
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effective than) the Hybrid SVM, with the added benefit of significantly lower computational
cost. In addition, unlike the Hybrid SVM which must see all the data at once, Random
Sampling is shown to be effective in an on-line setting where predictions must be made
based on only partially available data (as in data taken from the robotics domain). In this
paper the framework is demonstrated on two types of linear classification algorithms, and
theoretical support is presented showing its applicability, in general, to sparse algorithms.
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