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Abstract

This work addresses the problem of feature extraction for boosting the performance of
outlier detectors in high-dimensional spaces. Recent years have observed the prominence
of multidimensional data on which traditional detection techniques usually fail to work as
expected due to the curse of dimensionality. This paper introduces an efficient feature ex-
traction method which brings nontrivial improvements in detection accuracy when applied
on two popular detection techniques. Experiments carried out on real datasets demonstrate
the feasibility of feature extraction in outlier detection.
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1. Introduction

Outlier detection is an important data mining task and has been widely studied in recent
years (Knorr and Ng, 1998). As opposed to data clustering, where patterns representing
the majority are studied, anomaly or outlier detection aims at uncovering abnormal, rare,
yet interesting knowledge which may stand for important events. Popular techniques for
outlier detection, especially distance-based ones (Knorr and Ng, 1998), usually compute
distances of every data sample to its neighborhood to determine whether it is an outlier or
not. However, as these approaches compute distances in the full feature space, they suffer
the curse of dimensionality (Aggarwal and Yu, 2005).

Reducing data dimensions for better learning process, especially in sparsely filled high-
dimensional spaces has been studied for a long time. Various solutions, ranging from prin-
ciple component analysis (PCA) (Kirby and Sirovich, 1990), linear discriminant analysis
(LDA) (Swets and Weng, 1996), null space LDA (NLDA) (Liu et al., 2004), etc., have been
successfully proposed to address this issue for the classification task. Outlier detection itself
can be regarded as a binary asymmetric/unbalanced pattern classification problem, where
one class has much higher cardinality than the other, provided that some training data are
available (Lazarevic and Kumar, 2005). Recently, Chawla et al. (2003) pointed out that the
high imbalance in class cardinalities of asymmetric classification causes normal classification
techniques to yield unsatisfactory accuracy (e.g., too complex learning rules which cause
overfitting). This necessitates the development of new techniques to specifically deal with

c⃝2010 Nguyen and Gopalkrishnan.



Feature Extraction for Outlier Detection

the issue. Analogously, existing feature extraction techniques for normal classification also
do not work well when applied to our problem of interest. Particularly, Chen et al. (2008)
highlights that traditional techniques typically seek accurate performance over a full range
of instances, and hence, tend to classify all data into the majority class. This causes the
minority class, which is usually more important, to be missed out. More suitable methods,
like those in (Lee and Stolfo, 2000; Wu and Banzhaf, 2010), have been proposed to ad-
dress the problem. In other words, it is impractical to apply standard discriminant feature
extraction approaches for outlier detection.

In general, being able to reduce the number of data dimensions helps to overcome the lack
of data and avoid the over-fitting issue. Recognizing this need, we present Dimensionality
Reduction/Feature Extraction for OUTlier Detection (DROUT), an efficient method for
feature extraction in outlier detection. In brief, DROUT first applies eigenspace regular-
ization on a training set randomly sampled from the considered dataset. It then extracts
a relevant set of features, and finally transforms the testing set where detection algorithms
are applied using the features obtained. By performing eigenspace regularization, we are
able to mitigate the loss of discriminant information during the feature extraction process.
Furthermore, different from other techniques on feature extraction, in DROUT, eigenvalue
regularization and feature extraction are performed on weight-adjusted scatter matrices (ex-
plained in Section 3) instead of normal ones. Those matrices specifically target at outlier
detection where class cardinalities (normal class v/s. outlier class) are highly unbalanced.
This helps DROUT to work better than existing techniques in mining anomalies.

The rest of this paper is organized as follows. Related works are presented in the next
section. We present the DROUT approach in Section 3. In Section 4, we apply DROUT on
two existing outlier detection techniques and empirically evaluate its performance on real
datasets. Finally, we conclude the paper in Section 5 with directions for future work.

2. Literature Review

Linear subspace analysis for feature extraction and dimensionality reduction has been stud-
ied in depth for a long time and many methods have been proposed in the literature,
including principle component analysis (PCA) (Kirby and Sirovich, 1990), linear discrimi-
nant analysis (LDA) (Swets and Weng, 1996), null space LDA (NLDA) (Liu et al., 2004)
etc. Though applied very successfully for pattern classification, these methods usually miss
out some discriminant information while extracting relevant features for the classification
task.

In particular, the eigenspace spanned by eigenvectors of the data within-class scatter
matrix can be divided into three subspaces: the principal, the noise, and the null subspaces
(Jiang et al., 2008). In words, the principal subspace, corresponding to eigenvectors of large
eigenvalues contains the most reliable discriminant information extracted from the training
data. The noise subspace, on the other hand is spanned by eigenvectors with nonzero small
eigenvalues. These eigenvalues are unreliable and cause over-fitting to each specific training
set. Finally, the null subspace consists of eigenvectors of zero eigenvalues. The impact of
the null subspace is similar to that of the noise one. Feature extraction methods typically:
(a) solve the eigenvalue problem to obtain a set of eigenvectors and corresponding eigen-
values, and (b) discard the unreliable dimensions with small eigenvalues and keep the rest
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for performing the classification task. The noise and null subspaces are caused by noise
and mainly by the insufficient training data. As new data are added to the training set
or as the training set is replaced by a different one, small or zero eigenvalues can be easily
changed, i.e., zero eigenvalues become nonzero and small ones become larger. Therefore,
simply getting rid of them in the early stage may cause loss of discriminant information.
This is especially true in the case of outlier detection because: (a) outliers are rare and
hard to collect, (b) selecting subspaces for outlier detection is a complex problem (Aggar-
wal and Yu, 2005). The second factor implies that outliers may be present in only some
lower-dimensional projections of data. Thus, accidentally rejecting some dimensions just for
the sake of easy computation may lead to some loss of knowledge. Motivated by the issue,
Jiang et al. (2008) proposes ERE, a dimensionality reduction method that first regularizes
all three subspaces of the data within-class scatter matrix, and then extracts discriminant
features on the transformed total scatter matrix. The merit of ERE lies in the fact that no
dimensionality reduction is done during the regularization phase, i.e. discriminant informa-
tion is likely preserved.

Current solutions for feature extraction (including ERE) are unsuitable for binary asym-
metric classification, because they rely on the usual within-class scatter matrix that after
being processed by solving the eigenvalue problem, usually leads to rejection of reliable
features. To overcome this issue, (Jiang, 2009) suggest to adjust the weights of class condi-
tional covariance matrices. However, their proposed approach (APCDA) extracts discrim-
inant features after applying PCA on the adjusted total scatter matrix. According to our
aforementioned discussion, this will cause loss of discriminant features.

3. The DROUT Approach

Our approach aims to overcome the weaknesses of the ERE and APCDA approaches. Simi-
lar to APCDA, our DROUT approach performs eigenspace decomposition as well as feature
extraction on the weight-adjusted scatter matrices. But in order to preserve the discrim-
inant information till the feature extraction phase, DROUT applies the strategy of ERE,
and does not discard any feature during the eigenspace regularization process. Thus, our
approach can take advantage of both ERE and APCDA to overcome the curse of dimen-
sionality in outlier detection.

In DROUT, the selected set of features is not a subset of the initial set of attributes, but
is extracted from a transformation of the original data space (vector space). In order for
DROUT to work, we make the following assumptions. First, a training set containing both
normal data and a small amount of outliers is available. We further assume that training
and testing sets have similar structures, allowing features extracted from the training set
to be applicable on the testing set. While the latter assumption is widely used in almost
all works on dimensionality reduction (Liu et al., 2004), the former appears frequently in
works on anomaly detection (Lazarevic and Kumar, 2005).

The training set in our assumption consists of two classes: the normal class ωm and the
anomaly class ωa. The class ωm contains Nm points with class-conditional mean vector µm

and covariance matrix Σm. Analogously, Na, µa, and Σa are the support, class-conditional
mean vector, and covariance matrix of ωa. Each data point p is expressed as a column vector
of d dimensions, i.e., p ∈ Rd. Let Nt = Nm +Na be the training set’s total cardinality and
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Algorithm 1: ExtractFeatures

Input: DSt: the training set, ξm and ξa: the adjusted weights, b: the number of
extracted features

Output: AT : the transformation matrix
Compute Σm, Σa, and Σb from DSt1

Set Σξ
w = ξmΣm + ξaΣa2

Compute Φ̃d
w,ξ based on Σξ

w and (2)3

Compute Σ̃ξ
t4

Compute Φ̃b
t,ξ in (3) by solving the eigenvalue problem on Σ̃ξ

t5

Set AT = Φ̃d
w,ξΦ̃

b
t,ξ6

µt be the mean vector of all training data. The within-class, between-class, and total
scatter matrices of the training set are defined as: (a) Σw = Nm

Nt
Σm + Na

Nt
Σa, (b) Σb =

Nm
Nt

(µm −µt)(µm −µt)
T + Na

Nt
(µa −µt)(µa −µt)

T , (c) Σt = Σw +Σb =
Nm
Nt

Σm + Na
Nt

Σa +Σb,
respectively.

In order to overcome the limitations of existing techniques as well as to better align
DROUT towards outlier detection, we propose to apply eigenspace decomposition and reg-
ularization as in ERE on weight-adjusted scatter matrices instead of the usual ones. The
details are summarized in Algorithm 1 and explained in the remaining of this section.

3.1 Weight-Adjusted Within-Class Scatter Matrix

While computing the within-class scatter matrix, Σm and Σa are weighted by Nm and Na,
respectively, which are required by PCA for minimizing the least-mean-square reconstruc-
tion error (Müller et al., 2001). Since normal data abound while outliers are very rare and
hard to collect, the ratio Nm/Na is typically very large and Σa is far less reliable than Σm.
APCDA demonstrates that this weight imbalance causes some of the small eigenvalues of
Σm to be unexpectedly less than some unreliable small values of Σa though their corre-
sponding eigenvectors are more reliable. To overcome this issue, the less reliable covariance
matrix, i.e., Σa, must be given higher weight (Jiang, 2009). The within-class scatter matrix

is subsequently rewritten as Σξ
w = ξmΣm + ξaΣa, where ξm and ξa are the adjusted weights

of Σm and Σa, respectively. They are uncorrelated to class prior probabilities of the training
set and ξm + ξa = 1, ξm < ξa. The total scatter matrix now becomes:

Σξ
t = ξmΣm + ξaΣa +Σb (1)

By using Σξ
w and Σξ

t for feature extraction, APCDA is able to achieve a better result for the
asymmetric classification task. This motivates us to apply the same heuristic in DROUT
since it also targets at the same issue.

3.2 Subspace Decomposition and Feature Extraction

One would expect to extract features that minimize the within-class and maximize the
between-class variances. Since the within-class variances are estimated from limited train-
ing data, the small variances estimated tend to be unstable and cause over-fitting. Hence,
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similar to ERE, we first proceed with regularizing the three subspaces spanned by eigen-
vectors of the adjusted within-class scatter matrix Σξ

w.

Subspace identification: By solving the eigenvalue problem for Σξ
w, we obtain its d

eigenvectors {ϕw,ξ
1 , ϕw,ξ

2 , . . . , ϕw,ξ
d } with corresponding eigenvalues λw,ξ

1 ≥ λw,ξ
2 ≥ . . . ≥ λw,ξ

d .
The set of eigenvectors is then divided into three subsets (corresponding to three sub-

spaces): {ϕw,ξ
1 , ϕw,ξ

2 , . . . , ϕw,ξ
m }, {ϕw,ξ

m+1, ϕ
w,ξ
m+2, . . . , ϕ

w,ξ
r }, and {ϕw,ξ

r+1, ϕ
w,ξ
r+2, . . . , ϕ

w,ξ
d } where

r = max{i|1 ≤ i ≤ d∧ λw,ξ
i ̸= 0} and m is the index of the least eigenvalue in the principal

subspace.

While the identification of r is straightforward, finding the value ofm is slightly complex.
More specifically, to determine the starting point of the noise dominant region m + 1, the
point near the center of the noise region is identified by: λw,ξ

med = mediani≤r{λw,ξ
i }. The

distance between λw,ξ
med and the smallest nonzero eigenvalue is dm,r = λw,ξ

med − λw,ξ
r . The

upper bound of the unreliable eigenvalues is estimated by λw,ξ
med + dm,r. The value of m is

subsequently defined as: λw,ξ
m+1 = maxi≤r{λw,ξ

i |λw,ξ
i < 2λw,ξ

med − λw,ξ
r }.

Subspace Regularization: Based on ERE, the three subspaces spanned by eigenvec-
tors of Σξ

w are regularized as follows (Jiang et al., 2008): (a) if i ≤ m: λ̃w,ξ
i = λw,ξ

i , (b) if

m < i ≤ r: λ̃w,ξ
i = α

i+β , and (c) if r < i ≤ d: λ̃w,ξ
i = α

r+1+β , where α =
λw,ξ
1 λw,ξ

m (m−1)

λw,ξ
1 −λw,ξ

m
, and

β =
mλw,ξ

m −λw,ξ
1

λw,ξ
1 −λw,ξ

m
.

Let us denote:

Φ̃d
w,ξ = [ω̃w,ξ

i ϕw,ξ
i ]di=1 (2)

where ω̃w,ξ
i = 1/

√
λ̃w,ξ
i , and λ̃w,ξ

i is the resulting regularized eigenvalue. In words, Φ̃d
w,ξ is

the full-dimensional intermediate transformation matrix, meaning it is used to transform
the original data space to another feature space without doing any dimensionality reduction.
Specifically, an arbitrary data point p of the original training data vector is transformed to
p̃ = (Φ̃d

w,ξ)
T p.

The weight-adjusted regularized total scatter matrix formed by the transformed training
set is denoted as Σ̃ξ

t (computed based on (1)). By solving the eigenvalue problem for Σ̃ξ
t , we

obtain its d eigenvectors {ϕ̃t,ξ
1 , ϕ̃t,ξ

2 , . . . , ϕ̃t,ξ
d } with corresponding eigenvalues λ̃t,ξ

1 ≥ λ̃t,ξ
2 ≥

. . . ≥ λ̃t,ξ
d . Dimensionality reduction is carried out here by extracting the first b eigenvectors

with largest eigenvalues:

Φ̃b
t,ξ = [ϕ̃t,ξ

i ]bi=1 (3)

Note that discriminant feature extraction is only done after eigenvectors of the adjusted
within-class scatter matrix are regularized and no eigenvector is discarded before that.
Hence, according to ERE, the discriminant capability of data is likely preserved. The final
transformation matrix AT = Φ̃d

w,ξΦ̃
b
t,ξ is used for converting the d-dimensional testing set to

the b-dimensional feature space (with b < d), and hence, reduces the data dimensionality.

3.3 Discussions

Though ERE is shown to be effective in extracting discriminative features for general clas-
sification task, it works directly on usual scatter matrices. According to APCDA, this
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is irrelevant for asymmetric classification. In particular, the less reliable covariance ma-
trix corresponding to the rare class (i.e., the class of anomalies) must be assigned higher
weight. Though APCDA adjusts the scatter matrices for the feature extraction task, it
starts extracting features at the eigenvalue regularization stage, which causes a loss in dis-
criminant power (Jiang et al., 2008). The topic of dimensionality reduction for asymmetric
classification is also explored in (Lindgren and Sp̊angéus, 2004). Their technique, ACP,
measures the spread of class ωa with respect to ωm’s mean rather than to that of ωa itself.
It then solves the following generalized eigenvalue problem to extract discriminant features:
Σ̃aD = ΣmDΛ, where (a) Σ̃a is the modified version of Σa, (b) Λ, D

TΣmD, and DTΣaD are
diagonal. However, ACP neither considers the issue of imbalanced class cardinalities, nor
the importance of the noise and null subspaces. As a consequence, ACP does not perform
well for outlier detection (c.f., empirical evaluation in Section 4).

Combining the findings in both ERE and APCDA, we perform eigenspace decomposi-
tion and feature extraction on the weight-adjusted scatter matrices. The weights assigned
here are unrelated to the class prior probabilities. This allows us to benefit from both fea-
ture extraction techniques for overcoming the curse of dimensionality in outlier detection.
APCDA suggests to set ξm = 0.2 and ξa = 0.8. However, in outlier detection, the number
of normal data points are expected to be much larger than anomalies. Hence we propose
to use ξm = 0.1 and ξa = 0.9 with asymmetric ratio ξa/ξm = 9. In other words, we expect
outliers to occupy only up to 10% of the total dataset’s size. This agrees with many pre-
vious studies (Angiulli and Fassetti, 2009; Lazarevic and Kumar, 2005). In this paper as
well as in other these works, the number of outliers in an arbitrary dataset is assumed to
be much less than 10% of the dataset’s cardinality (e.g., 1% or 5%). Nonetheless, we find
that setting the asymmetric ratio to 9 is good enough for practical applications, though a
good performance is achieved even with larger values.

The runtime cost of DROUT is O(Ntd·min(Nt, d)), which is comparable to other feature
extraction techniques (Swets and Weng, 1996). However, since DROUT is only performed
once on a small training set, this time complexity is not that important. Instead, the
runtime overhead of the testing phase which is executed on a much larger dataset is of our
great interest. Note that running detection methods on a transformed testing set will cost
less time than on a full-dimensional one since their runtime overheads are proportional to
the number of dimensions (Angiulli and Fassetti, 2009).

4. Outlier Detection with DROUT

In this section, we demonstrate the benefit of applying DROUT on two popular outlier
detection techniques, through experiments on real datasets.

4.1 Detection Techniques

ORCA: In the field of distance-based outlier detection, ORCA (Bay and Schwabacher,
2003) is one of the most popular methods due to its high efficiency in terms of time com-
plexity and accuracy. In ORCA, we aim to detect top n outliers whose total distances to
their respective k nearest neighbors are largest. Since its outlier definition is based on the
notion of nearest neighbors, and we know that nearest and farthest neighbors are roughly
the same in such spaces (Aggarwal and Yu, 2005), ORCA suffers the curse of dimensionality
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(i.e. its accuracy is reduced in high-dimensional spaces).

BSOUT: Kollios et al. (2003) introduces Biased Sampling OUTlier Detection (BSOUT)
which aims to flag outliers whose total numbers of neighbors within radius R (called R-
neighborhood) are less than a threshold P . In BSOUT, each data point p’s local density
is first estimated using a nonparametric kernel density estimator. Its R-neighborhood’s
cardinality is then approximated based on the calculated density. If this amount falls below
P , it is placed in the candidate set which will be refined later to obtain true outliers. Similar
to ORCA, the performance of BSOUT also degrades in high-dimensional data because of
two reasons. While the first reason is analogous to ORCA’s, the second one stems from the
fact that BSOUT utilizes nonparametric density estimation, and it is known that estimation
accuracy downgrades greatly in such data (Müller et al., 2001).

4.2 Experiment Setup

Testing Procedure: We evaluate the performance of DROUT, ERE, APCDA, and ACP
(Lindgren and Sp̊angéus, 2004) when applying to ORCA and BSOUT. The detection ac-
curacy here is measured as the area under the ROC curve, called AUC, which is widely
used to assess outlier detectors. We compare the performance of ORCA and BSOUT on
the original set of attributes, against ORCA on the new feature set obtained by applying
each of the dimensionality reduction techniques. In order to use AUC as the evaluation
metric, we employ real datasets that can be converted to the binary classification problem.
This setup procedure has been successfully used for studying outlier detection (Lazarevic
and Kumar, 2005).

Benchmark Datasets: The first dataset is extracted from the KDD Cup 1999 one fol-
lowing the method introduced in (Lazarevic and Kumar, 2005). Particularly, the smallest
intrusion class, U2R, consisting of 246 data points is selected as the outlier class ωa. This
class contains a variety types of attacks like ftp write, imap, multihop, nmap, phf, pod,
and teardrop. The total dataset hence includes the normal class ωm of 60593 data records
and 246 outliers in d-dimensional space with d = 34 (we have excluded the 7 categorical
attributes from the total of 41 attributes). The second dataset, Ann-Thyroid, is taken from
the UCI Machine Learning Repository. It contains 3428 records in 21-dimensional space.
The largest class (class 3) is selected as the normal class ωm, and we generate two test sets:
Ann-Thyroid 1 (ωa is class 1), and Ann-Thyroid 2 (ωa is class 2). The maximum dataset
dimensionality in our experiment is 34 which is similar to that of (Aggarwal and Yu, 2005).

4.3 Results

With the KDD dataset, we randomly sample 50 records from ωa and 1000 records from ωm

for training, and keep the remaining 59789 records for testing. For the Ann-Thyroid dataset,
we randomly select 50 records from ωa and 450 records from ωm for training, and keep the
remaining (2751 records for Ann-Thyroid 1, and 2855 for Ann-Thyroid 2) for testing. Notice
that the asymmetric ratio is 20 and 9 for the KDD and Ann-Thyroid datasets, respectively.
This means our approach’s performance is also assessed in the case the asymmetric ratio is
not exactly 9.
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Figure 1: Effect of feature extraction techniques on accuracy of ORCA.

For ORCA, the number of nearest neighbors k is varied in the range 0.02%N ≤ k ≤
0.1%N with N being the underlying dataset’s size, while n is chosen to be 0.05%N . With
BSOUT, P is also varied from 0.02%N to 0.1%N and R is chosen such that the number
of outliers flagged using the algorithm in (Knorr and Ng, 1998) is exactly 0.05%N . These
parameter settings follow the proposal in previous work (Angiulli and Fassetti, 2009). For
each value of b (number of extracted features) tested (b ≤ ⌊d/2⌋), we construct the training
set using random split described above for five times. The resultant average AUCs and
their respective standard deviations are computed. Since the values of standard deviations
are negligible, we do not present them in our results.

Dimensionality Reduction on ORCA: Figure 1 describes how the AUC values of ORCA
using different dimensionality reduction methods change as b increases. Notice that the per-
formance of the original ORCA is unrelated to b. With small values of b, ORCA with feature
extraction performs worse than the original ORCA. This is because by using insufficient
number of features, discriminant information is likely lost even though the extraction pro-
cess has been carefully designed to preserve it. However, for higher values of b, feature
extraction starts producing better accuracy. The performance of APCDA is slightly better
than ERE in general while ACP loses out in all test cases. On the other hand, DROUT
achieves the best accuracy and highest gain in detection quality attributed to the fact that
it performs dimensionality reduction on the adjusted scatter matrices and no feature re-
jection is carried out during the eigenspace regularization process. Overall, increasing b
does not ensure a better detection accuracy for methods utilizing feature extraction. This
is reflected by a slight reduction and then relative stabilization of the AUC curves. The
outcomes suggest that b should not be too large (e.g., b ≤ ⌊d/2⌋), otherwise the curse of
dimensionality will happen again on the new feature space.

Dimensionality Reduction on BSOUT: From Figure 2, it can be seen that with
BSOUT, the performance gain by applying feature extraction is even more pronounced.
This is because, as compared to ORCA, BSOUT has one more factor causing its accuracy
to downgrade in high-dimensional spaces: the nonparametric kernel density estimation.
Therefore, reducing dimensions in BSOUT brings two benefits, it: (a) makes the notion of
nearest neighbors more meaningful, and (b) improves the accuracy of estimating data local
densities. Among the feature extraction techniques utilized, DROUT once again yields the
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Figure 2: Effect of feature extraction techniques on accuracy of BSOUT.

best accuracy. In addition, since ACP fails to preserve discriminant information, it suffers
the worst performance. APCDA on the other hand slightly outperforms ERE. As b keeps
increasing and exceeds a threshold, the accuracies of techniques based on feature extrac-
tion tend to first decrease and then become stable. These findings agree with the results
obtained from the experiment on ORCA.

5. Conclusions

This paper explored the application of feature extraction on outlier detection research and
proposed a novel method (DROUT) to accomplish the task. In brief, DROUT operates
in two phases: eigenspace regularization and discriminant feature extraction. During the
first phase, DROUT decomposes the data eigenspace into three components (the principal,
the noise, and the null subspaces) where different regularization policies are applied and no
subspace is discarded. This helps DROUT to preserve the discriminant information in the
data before entering the actual feature extraction process. In the second phase, discriminant
features are obtained from the regularized eigenspace by solving the traditional eigenvalue
problem on the regularized total scatter matrix. One additional advantage of our method is
that both of its phases are carried out on the weight-adjusted scatter matrices which makes
DROUT better tuned to outlier detection than other existing techniques. Though the idea of
doing feature extraction to improve the performance of outlier detectors in high-dimensional
spaces is rejected by the subspace mining community (Aggarwal and Yu, 2005), empirical
studies of DROUT applied to ORCA and BSOUT (two outstanding anomaly detectors)
verify that DROUT (and hence, feature extraction methods) is able to bring nontrivial
accuracy gain for detection methods. As future work, we are considering to extend our
analysis on more large and high-dimensional datasets to better study the full benefits of
DROUT. We are also carefully examining other possibilities of dimensionality reduction for
outlier detection apart from our proposed technique. This will help us to better choose
suitable ways for dealing with the curse of dimensionality.
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Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions
on Neural Networks, 12(2):181–201, 2001.

Daniel L. Swets and Juyang Weng. Using discriminant eigenfeatures for image retrieval.
IEEE Trans. Pattern Anal. Mach. Intell., 18(8):831–836, 1996.

Shelly Xiaonan Wu and Wolfgang Banzhaf. The use of computational intelligence in intru-
sion detection systems: A review. Applied Soft Computing, 10(1):1–35, 2010.

75


