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Abstract

In this paper we learn a dissimilarity measure for categorical data, for effective classification
of the data points. Each categorical feature (with values taken from a finite set of sym-
bols) is mapped onto a continuous feature whose values are real numbers. Guided by the
classification error based on a nearest neighbor based technique, we repeatedly update the
assignment of categorical symbols to real numbers to minimize this error. Intuitively, the
algorithm pushes together points with the same class label, while enlarging the distances to
points labeled differently. Our experiments show that 1) the learned dissimilarities improve
classification accuracy by using the affinities of categorical symbols; 2) they outperform dis-
similarities produced by previous data-driven methods; 3) our enhanced nearest neighbor
classifier (called LD) based on the new space is competitive compared with classifiers such
as decision trees, RBF neural networks, Näıve Bayes and support vector machines, on a
range of categorical datasets.
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Selection

1. Introduction

The notion of distance plays an important role in many data mining tasks, such as classi-
fication, clustering, and outlier detection. However, the notion of distance for categorical
data is rarely defined precisely, if at all. By categorical or symbolic data, we refer to values
that are nominal (e.g. colors) or ordinal (e.g. rating, typically imposed subjectively by a
human). In many cases, the dissimilarities between symbols are fuzzy and often arbitrary.
An example could be the rating of a movie, chosen from the list “very bad, bad, fair, good,
very good”. It is hard to determine how much one symbol differs from another. In this
paper, we introduce a new method to derive dissimilarities between categorical symbols in
such a way that the power of distance-based data mining methods can be applied.

The notations used throughout the paper are as follows. There is a dataset X =
{x1,x2, . . . ,xt} of t data points, where each point xi is a tuple of m attributes values,
xi = (x1

i , . . . , x
m
i ). Each of the m attributes Ai is categorical, i.e., the attribute values for

Ai are drawn from a set of ni discrete values given as {ai1, ai2, . . . , aini
}, which also consti-

tute the domain of Ai. We assume that all symbols across all attributes are unique. For
simplicity, we use the notation Ai to refer to the i-th attribute, as well as the domain of
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that attribute. Each aij is also called a symbol. Each data point xi (in the training set) also
has associated with the “true” class label, given as L(xi). In this paper we only consider
the case where there are two classes, i.e., L(xi) ∈ {1, 2}, where 1 and 2 are the two class
labels.

The similarity between symbols aik and ail of an attribute Ai is denoted as S(aik, a
i
l),

whereas the dissimilarity or distance between two symbols is denoted as D(aik, a
i
l). Typically

S(aik, a
i
l) : Ai×Ai → (0, 1), in which case D(aik, a

i
l) = 1−S(aik, a

i
l). In other cases S(aik, a

i
l) :

Ai×Ai → R+, in which case D(aik, a
i
l) = 1

S(aik,a
i
l)

. The distance between two data points xi

and xj is defined in terms of the distance between symbols, as follows:

D(xi,xj) =

√√√√ m∑
k=1

D(xki , x
k
j )2 (1)

Given a point xi, the error of a classifier on that point is defined as:

exi =
(L(xi)−O(xi))

2

2
(2)

where O(xi) is the output class of the classifier on point xi. Since O(xi) ∈ {1, 2}, exi ∈
{0, 1

2}. The total error rate of the classifier on a set of t points is simply E =
∑t

i=1 exi .
In this paper, our goal is to learn a mapping function from each categorical attribute Ai

onto the real number interval, given by the function r : Ai → R, with the aim of minimizing
the total error rate E. Once r has been learned, each categorical data point xi can be
treated as a m-dimensional point or vector in Rm, given as r(xi) = (r(xi,1), . . . , r(xi,m))T .
This enables one to apply any of the distance-based classification methods directly on the
transformed dataset r(X) = {r(xi)}ti=1.

(a) (b) (c)

Figure 1: (a) Mapping symbols to real values. Dataset consists of three points: x1 = (A, a),
x2 = (B, b) and x3 = (C, c). The mapping function r is given as: r(A) = 0.1,
r(B) = 0.2, r(C) = 0.6, r(a) = 0.5, r(b) = 0.4 and r(c) = 0.1. (b) Random
mapping. (c) Linearly separable mapping.

As an example, consider Figure 1 (a), which shows three points over two categorical
attributes “color” (with symbols A, B and C) and “shape” (with symbols a, b and c). In
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the new continuous space, a value assignment to a symbol naturally defines a hyperplane
that contains all the points in the dataset having that particular symbol. In this example,
each point is defined by exactly two straight lines. Figure 1 (b) shows an extended example
with 8 points, with a random initial mapping, which does not discriminate too well between
the two classes. Our goal is to improve the initial mapping into a classification-aware
mapping like that in Figure 1 (c), which achieves a low classification error rate (on the
training set, and hopefully on the test set too).

2. Related Work

The most widely used measure on categorical data is simple matching (or overlap), which is
defined as S(ai, aj) = 1 if ai = aj and S(ai, aj) = 0, otherwise. This measure simply checks
that two symbols are the same, which forms the basis for various distance functions, such
as Hamming and Jaccard distance (Liang, 2004).

The simple matching ignores information from the dataset and the desired classification.
Therefore, many more data-driven measures have been developed to capture preferences for
matching or mismatching based on symbols’ statistics. Here, we divide related methods
into two categories: unsupervised and supervised methods. The unsupervised methods are
typically based on frequency or entropy. Let f(ai) be the frequency of symbol ai of attribute
A in the dataset, then p(ai) = f(ai)/t.

Let ai and aj be two symbols in the domain of attribute A. Lin (1998) defines S(ai, aj) =
2 log p(ai) if ai = aj , and 2 log(p(ai)+p(aj)), otherwise, which gives more weight to matches
on frequent values and lower weight to mismatches on infrequent values. Burnaby (1970)
defines S(ai, aj) = 1 if ai = aj . However, if ai 6= aj , then

S(ai, aj) =

∑
ak∈A 2 log(1− p(ak))

log
(

p(ai)p(aj)
(1−p(ai))(1−p(aj))

)
+
∑

ak∈A 2 log(1− p(ak))

Smirnov (1968) not only considers the frequency, but also takes the distribution of the other
attributes values into account, defining

S(ai, aj) = 2 +
t− f(ai)

f(ai)
+

∑
ak∈A\{ai}

f(ak)

t− f(ak)

if ai = aj , and

S(ai, aj) =
∑

ak∈A\{ai,aj}

f(ak)

n− f(ak)

otherwise. Goodall (1966) proposed another statistical approach, in which less frequent
attribute values make greater contribution to the overall similarity than frequent attribute
values. A modified version called Goodall1 is proposed in (Boriah et al., 2008), defining

S(ai, aj) = 1−
∑

ak∈A,p(ak)<p(ai)

p2(ak)

if ai = aj , and 0 otherwise. Gambaryan (1964) proposed a measure related to information
entropy, which gives more weight to matches where the number of matches is between
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frequent and rare. If ai = aj , the similarity is given as

S(ai, aj) = −[p(ai) log2 p(ai) + (1− p(ai)) log2(1− p(ai))]

and 0 otherwise. Eskin et al. (2002) consider the number of symbols of each attribute. In
its modified version (Boriah et al., 2008), this measure gives more weight to mismatches
that occur on an attribute with more symbols using the weight n2/(n2 + 2), where n is the
number of symbols of attribute A. Occurrence Frequency (OF) (Jones, 1988) gives lower
similarity to mismatches on less frequent symbols and higher similarity on mismatches on
more frequent symbols. Conversely, Inverse Occurrence Frequency (IOF) assigns higher
similarity to mismatches on less frequent symbols. That is, if ai 6= aj , then

S(ai, aj) =
1

1 + log( n
f(ai)

) log( n
f(aj))

for OF, and

S(ai, aj) =
1

1 + log(f(ai)) log(f(aj))

for IOF. When ai = aj , both define S(ai, aj) = 1. More discussion on these kinds of
measures is given by Boriah et al. (2008).

The supervised methods take advantage of the class information. An example is Value
Difference Metric (VDM) proposed in (Stanfill and Waltz, 1986). The main idea is that
symbols are similar if they occur with a similar relative frequency for all the classes. The
dissimilarity between ai and aj is defined as a sum over n classes:

D(ai, aj) =
n∑

c=1

∣∣∣∣Cai,c

Cai

−
Caj ,c

Caj

∣∣∣∣h
where Cai,c is the number of times symbol ai occurs in class c. Cai is the total number of
times ai occurs in the whole dataset. Constant h is usually set to 1. Cheng et al. (2004)
proposed an approach based on Hadamard product and RBF classifier. They attempt to
evaluate all the pair-wise distances between symbols, and they optimize the error function
using gradient descent method. In our algorithm the number of values to be estimated
is equal to the number of symbols across all attributes, i.e. linear in the symbol set size,
which may enable faster and more robust learning. However, we were unable to compare
the methods directly since we did not have access to the code from Cheng et al. (2004).
Furthermore, in our approach, after learning, all pair-wise distances can be easily derived
if needed.

3. Learning Algorithm

Our learning algorithm is based on the gradient descent method. Starting from an initial
assignment of real values to the symbols, guided by the error rate based on a nearest neighbor
classifier, our method iteratively updates the assignments. Intuitively, in each iteration, the
method moves the symbols (hence the lines or, more generally, the hyperplanes, as seen
in Figure 1) to new locations according to the net force imposed on them. Let x be the
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closest point to p from class 1, and y the closest point from class 2. Let d1 = D(p,x), and
d2 = D(p,y) be the corresponding distances, and ∆d = d1 − d2 be the difference of the
distances. Our simple nearest neighbor classifier assigns the class as follows:

O(p) = S(∆d) + 1 = S(d1 − d2) + 1 (3)

where S(x) = 1
1+e−x is the sigmoid function. It is easy to verify that if d1 � d2, then

O(p) ≈ 1 and if d1 � d2 then O(p) ≈ 2. The classification error for p is ep as given in
equation (2). We update the assignment of values to symbols depending on the error ep,
as discussed below. Our method in fact cycles through all points, considering each as the
target, in each iteration. In batch training, the total assignment is accumulated over all the
points, but in online training, the assignment is updated immediately after each point. The
pseudo code of the algorithm (with batch training) is given below.

LD: Learning Algorithm (Dataset X):
t = Number of instances in the dataset;
r = Random initial asssignment;
while(stop criteria not satisfied){
sum∆r = 0;
for k = 1:t{

p = xk or any point taken at random from X;
d1 = minxk∈X,L(xk)=1,xk 6=p{D(p,xk)};
d2 = minxk∈X,L(xk)=2,xk 6=p{D(p,xk)};
∆d = d1 − d2;
Compute ∆r using equation (8);
sum∆r = sum∆r + ∆r;
}
update r= r+sum∆r;
}

3.1 Objective Function and Update Equation

The general update equation for a target point p is given as r = r + ∆r. Each element in
r, rij , represents the real value assignment for the j-th symbol of the i-th attribute. Thus,

for each rij , the update equation is rij = rij + ∆rij . r
i
j moves in the direction of the negative

gradient of ep to decrease the error. That is,

∆rij = −η · ∂ep
∂aij

= −η · ∂(L(p)−O(p))2/2

∂aij
= η · (L(p)−O(p)) · ∂O(p)

∂aij
(4)

where η is the learning rate, and the differential is taken with respect to the j-th symbol
for attribute Ai, aij .

Note that, by equation (3),

∂O(p)

∂aij
=
∂[S(d1 − d2) + 1]

∂aij
=
∂S(∆d)

∂∆d
· ∂∆d

∂aij
= S(∆d) · (1− S(∆d)) · ∂∆d

∂aij
(5)

The last step follows from the fact that the partial derivative of the sigmoid function S(x)

is given as: ∂S(x)
∂x = S(x)(1− S(x)).
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3.2 Computing the Derivative of ∆d

Note that ∂∆d
∂aij

= ∂d1
∂aij
− ∂d2

∂aij
, where d1 =

√∑m
i=1D(pi, xi)2 and d2 =

√∑m
i=1D(pi, yi)2 are

the distances from p to the closest points x in class 1, and y in class 2, respectively. Since
the derivative is with respect to the j-th attribute in attribute i, even in the distance terms
d1 and d2, only the i-th attribute has to be considered. Let us consider d1, we have:

∂d1

∂aij
=
∂
(∑m

i D(pi, xi)
2
)1/2

∂aij
=

1

2
· (d1)−1/2 · ∂D(pi, xi)

2

∂aij
(6)

The derivative will be zero if the symbol for the i-th attribute is not aij , as per the
following:

∂D(pi, xi)
2

∂aij
= 2 ·D(pi, xi) ·


+1, if pi = aij and xi 6= aij
−1, if pi 6= aij and xi = aij
0, otherwise

(7)

In a similar manner we can derive ∂d2
∂aij

.

By putting the above equations together we have a full version of equation (4) as follows:

∆rij = η · (L(p)−O(p)) · S(d1 − d2) · (1− S(d1 − d2)) ·

(
∂d1

∂aij
− ∂d2

∂aij

)
(8)

(a) (b) (c)

Figure 2: (a) Schematic of forces acting on points p, x and y. Forces along each axis are
in solid arrow, and net force in dashed arrow. During the learning process, p is
getting closer to x and farther from y. (b) Example 2-d synthetic data, with two
features, each of which has twenty symbols. Red circles and blue stars indicate
points from two classes. (c) Subspaces corresponding to the learned mapping.

3.3 Example: Line Moving and Subspace Forming

Given a target point p and the corresponding closest points x and y, in class 1 and 2,
the amount of assignment change of each symbol is proportional to ∆rij , which moves the

location of a symbol to the left or to the right on the i-th axis (if ∆rij < 0 or ∆rij > 0
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respectively). In a 2-dimensional space, the change of symbol assignments is equivalent to
moving the lines around, which in turn “move” the data points to new locations.

Figure 2 (a) illustrates a case where p = (A1, B1) and x = (A3, B3) belong to class
1 but p is misclassified, since it is closer to y = (A2, B2) in class 2 (i.e., d1 > d2). In
this specific case, there are six symbols, A1, A2, A3, B1, B2, and B3. Intuitively, when the
learning goes on, more and more points nearby tend to get together and form a subspace
containing points with the same class label. Subspaces with different class labels tend to be
apart. To demonstrate how the subspaces are created, we applied our learning algorithm
on an example 2-d synthetic datasets in Figure 2 (b). The learned subspace are shown in
(c).

4. Discovering Symbol Redundancy

By modeling each symbol as a variable in the real space, our algorithm explores the dis-
tances between symbols on each individual feature. Interestingly, our algorithm is able to
discover redundancies among symbols, which provides insights for improving the classifica-
tion performance.

We ran our learning approach on the Balance Scale dataset from UCI repository (see
Table 3). Table 1 shows a typical assignment learned on this dataset. As highlighted,
some symbols have very close values (e.g., symbols ‘2’=1.76 and ‘3’=1.96 for attribute left-
weight ; symbols ‘3’=3.75 and ‘4’=3.47 for attribute left-distance, and so on). Such closeness
implies that for an attribute like left-weight having five symbols may not be necessary for
classification. We regard this kind of closeness as redundant information, which should
be removed to improve the classification accuracy. To verify the above hypothesis, we

Table 1: A typical assignment learned on Balance Scale dataset
Attribute\symbol ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

left-weight -0.85 1.76 1.96 4.98 7.14
left-distance -0.72 1.78 3.75 3.47 6.71
right-weight -0.78 2.22 3.19 5.08 5.28

right-distance -1.04 1.10 3.68 5.49 5.76

Table 2: Accuracy improvement on merged dataset
Original Dataset Merged Dataset

C4.5 73.11 76.35
RBFNN 90.68 92.20

NN 75.31 85.93

merged the two closest symbols into one. For example, we replaced symbols ‘2’ and ‘3’ with
only one symbol ‘23’. As shown in Table 2, the classification accuracy is improved with
the merged attributes for decision tree, RBF neural network and nearest neighbor classifier
(i.e., NN, based on Overlap dissimilarity measure). The merging can be considered as a
form of pre-pruning process, which improves the generality of classifiers.
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5. Experimental Results

To evaluate the learned dissimilarity measure (short for LD), we compare our approach
against other data-driven methods discussed in Section 2 and other popular classifiers. We
present results on categorical datasets shown in Table 3, that are all taken from the UCI
machine learning repository. The number of attributes ranges from 4 to 60, and each
attribute takes on 2 to 12 symbols.

Table 3: Dataset Information

Dataset Size Dimension Attributes and Symbols
Splice 1330 60 Each dimension takes on {A,C,T,G}

Balance Scale 576 4 Each dimension takes on {1, 2, 3, 4, 5}
Car Evaluation 768 6 buying: {v-high, high, med, low}; maint: {v-high, high,

med, low}; doors: {2, 3, 4, 5+}; persons: {2, 4, more}; lug
boot: {small, med, big}; safety: {low, med, high}

Connect-4 1000 42 Each dimension takes on {x, o, b}
Mushroom 1000 22 Various sizes from 2 to 12, e.g. the first attributes cap-

shape: {bell, conical, convex, flat, knobbed, sunken}
Tic-tac-toe 624 9 Each dimension takes on {x, o, b}
Hayes-Roth 100 4 hobby: {1,2,3}; age: {1,2,3}; educational level: {1,2,3};

marital status: {1,2,3}

5.1 Comparison with Various Data-Driven Methods

To compare our Learned Dissimilarity approach, with those learned from other ten meth-
ods mentions in Section 2, we evaluate the classification accuracy of the nearest neighbor
classifier, where the distances are computed from various dissimilarity measures. More
specifically, the distance between two categorical points is calculated according to equation
(1). We used 5-fold cross-validation to measure the classification accuracy. The numbers
reported in Table 4, correspond to the average classification accuracy and standard devi-
ation (in parenthesis) over ten runs (i.e., we repeat NN ten times for each dissimilarity
measure on each dataset). The last row of Table 4 shows the average performance over all
the datasets. The highest accuracy is shown in bold for each dataset.

On average, the LD and VDM achieve the best accuracy, indicating that supervised
dissimilarities attain better results over the unsupervised counterparts. Among the unsu-
pervised measures, IOF, Lin are slightly superior to others. Goodall1, Smirnov and OF
achieve same performance as Overlap. By considering the confidence interval (accuracy
+/- standard deviation) to compare the performance of different methods on each dataset,
we conclude that LD performed statistically worse than Lin on datasets Splice and Tic-
tac-toe but better than Lin on datasets Connection-4, Hayes and Balance Scale. Moreover,
LD performed statistically worse than VDM only on one dataset (Splice) but better on two
datasets (Connection-4 and Tic-tac-toe). Finally, LD performed statistically at least as well
as (and on some datasets, e.g. Connection-4, better than) the remaining methods.
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Table 4: Performance comparison on various dissimilarities

Overlap Lin Smirnov Goodall1 Eskin
Splice 89.45(0.58) 94.21(0.42) 88.53(0.82) 88.79(0.69) 88.42(0.60)

Balance Scale 75.31(1.44) 75.52(3.31) 74.65(2.14) 75.69(2.04) 64.23(0.51)
Car Evaluation 87.86(1.23) 92.64(1.65) 83.72(2.14) 84.96(2.26) 86.65(0.75)

Connect-4 84.20(0.92) 78.25(1.05) 75.30(0.73) 82.50(0.46) 83.55(0.30)
Mushroom 100(0) 100(0) 99.75(0.17) 99.90(0.06) 100(0)
Tic-tac-toe 81.59(1.56) 98.64(0.69) 84.03(1.07) 86.97(1.58) 63.85(0.93)
Hayes-Roth 70.90(4.99) 71.00(3.65) 71.00(5.50) 69.50(5.01) 67.00(5.76)

Avgerage 84.18(1.53) 87.18(1.53) 82.42(1.79) 84.04(1.72) 79.10(1.26)

IOF OF Gambaryan Burnaby VDM LD
Splice 90.15(0.62) 88.34(0.68) 88.38(0.67) 83.72(1.19) 95.60(0.57) 93.00(0.67)

Balance Scale 75.86(3.53) 75.34(3.08) 75.17(2.37) 75.43(2.88) 92.10(1.36) 94.04(1.21)
Car Evaluation 89.12(1.92) 92.83(0.88) 83.52(2.06) 92.44(0.86) 97.33(1.74) 98.00(1.47)

Connect-4 83.40(0.87) 84.70(0.78) 50.00(0) 85.15(0.84) 83.80(0.96) 87.48(0.92)
Mushroom 99.95(0.03) 100(0) 50.00(0) 100(0.09) 100(0) 100(0)
Tic-tac-toe 97.13(0.43) 77.48(1.17) 88.85(1.25) 69.27(1.12) 82.15(2.57) 95.30(1.72)
Hayes-Roth 68.50(4.67) 58.00(8.25) 75.50(3.52) 57.50(8.30) 73.00(4.70) 79.40(1.71)

Avgerage 86.30(1.72) 82.38(2.12) 73.06(1.41) 80.50(2.18) 89.14(1.70) 92.46(1.10)

5.2 Comparison with Various Classifiers

We consider the NN based on our learned dissimilarity as an “enhanced” nearest neighbor
classifier, again denoted as LD. The performance of LD is compared with algorithms imple-
mented in Weka 3.6, including decision tree (C4.5 with pruning), Näıve Bayes (NB), RBF
neural network (RBFNN, with clustering technique to estimate the number of kernels), and
SVM (with RBF kernel and complexity 1.0). Our method uses the learned mapping r,
whereas the other methods use the Euclidean distance (corresponding to simple matching)
between categorical points. The performance metric is the average classification accuracy
over ten runs based on 5-fold cross validation. As shown in Table 5, considering the same
confidence intervals as in Sec.5.1, we conclude that LD performed statistically worse than
the other methods on only one dataset (Splice) but performed better on at least three other
datasets than each of the other methods, which we believe shows a significant improvement
over them.

6. Conclusions

In this paper, we propose a task-oriented or supervised iterative learning approach to learn
a distance function for categorical data. The algorithm explores the relationships between
categorical symbols by utilizing the classification error as guidance. We show that the real
value mappings found by our algorithm provide discriminative information, which can be
used to refine features and improve classification accuracy. In the future work, we would like
to extend the approach to continuous and mixed attribute datasets, as well as “relational”
datasets where there are links between data points.
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Table 5: Performance comparison on various classifiers

C4.5 NB RBFNN SVM LD
Splice 95.03(1.00) 97.01(0.42) 97.01(0.64) 96.91(0.60) 93.00(0.67)

Balance Scale 73.11(1.78) 96.34(1.53) 90.68(1.50) 95.49(1.78) 94.04(1.21)
Car Evaluation 96.51(1.12) 92.32(2.33) 93.58(2.01) 88.24(1.88) 98.00(1.47)

Connect-4 87.01(1.71) 87.53(1.10) 88.35(1.62) 87.48(0.89) 87.48(0.92)
Mushroom 100(0.00) 97.33(1.00) 100(0.04) 100(0.00) 100(0.00)
Tic-tac-toe 85.44(3.26) 76.67(1.94) 80.75(2.53) 77.21(1.27) 95.30(1.72)
Hayes-Roth 71.00(8.07) 68.50(9.15) 72.40(5.17) 64.10(12.42) 79.40(1.71)

Average 86.87(2.42) 87.96(2.49) 88.97(1.93) 87.06(2.69) 92.46(1.10)
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