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Abstract

Commonly to classify new object in Data Mining one should estimate its similarity with
given classes. Function of Rival Similarity (FRiS) is assigned to calculate quantitative mea-
sure of similarity considering a competitive situation. FRiS-function allows constructing
new effective algorithms for various Data Mining tasks solving. In particular, it enables
to obtain quantitative estimation of compactness of patterns which can be used as indi-
rect criterion for informative attributes selection. FRiS-compactness predicts reliability of
recognition of control sample more precisely, than such widespread methods as One-Leave-
Out and Cross-Validation. Presented in the paper results of real genetic task solving confirm
efficiency of FRiS-function using in attributes selection and decision rules construction.

Keywords: Pattern recognition, Function of Rival Similarity, Compactness, Iformative-
ness

1. Introduction

Two main parts “engine” and “criterion” can be partitioned in attribute selection algo-
rithms. Engine forms different variants of attributes subsystems and criterion estimates
quality of considered systems. We guess that the main element of the engine is algorithm
of directed search, the main characteristic calculated by criterion is compaciness of the pat-
terns, and the basic element in compactness estimation is a measure of objects similarity.
These three items are considered in this work. In Section 2 relative measure of similarity
(FRiS-function) is introduced, measure of compactness of patterns based on FRiS-function
is defined in Section 3, in Section 4 algorithm for decision rule construction FRiS-Stolp is de-
scribed. Then, in Section 5 algorithm FRiS-GRAD for simultaneous attribute selection and
decision rule construction is proposed. Effectiveness of this algorithm on real recognition
task is illustrated in Section 6.
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2. How to estimate similarity?

Similarity of two objects z and a according to some attribute X in metric space usually
depeds on difference R(z, a) between values of X for these objects. Many such type measures
of similarity are described in the literature. Common peculiarity of these measures is that
similarity is considered as absolute category. Similarity of objects z and a does not depend
on the similarities of them with other objects.

But the measure of similarity, used in pattern recognition is not so primitive. Classifying
object z as a member of pattern A in case of two patterns it is important to know not only
similarity of z with the A, but similarity of z with the rival pattern B, and compare these
values. Consequently, the similarity in pattern recognition is not absolute but relative
category. To answer the question “How much is z similar to a?” you need to know “In
comparison with what?”. Adequate measure of similarity should reflect relative nature of
stmilarity, which depends on rival situation in the neighborhood of object z.

All statistical recognition algorithms take into account competition between classes. If
probability density of class A in point z is equal to P4, and probability density of class B
in this point is Pp, then z is classified, for example, as member of class A not because value
P, exceeds certain threshold, but because P4 > Pg.

When distributions of classes are unknown or the number of attributes is higher than
number of objects in training dataset, recognition methods based on probability densities are
inapplicable. In these cases distances R(z,a;) from object z to standards (representatives)
of patterns A;, ¢ = 1,..., K, (K is the number of patterns) are commonly used. As a
result object z is classified as a member of pattern distance to which standard is less than
the distances to the standards of other patterns. For example, in the method “k nearest
neighbours” (kNN) (Fix & Hodges, 1951) new object z is recognized as object of pattern A
if the distance to this pattern, equal to average distance from z to its k£ nearest neighbours
from pattern A, is smaller than the distance to the nearest rival pattern B. Similarity in
this algorithm is considered in scale of order.

Measures of rival similarity in strong scales are used in pattern recognition as well.
Quantitative estimation of rival similarity was proposed by Kira and Rendell (1992) in the
algorithm RELIEF . To determine similarity of object z with the object a in competition
with the object b value W (z,alb) is calculated, which depends on the difference between
distances R(z,a) and R(z,b) to competitors in an explicit form:

R(z,b) — R(z,a)
Rmax - Rmzn ‘

There Ry and Ryuq. are the minimum and maximum distances between objects of the
analyzed dataset. Normalization by the difference (Ryqz — Rimin) has some weaknesses. If
dataset consists of only two objects a and b, then value of similarity of any new object z
with them can not be defined because the denominator is equal to 0. The same problem
appears, if dataset consists of three points located in vertex of equilateral triangle. In
addition, value W(z, a|b) strongly depends on distant objects and can vary in considerable
range when membership of training dataset is changed. Thus, this measure has absolute
quality only within single task, its values in different tasks can not be compared to each
over directly. We would like to obtain better measure of similarity. Specify properties that
should have this measure:

W(z,alb) =
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1. Locality. Measure of similarity should depend on distribution of objects in the
neighborhood of object z, not entire dataset.

2. Normalizing. While measure of similarity of object z with the object a in competition
with object b (a # b) is estimated, if z coincides with the object a, value F(z,alb) should
amount to its maximal value equal to 1, if z coincides with the b its similarity F(z,al|b)
should be minimal and equal to —1. In other cases rival similarity takes values in range
between —1 and 1.

3. Antisymmetry. In all cases F'(z,alb) = —F(z,bla). If distances R(z,a) and R(z,b)
from object z to objects a and b are equal then z is equally similar (and not similar) to
both that objects and F'(z,alb) = F(z,bla) = 0.

4. Invariance. Values F(z,a|b) and F(z,b|a) should be invariant under such attributes
system transformation as moving, rotating and extending all coordinate axes with the same
coefficient.

Any sigmoid function obeys these conditions. We propose the following simple version
of this function:

R(z,b) — R(z,a)

F(z alp) = R(z,b) + R(z,a)

This kind of similarity measure we called FRiS-function (Function of Rival Similarity)
(Zagoruiko et al., 2008a). Function F(z,alb) is invariant under coordinate system mov-
ing, rotating and extending all coordinate axes with the same coefficient. But extending
coordinate axes with different coefficients is changed effect of individual characteristics on
similarity estimation. So, the similarity between objects depends on weights of their at-
tributes. Changing these weights one can boost similarity or difference between the specified
objects, or subsets. Such technique is ordinary used in pattern recognition. After weights
fixing FRiS-function measures the similarity in absolute scale: its interpretation is chaneged
by adding some coefficient over than 0 to value of F(z,a|b), or multiplying F(z,alb) by any
value other than 1.

It turned out that the additional information providing by absolute scale in comparing
with the order scale allows to significantly improve methods of Data Mining.

3. Measure of compactness of patterns

Almost all recognition algorithms are based on compactness hypotheses (Braverman, 1962).
Definitions of compactness presented in literature operate such no-formalized terms as “suf-
ficiently extensive neighborhood”, “not too complex border”, and so on. We are interested
in quantitative measure of compactness directly correspondent with expected reliability of
recognition.

Main idea such kind measure proposed by Vorontsov and Koloskov (2006) is in the
compactness profile calculation. Compactness profile is function V(j) equals to share of
samples which j-th neighbor is the object of another class. Compactness profile is the
formal expression of the basic idea of compactness hypotheses stating that similar objects
more often lie in the same class than in different. The simpler task is, i.e. the more often
close objects appears to be in the same class, the closer to the zero start part of profile V'(j)
is. In complex tasks or in spurious attribute subsystems all parts of profile V' are close to
0.5 or another constant value depending on prior probabilities of patterns.
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Only order between objects in dataset is important during compactness profile calcu-
lating. Consequently, if the patterns do not intersect, the profile reminds the same when
variances of the patterns or the distance between them are changed.

We are interested in quantitative measure of compactness, which allows estimating as
single pattern compactness, as compactness of whole system of patterns in dataset taking
into account any changes in the variances and distances between patterns. Such a measure
should answer following requirements:

1. Universality. Measure should allow correctly evaluating the compactness of patterns
with any types of probability distributions, as for each pattern individually as for the entire
set of recognized patterns.

2. Sensitivity. Value of compactness should increase with the area of pattern intersection
decreasing. In case of disjoint patterns compactness should depend on both the variance of
the patterns and the distance between them.

3. Normalizing. Measure of compactness should take values in range between —1 (in
case of full coincidence of patterns) and 1 (in case of infinite distance between patterns ).

4. Invariance. Measure should be invariant under coordinate system moving, rotating
and extending all coordinate axes with the same coeflicient.

Using of rival similarity (FRiS-functions) allows to determining quantitative measure
of compactness, meeting the specified requirements. This procedure is based on calcula-
tion of the similarity of objects from the same pattern with each over and distinctiveness
(differences) of these objects with the objects of other patterns. The algorithm of FRiS-
compactness calculation in case of two patterns is illustrated on Figure 1 and acts as follows:

1. Similarity of each object a;, j = 1,..., M4, of pattern A with some fixed object a; of
the same pattern in competition with nearest to a; object b; of rival pattern B is calculated
on distances R(aj,a;) and R(aj,b;) from a; to objects a; and b; by the next formula:
F(aj,ailbj) = (R(bj,a;) — R(aj,a;))/(R(bj,a;) + R(aj,a;)). These values are added to the
counter C;.

Figure 1: Rival similarities of objects of patterns A and B with fixed object a;.
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2. Distinctiveness of each object by, ¢ = 1,..., Mp, of pattern B with the object a;
is calculated, as rival similarity of b, with its nearest neighbor from the same pattern in
competition with the a;. So two distances are needed: distance R(bg,bs) from object b,
to its nearest neighbor bs from pattern B, and distance R(bg, a;) from object b, to object
a;. Calculated on these distances measures of rival similarity F'(by, bs|a;) for all objects by
of pattern B are added to the counter ;. To averaging value Cj is divided by number of
objects in dataset (M4 + Mp). Resulting value C; characterizes similarity of “own” objects
and distinctiveness of “anothers” objects with fixed object a;.

3. After calculating values C; for all objects a;, i = 1,..., M4, of pattern A average
value G 4 of pattern A compactness is calculated:

1 M4
Gy=—Y C,.

4. The same way compactness of pattern B can be estimated. If number of patterns
in task is larger than two, then to define compactness of k-th pattern, £ = 1,..., K, this
pattern is considered as pattern A , and all other patterns associate in pattern B.

5. General value of compactness G of all K patterns estimated on given dataset is
calculated as geometrical mean of all Gi:

G

The lower the variances of patterns and the higher distances between them are, the
higher value of compactness G becomes. Measure of compactness proposed by Fisher to
calculate informativeness of attribute subsystems has the same peculiarity. The difference is
that the Fishers measure is designed for patterns with Gaussian distributions, and measure
of FRiS-compactness is applied to arbitrary distributions.

Our experiments with using proposed measure of compactness as a criterion for infor-
mative attributes selection (Zagoruiko, 2009) demonstrate its higher efficiency in comparing
with widely used criterion based on number of objects of training dataset unrecognized by
KNN rule in the mode One-Leave-Out (OLO). These two criteria G and OLO are compared
in following experiment.

The initial data included 200 objects belonging to two patterns (100 objects for each
pattern) in the 100-dimensional space. Attributes were generated in such a way that they
have different informativeness. As a result, about 30 attributes were more or less infor-
mative, whereas other attributes generated by random number generator were certainly
spurious. In addition, the dataset was distorted by noises with different intensity. For every
pattern, 35 randomly chosen objects were selected for training. Other 130 objects formed
the test dataset. At every noise level (from 0.05 to 0.3), the most informative subsystems
were selected. The recognition reliability in selected attributes subsystems averaging over
10 experiments for each noise level is presented on Figure 2. Thin lines correspond to results
on training subsets, bold lines — to results on test subsets.

Attribute systems, selected with OLO, have high reliability estimations (upper dotted
line) on training datasets independently of noise level. But their quality on test datasets
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(lower bold dotted line) is greatly worse. Attributes selected with FRiS-compactness crite-
rion G have more realistic reliability estimations (upper solid line) which are confirmed on
test samples (lower solid bold line).

Higher stability of criterion G' can be explained as follows. Most of objects affected by
noise are situated far from central part of pattern on the patterns bounds. Measure OLO
depends on samples from the bound between patterns, while measure G is based on all
objects of the pattern.
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Figure 2: Results of training and test recognition with G and OLO criteria.

4. Algorithm FRiS-Stolp for set of representatives forming

To classify test object z values of rival similarities of the z with typical representatives
(stolps) of patterns are used. Algorithm FRiS-Stolp (Zagoruiko et al., 2008b) selects objects
with defensive capability (high similarity with other objects from the same pattern allows
recognizing that objects) and tolerance (low similarity with the objects of other patterns
prevents their unrecognizing as “own”) to use as stolps.

This procedure is realized as follows:

1. Some object a; of pattern A is tested as a single stolp of this pattern. As in compact-
ness estimation similarity of each object a;, j = 1,..., My, of pattern A, and distinctiveness
of each object by, ¢ = 1,..., Mp, of pattern B with a; are calculated and added to counter
C;. Averaging value C; is considered as efficiency of object a; in a role of the stolp of pattern
A.

2. Step 1 is repeated for all objects of pattern A. Object a; which provides maximum
value C; is selected as the first stolp of pattern A. All m; objects of pattern A, which
similarity with this stolp is higher than F* (for example, F* = 0), form first cluster and are
eliminated from pattern A. Average value of similarity of objects from cluster J; with the
stolp of the cluster is used as compactness of this cluster estimation.
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3. If my < M4 steps 1-2 are repeated on remaining objects of pattern A. As a
result list of k4 stolps of pattern A with values of corresponded clusters compactnesses @,
7 =1,...,ka, is obtained.

4. Average weighted value of compactnesses of all clusters of pattern A:

1 &
Gy = n ZQjmj-
j=1

can be used as compactness of pattern A estimation. In contrast to G4 this value charac-
terizes quality of description of pattern A by the system of stolps. In our algorithms for
inconclusive attributes elimination less labour-intensive criterion G 4 is used. But for more
precise attribute subsystem selection criterion G4 appears to be more effective.

5. Steps 1-4 are repeated for pattern B to construct list of kp stolps of this pattern. If
number of patterns in task is larger than two, then technique described in previous section
is used.

In case of Gaussian distributions, for example, the most typical objects of the patterns
are selected by algorithm FRiS-Stolp at the points of statistical expectations. In case of
multimodal distributions and linearly inseparable patterns stolps are placed at the centers
of the modes (at the centers of areas of local concentrations of objects). With growing
distribution complexity the number of stolps increases.

The decision rule consists of the list of objects-stolps and procedure of calculation of
similarity of control object z with all stolps. Object z is classified as a member of pattern
similarity with which stolp is maximal. Value of rival similarity can be used as estimation
of reliability of object z recognition.

5. Attributes subsystems forming. Algorithm FRiS-GRAD

There are many variants of “engines” to select n most informative attributes among base
set of N attributes. Main ideas of two basic greedy approaches (forward and backward
searches) are used in our engine. Backward elimination (algorithm Deletion) offered by
Merill and Green (1963) increases attribute subsystem quality as much as possible with
each deletion of attributes. Forward selection (algorithm Addition) offered by Barabash
et al. (1963) achieves this aim with each inclusion of attributes. In algorithm AdDel
(Zagoruiko, 1999) next combination of these approaches is used: at first, ny informative
attributes are selected by method Add. Then ng worst of them (ng < nj) are eliminated
by method Del. Number of attributes in selected subset after that two steps is equal to
(na —n1). Such consecution of actions (algorithms Add and Del) is repeated until quality of
selected attributes is maximum. Analysis of subsystems with different number of attributes
shows that on first steps while the number of attributes increases the quality increases too.
But at some moment when all informative attributes are in selected subsystem already, the
quality becomes decreasing after adding redundant or not relevant attributes. Inflection on
the curve of quality allows specifying optimum number of attributes.

In algorithm GRAD (Zagoruiko, Borisova & Kutnenko, 2005) (“Granulated AdDel”)
method AdDel works on set of most informative “granules”. Each granule consists of w
attributes (w = 1,2,3). In list of one-dimensional granules m; “best” according to their
individual informativeness attributes (m; < N) are included.
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Exhaustive search among all possible pairs and triplets of m; attributes is used for
ms two-dimensional and mg three-dimensional granules forming. Among them m most
informative granules are selected and used as an input of algorithm AdDel. Comparing
effectiveness of algorithms AdDel and GRAD on different tasks showed, that algorithm
GRAD was much better than algorithm AdDel.

To find the best subsystem of attributes and effective decision rule algorithm FRiS-
GRAD (Zagoruiko et al., 2008b) uses procedure of directed search, offered in algorithm
GRAD. On each step some variant of attribute subsystem is formed and then algorithm
FRIS-Stolp is started to construct set of stolps and to calculate FRiS-quality G’ of the
subsystem. If t-dimension subsystem of attributes has been selected and ¢ next steps
of algorithm GRAD working quality of decision was decreasing then this subsystem is
considered as most informative and set of stolps in this subspace determines the rule to
classify new objects.

6. Recognition of two types of leukemia with algorithm FRiS-GRAD

Efficiency of offered algorithm was demonstrated on task for medical diagnosis (two types
of leukemia recognition). This task was interesting for us because results of its solving by
different researchers were published and we could compare effectiveness of our algorithm
with competitors. In the work (Guyon et al., 2002) the best in the world at the moment of
the publication results obtained by Support Vector Machines (SVM) were presented.

In this task analyzed data set consists of a matrix of gene expression vectors obtained
from DNA micro-arrays for a number of patients with two different types of leukemia (ALL
and AML) (Golub et al., 1999). Training set consists of 38 samples (27 ALL and 11
AML) from bone marrow specimens. The test set has 34 samples (20 ALL and 14 AML).
It prepared under different experimental conditions and including 24 bone marrow and 10
blood sample specimens. Number of features in the task is 7129. Each attribute corresponds
to some normalized gene expression extracted from the micro-array pattern.

The informative subset of attributes in (Guyon et al., 2002) got out by method RFE (a
version of algorithm Deletion). In selected subspace of two best attributes 30 test objects
were correctly recognized, in subspace of 4 attributes number of correctly recognized objects
was 31, in subspace of 128 attributes it was 33. Our results for this task were the following
(Zagoruiko et al., 2008b). From 7129 initial attributes algorithm FRiS-GRAD selected 39
most informative attributes and constructed 30 decision rules: 27 of them recognized all 34
test samples correctly. Ten most informative according their FRiS-compactness G’ attribute
subsystems are presented in Table 1. Indexes attached to attribute numbers show weights
of these attributes in decision rules.

These weights are defined by algorithm GRAD. At calculation of distances between
objects the values of the attribute with weight v, are multiplied by v.

Offered algorithm is linear. Its laboriousness has the order of complexity
O[(N +m3/6)M3]. There M is number of objects in the mixed dataset, N is dimension
of features space, m; — number of attributes used for forming two- and three- dimension
granules. Here we used mq, = mo = mg3 = 100.

Difference in presented results and results of SVM can be explained by peculiarities
of as attributes selection method, as algorithm of decision rule construction. To compare
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Informative attributes G P
3561,22661,23581,26415,40495,6280,  0,73835 34
3561,22661,23581,26414,27241,4049,  0,73405 34
3561,22661,26414,37721,40494,4261,  0,73302 34
13831, 18331, 26414, 40494, 54411,6800; 0,73263 34
3561,4351,26414,4049, 0,73214 34
3561,4351, 26414, 27241,40494 0,73204 34
18331,2641,4,4049,4,43671,48731,6800; 0,73088 34
3561,4351, 26414, 35601, 40494, 6800 0,72919 34
3b61,26414,28951,35061,4049,,5059;  0,72814 34
3561,22661,2641,4,40494,4229,,6280;  0,72699 34

Table 1: Attributes, used in decision rules in leukemia task

their effectiveness SVM and FRiS-Stolp were run on subspace of two selected by method
RFE attributes (genes 803 and 4846). Decision rule constructed by FRiS-Stolp correctly
recognized 33 test objects, SVM — 30 objects. In subspace of one gene (4846) results of
FRiS-Stolp and SVM were 30 and 27 correctly recognized objects correspondingly.

For comparison decision rule constructed in best two-dimension attribute subsystem
(2641 and 4049) selected by FRIS-GRAD gave 33 of 34 correct predictions, in one-dimension
subsystem (2461) — 32 of 34 correct predictions. This example demonstrates high compet-
itiveness of attribute selection and decision rule construction based on FRiS-function.

7. Conclusion

Using of similarity measure which considers competitive situation, allows building effective
algorithms for main Data Mining tasks solving. Function of rival similarity gives a way
to estimate quantitative values of compactness of patterns, informativeness of attribute
subspaces and to build easily interpreted decision rules. Presented method can be applied
to tasks with any number of patterns, any character of their distributions and any ratio
between number of objects and number of attributes in dataset. Laboriousness of a method
allows to use it for the decision enough complex real tasks. Applied tasks decisions quality
can compete with other methods.

Our future researches of FRiS deal with its application on other types of tasks of the
Data Mining — filling of blanks, search of associations, censoring a training dataset and
analysis of other types of function of rival similarity.
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