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1 Qualitative Results

We present qualitative results of our method on the training sequences 00-08 of the KITTI [1] odom-
etry benchmark in Figure 1.
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Figure 1: Qualitative trajectory results of the proposed method on train sequences 00-08 of the
KITTI odometry benchmark.



Figure 2: The architecture of our depth estimation network.

2 Depth estimation network architecture

We show in Fig. 2 the architecture of the depth network used. We base our architecture on [2] and
follow [3] to add skip connections and output depth at 4 scales.

3 Structural Similarity (SSIM) loss component

As described in [4], the SSIM loss between two images is defined as:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(1)

In all our experiments C1 = 1e−4 and C2 = 9e−4, and we use a 3x3 block filter to compute µx and
σx - the per-patch mean and standard deviation.

4 Discussion on scaling the monocular predictions

As described in the experimental setup section, in order to be consistent with the experimental
protocol of [5, 6] we compute the scaling factor for each prediction by optimizing it over 5-frame
long trajectories. However since our network is evaluated on pairs of frames, we have the option of
computing the scaling factor using 2-frame trajectories (this is consistent with the way monocular
depth methods are evaluated, with the scale being computed for each prediction). We present results
when scaling using 2-frame trajectories and when scaling from 5-frame trajectories.

Method ATE Seq 09 ATE Seq 10 trel train trel test rrel train rrel test

Ours - scale from 5-frame trajectories 0.0096 ± 0.002 0.0089 ± 0.002 1.44 2.92 0.64 1.53
Ours - scale from 2-frame trajectories 0.0083 ± 0.002 0.0075 ± 0.002 1.38 2.92 0.64 1.53

Table 1: Results of our method when computing scale using 5-frame tranjectories versus 2-frame
trajectories. Our method is trained on the KITTI odometry Sequences 00-08. We report ATE on
the test sequences 09 and 10, as well as trel - average translational RMSE drift (%) on trajectories
of length 100-800m, and rrel - average rotational RMSE drift (◦/100m) on trajectories of length
100-800m, averaged over the training and testing, respectively.

We summarize our analysis in Table 1. Interestingly, the ATE metric improves significantly, while
the test trel metric suffers only minor variations. The rrel metric is unaffected, as the scaling opera-
tion only affects the predicted translation between frames.
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