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1 Qualitative Results

We present qualitative results of our method on the training sequences 00-08 of the KITTI [1] odom-
etry benchmark in Figure 1.
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Figure 1: Qualitative trajectory results of the proposed method on train sequences 00-08 of the
KITTT odometry benchmark.



Skip Layers

Convolutional Layers

- Upsample Layers

Figure 2: The architecture of our depth estimation network.

2 Depth estimation network architecture

We show in Fig. 2 the architecture of the depth network used. We base our architecture on [2] and
follow [3] to add skip connections and output depth at 4 scales.

3 Structural Similarity (SSIM) loss component

As described in [4], the SSIM loss between two images is defined as:
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SSIM(x,y) = (1)

In all our experiments C; = le=* and Cy = 9¢~%, and we use a 3z3 block filter to compute j,, and
0 - the per-patch mean and standard deviation.

4 Discussion on scaling the monocular predictions

As described in the experimental setup section, in order to be consistent with the experimental
protocol of [5, 6] we compute the scaling factor for each prediction by optimizing it over 5-frame
long trajectories. However since our network is evaluated on pairs of frames, we have the option of
computing the scaling factor using 2-frame trajectories (this is consistent with the way monocular
depth methods are evaluated, with the scale being computed for each prediction). We present results
when scaling using 2-frame trajectories and when scaling from 5-frame trajectories.

Method ATE Seq 09 ATE Seq 10 trep train £, test 7. train 7, test
Ours - scale from 5-frame trajectories  0.0096 + 0.002  0.0089 =+ 0.002 1.44 2.92 0.64 1.53
Ours - scale from 2-frame trajectories  0.0083 = 0.002  0.0075 £ 0.002 1.38 2.92 0.64 1.53

Table 1: Results of our method when computing scale using 5-frame tranjectories versus 2-frame
trajectories. Our method is trained on the KITTI odometry Sequences 00-08. We report ATE on
the test sequences 09 and 10, as well as t,.; - average translational RMSE drift (%) on trajectories
of length 100-800m, and r..; - average rotational RMSE drift (°/100m) on trajectories of length
100-800m, averaged over the training and testing, respectively.

We summarize our analysis in Table 1. Interestingly, the ATE metric improves significantly, while
the test ¢,..; metric suffers only minor variations. The r,..; metric is unaffected, as the scaling opera-
tion only affects the predicted translation between frames.
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