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Abstract: Deep learning based object detectors often report false positives with
very high confidence. Although they optimize generic detection performance,
such as mean average precision (mAP), they are not designed for robustness or
verifiability. We argue that, if a high confidence detection is made by a robot per-
ception system, we would want high certainty that the object has indeed been de-
tected. We present a detection system that can verify, with high precision, whether
each detection of a machine-learning based object detector is correct or not. We
present a set of verification checks based on a novel approach of using dense pixel
correspondences between known images of objects and a scene, to verify whether
the detections made in the scene are correct. We motivate this by developing a
theoretical framework which proves that under certain assumptions, our proposed
method will reject any false positives. We show that these tests can improve the
overall accuracy of a base detector and that accepted examples are highly likely
to be correct. This allows the detector to operate in a high precision regime, and
can thus be used for robotic perception systems as a reliable instance detection
method. Code is available at https://github.com/siddancha/FlowVerify.
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1 Introduction

Instance detection is the task of detecting instances of a particular object in a scene. Here (as in
previous work [1, 2, 3]), the term “instance” refers to a specific sub-type of object (e.g. “coke can”
rather than just “can”). For example, a robot may be shown an image of a cereal box, and it may be
required to detect it in a scene in order to fetch it. Unfortunately, current systems for object instance
detection are not sufficiently reliable for use in real world applications; most methods will fail in
real-world scenarios due to occlusions, lighting changes, viewpoint variation, and other difficulties.

Traditional non-parametric methods for object instance detection rely on keypoint-matching [4, 5, 6]
or template matching [7, 8] to training images. However, these methods are not robust to large
changes in object viewpoint (i.e. greater than 25 degrees [2]) and often fail for significant lighting
changes. For a robust home perception system, we cannot always guarantee that the objects being
observed will be viewed from the same conditions as in training. Thus we desire to have an object
detection system that is robust to significant changes in the object viewpoint, as well as lighting,
occlusions, and other variations. Recently, a number of machine learning approaches have been
used for object instance detection [9, 10, 2]. However, machine-learning based approaches that
learn parameters from data often produce a large number of false positive detections. These false
detections can prevent deployment of robots in real-world applications.

We argue that a combination of parametric and non-parametric object detection methods is crucial
for robust and precise object detection. While machine learning methods enable us to leverage large
amounts of data to learn necessary invariances like lighting and viewpoint changes, non-parametric
methods that match candidate test objects to training templates can ensure that detections are robust
and verifiable. In sections 3 and 4.1 we propose verification tests that operate on top of existing
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Figure 1: Pipeline of our instance detection verification system. Base Detector: generates object
instance detections from real scenes; FLOWMATCHNET: computes dense pixelwise correspondence
between template images of candidate object & detection; FLOW VERIFY: a suite of verification tests
is applied to the detection using pixel correspondence. Detection is accepted only if all tests pass.

machine learning based detectors; these tests take detections as input and verify them by matching
against training examples. Thus, by not throwing away training data (in contrast to the parametric
machine learning approach) and using them to verify detections at test time, we show that we can
increase the accuracy of the detector, especially in the high-precision regime. This makes our system
more precise, reliable and interpretable, making it more suitable for robotics applications.

Furthermore, we advocate that a robust detection system should make use of both learning and
non-learning approaches. We show that we can robustly compute dense pixel-wise correspondences
between images using a machine-learning based matching approach, making the correspondences
reliable across a range of viewpoints and lighting changes. We run our pixelwise-matching sys-
tem, which we call “FLOWMATCHNET,” between each proposed detection and a set of template
images of an object. Then we use a series of non-learning based verification tests, which we call
“FLOWVERIFY,” to check if these correspondences are reasonable and ascertain whether the de-
tection is similar to any of the templates. If any of the tests fail, FLOWVERIFY will re-rank the
detection by reducing its initial confidence score. Our method can be combined with any object
detector to improve its accuracy, especially in the high-precision regime.

We develop a theoretical framework for verified object detection. Specifically, We show that under
certain simple conditions, a suite of verification tests will reject all false positive detections. Under
these assumptions, any detection that is verified by our tests is guaranteed to be correct. Based on
this theory, we implement FLOWVERIFY, an approximate but more practically suitable version of
these tests and show that it can improve the performance of the detector in the high precision regime
and perform no worse in the low-precision regime, thereby improving the overall accuracy of the
detector. Figure 1 shows a diagram of our pipeline.

We demonstrate that our method can be used in a one-shot fashion, i.e. that our method can detect
novel objects that have never been seen before during training. The system processes template
images of novel objects at test time for detection. All components of our pipeline are trained on one
set of objects but evaluated on a different set of objects; we also use a third validation set of objects
for finetuning. Hence, we expect that our model can be downloaded and run off-the-shelf on custom
objects without the need for any re-training or finetuning. Alternatively, our method can also be
fine-tuned on the objects being detected for even better performance.

Furthermore, our system is flexible in the number of template images it can use for matching and
verification. Hence, our system provides an accuracy-speed tradeoff; the user of our system can
use more templates from various viewpoints to achieve higher accuracy, or choose to use fewer
templates to increase speed. We summarize our contributions as:

o A theoretical framework for verified object detection, which guarantees no false positives.

e An approximate implementation of this framework which leads to improved detector per-
formance, especially in the high-precision regime.

e A novel approach for object detection that combines parametric learned bounding box de-
tection, parametric learned correspondence matching, and non-learned verification tests.



2 Related Work

Object Instance Detection. Traditional methods for object instance detection rely on keypoint-
matching [4, 5, 6] or template matching [7, 8]. Recently, detectors based on deep neural networks
have shown improved performance over these traditional approaches. For example, Target Driven
Instance Detection (TDID) [11] is a state of the art instance detection method based on a Siamese
style neural architecture [12]. We compare to TDID in our work and show improved performance
over this state-of-the-art baseline.

Grocery product recognition. There has been significant effort in recognizing products on shelves
of retail stores such as grocery product recognition [13, 14, 15, 16]. This problem is simpler than
the general object instance recognition problem that we are aiming to solve due to the structured
environment. For example, objects in such scenes are typically placed in front-facing canonical
viewpoints with minimal occlusions and good lighting conditions. Furthermore, there is often a
great deal of contextual information, such as the location of the product on the shelf. Our method is
designed for the more general usage in the home or other unstructured locations.

Dense Pixel Correspondence. Our work builds on past work for computing dense pixel corre-
spondences [17, 18, 19, 20]; unlike past work, we use these correspondences for improving the
performance of object instance recognition.

Classification with reject option. We use a set of verification tests that try to verify a detection and
an object class that is proposed by an initial object detector. This notion of verification is related to
the literature on classification with rejection. Some of these previous approaches assume a cost func-
tion for rejection is provided and find the optimum rejection rule [21, 22, 23] or learn classification
and rejection functions simultaneously [24, 25]. Some works [26, 27] treat the problem as confor-
mal prediction, where the classification system can predict any subset of classes, including the null
set which stands for rejection. In contrast, in our work, we verify whether the object class output by
the detector is correct, and we re-score the confidence of detections based on the verification tests.

3 Theoretical Framework

In this section, we lay out a formal framework for high-precision instance detection. We specify a
set of assumptions and prove that under these assumptions, the verification-based detector will have
no false positives. We then discuss a modification of this method that we implement in practice
which improves overall detection accuracy.

Problem Statement. We assume there are O categories of objects that we are trying to recognize.
We also assume access to a dataset which consists of a variety of images per object, recorded from
a set of different viewpoints and lighting conditions. We refer to these images as ‘template images’
(see Figure 1). At test time, we are given ‘scene images’ — these are real world images that contain
(multiple) objects that need to be detected (see Figure 1). We also assume that we have an object
instance detector trained to detect objects of interest; this detector will return detections of the target
objects, along with a proposed object class for each detection. However, many of these proposed
object classes will be incorrect, i.e. false positives. The goal of our framework is to filter these out.

Notation. We denote by O; the ith object from the O categories of objects. For each object O;,
we assume access to a dataset of M; images recorded from a variety of viewpoints and lighting
conditions; we denote I; ,,, as the mth image for object O;. We denote by T : (uq,v1) — (uz, v2)
a 2D mapping from pixels of one image to the pixels of another image. We overload notation such
that 7'(T) is an application of the 2D mapping 7 to all pixels in the image I to produce a new image
T(I). Let r(T) denote the “rigidity” of such a transformation, measured by the fraction of inlier
pixel matches under the best approximating rigid transformation (see Appendix A). We denote by
T® the set of such 2D mappings which are perfectly rigid, such that (7') = 1. Let D denote a
detection in a scene image (e.g. a crop of a scene image). Note that, in the theoretical framerwork,
we are implicitly assuming that all detections contain an image of some object in our dataset.

We assume access to a similarity classifier which returns a score ¢(11, I5) indicating the confidence
that images I; and I» each contain the same object class. We also assume access to a distance
metric d(I1, I2) that measures the the distance between images /; and I; this could be any distance
metric that satisfies certain properties specified in Appendix A such as pixelwise L2-distance or



normalized cross-correlation. We make the below assumptions under which we will prove that our
algorithm will lead to no false positives. We will need to relax these assumptions for a practical
implementation; nonetheless, this framework provides the theoretical basis for our approach.

Assumption 1. (Dense Dataset)
For each detection D of class O;, 3m € M;, T € T® such that d(T(I; ,,), D) < .

Assumption 2. (Similarity Classifier Smoothness)

We have a similarity classifier c with a corresponding constant § that satisfies the following property:
for any two images I and I, and for any detection D, if 3T € TF such that d(T(Iy), I3) < 2,
then |C(Il7 D) — C(IQ,D)| < 4.

The first assumption states that our dataset is dense enough such that every detection can be con-
structed as a rigid transformation of some image in the dataset, with a bounded lighting change
applied. The second assumption states that the similarity classifier ¢ is a smooth function: if two
images I and I, are sufficiently similar such that I5 can be created by a rigid transformation and a
small lighting change applied to I, then the similarity classifier ¢ will output a similar score when
comparing /; and D as when comparing /s and D.

Our object detection pipeline proceeds as follows: we assume that an initial detector finds detections
D in an image and proposes an object class O; for each detection. We then pass the detection
and its corresponding proposed class to our verification system THEORETICALFLOW VERIFY(z, D)
which returns True if it can verify that D contains an image of class O; and False otherwise. Note
that THEORETICALFLOW VERIFY may return False either because O; is the wrong object class or
because the algorithm is simply unable to verify the class of the object. However, as we will show,
the key to our approach is that THEORETICALFLOW VERIFY will only return True when O; is the
true object class; hence when the system returns True, we can rely on the detection being accurate.

We present THEORETICALFLOW VERIFY in detail in Appendix A; this method is a theoretical ver-
sion of our practical algorithm FLOW VERIFY described in Section 4.1. The method iterates over all
images I; ,,, of the proposed object class O;; it then estimates a set of dense pixel-wise correspon-
dences T between the detection D and the image I; ,,,. It then determines whether it can validate
that D is of class O; based on image I; ,,,. These verification tests are:

1. Similar Object Comparison: Tests whether an image I; ,, of another object class O; looks
similar to D according to similarity function ¢; formally: V5 # i,VYn € M, if ¢(I; m, D) <
¢(Ijn, D) + 6, return False

2. Color Comparison: Tests whether the image distance between I; ,,, transformed using T
and the detection D is sufficiently small: if d(T (Li,m), D) > ~, return False

3. Flow Rigidity: Tests whether the the correspondences T' could have been derived from a
rigid object transformation: if 7(7") < 1, return False

Theorem 1. (No False Positive Theorem) [ Proof: see Appendix A]
Under assumptions 1 and 2, THEORETICALFLOW VERIFY does not produce any false positives.
That is, the following statement always holds: THEORETICALFLOW VERIFY (i, D) returns False
whenever the ground-truth class for detection D is different from O;.

Note that THEORETICALFLOWVERIFY (i, D) returns False whenever it cannot verify that the
ground-truth class of D is O;. This can sometimes occur even if O; represents the ground-truth
class of D, if the estimated correspondences T are not accurate. It will also return false whenever
the ground-truth class of D is not O;. Thus THEORETICALFLOW VERIFY has 100% precision; every
time it returns True, the proposed object class is the same as the ground-truth. On the other hand, the
recall of the algorithm is not guaranteed; it may return False for an arbitrary proportion of examples,
even if the proposed object class is correct. Note that the No False Positive Theorem does not make
any assumptions on the quality of the set of predicted correspondences T if the correspondences are
not accurate, then THEORETICALFLOW VERIFY will also reject the detection. We will now describe
an approximation of this framework that leads to a practical implementation of this algorithm.

4 Approach

We provide a brief overview of our pipeline for high-precision detection. It consists of three stages:



1. Base Instance Detector: We first run an instance detector trained on the objects of interest.
This stage provides candidate bounding box detections for target objects, as well as a pro-
posed object class O; for each box. The focus of our work is verifying these detections, as
described below.

2. Dense Pixel-wise Correspondence (FLOWMATCHNET): We next predict dense pixel-wise
correspondences between template images and each proposed detection, cropped from the
scene. See Appendix B for more details on the network architecture of FLOWMATCHNET.

3. Verification tests (FLOWVERIFY): Given the proposed detection and template images and
estimated pixel-wise correspondences between the two, we conduct a set of verification
tests to ascertain whether the proposed class of the detection is correct.

4.1 Verification Tests

We design verification tests that are modifications to our theoretical framework (Section 3 and Ap-
pendix A). These tests, which we call ‘FLOWVERIFY’ tests (since they make use of predicted flow
correspondences), are intended to be stringent; any detection that does not pass these tests is deemed
‘rejected’ and will receive a lower detection score than the detections that pass the tests. We can be
highly confident that the detections that pass our verification tests are likely to be true detections,
boosting the performance of our detector in the high-precision regime, as our results demonstrate.
The first three verification tests are derived from our theoretical framework of Section 3:

1. SIMOBJ: This test corresponds to the similar object comparison test in our theoretical framework.
For each detection, there should be only one target object being matched to it with high confidence.
The similar object comparison test is the following: for each detection D we compute a confidence
score ¢(D) using the initial detector (such as TDID [11]). We then search whether there is another
detection D’ of another object which has an IOU of at least 0.5 with D. If no such detection is found,
SIMOBJ = 1. Otherwise, the similarity score for D is the minimum of the confidence difference
across all other detections D’: SIMOBJ = minps max(0,c(D) — ¢(D')). We define the similar
object test using a boolean variable given by Tsiuos; = (SIMOBJ > 7gif¢).

2. FCOLOR: This test corresponds to the color comparison test in our theoretical framework. We
estimate the pixel-wise correspondences T between a template image I; of the proposed object
class O, and the detection D. We then check the image similarity between D and the template
image transformed using the predicted correspondences T (I;). We use normalized cross correlation
(“ncc”) to measure this similarity, which lies in [—1, 1]. We define FCOLOR = %(ncc(T(Ii), D)+
1) € [0, 1] and we define the flow color test using a boolean variable given by 7010 = (FCOLOR >

Qcolor)-

3. FRIGIDITY: This test corresponds to the rigidity test in our theoretical framework. Assuming
objects are rigid, if the detection box contains the target object, then we would expect an ideal
mapping between the detection and a corresponding template image from a similar viewpoint to
describe a rigid body transformation. We use RANSAC [28] to find the best-fit fundamental matrix
(using the 8-point algorithm [29]) that maximizes the number of corresponding inlier pairs. The
proportion of inliers under the best-fit mapping is a measure of how rigid the flow is. We define flow
rigidity as
#inliers

FRIGIDITY =
#total correspondences

and we define a flow rigidity test using a boolean variable T,.;, = (FRIGIDITY > «,;,). Besides the
verification tests motivated by our theoretical framework, we design two additional tests to evaluate
the extent of each bounding box prediction:

4. FPRECISION: If we expect the detection box to contain the entire object (and not be too small),
we would expect all pixels in the template image to be mapped to pixels inside the bounding box.
We define flow precision as

#target correspondences mapped to inside bbox

FPRECISION =
#total correspondences

and the flow precision test is defined using a boolean variable T}, = (FPRECISION > prec)-



5. FRECALL: Complementary to precision, if we expect the detection box to contain only the
detected object (and not be too large), we would expect the flow mapping to cover all pixels of the
detection box. To measure this, we can look at the bounding box that tightly fits the extent of the
mapped pixels in the scene. We define flow recall as the IoU between the box suggested by flow to
the bounding box output by the detector, and compute a flow recall score as

FRECALL = JoU(detector bbox, bbox suggested by flow).

The flow recall test is defined using a boolean variable T,... = (FRECALL > i.ec). Our overall
verification test is

FLOWVERIFY :TSIMOBJ /\Tcolor /\Trig /\Tprec A Treca

with given threshold values and parameters 7g; s f, Qcolors Crig, Cprec, Crec € [0, 1], tuned with a
validation set as described in Section 5. For a given object of interest, we could have multiple
template images from different viewpoints and lighting conditions. In this case, we say that the set
of template images for a given class passes FLOW VERIFY if any one of the template images for that
class passes these tests.

While FLOWVERIFY tests are designed to improve performance in high precision regime, they
might worsen performance in the low-precision regime as they could reject true positives. As there
are cases where performance in low-precision regime is also important, instead of completely re-
jecting detections not passing FLOW VERIFY tests, we rerank all detections from our base detector
based on 1) whether a detection passes FLOWVERIFY tests and 2) the score predicted by base de-
tector. All detections that pass FLOWVERIFY are ranked higher than all detections that don’t. The
reranking procedure can be viewed as reducing the confidence of the detections that do not pass the
FLOWVERIFY tests. As we will see, this improves performance in the high-precision regime while
at the same time maintaining performance in the low-precision regime.

5 Experiments

Datasets. We evaluate our framework on two tests sets — the GMU Kitchens test split [30] and W-
RGBD scenes vl Dataset [31]. Both datasets contain images of objects placed in indoor scenes such
as kitchen surfaces, table tops, and living rooms. For FLOWMATCHNET and FLOW VERIFY, at test-
time we use 15 equally spaced viewpoints per object taken from [32] or [33] to form our “template
images”. We also vary the number of template images to explore the speed-accuracy tradeoff of
our system in section 5.1. For GMU, we evaluate on the 11 BigBIRD objects; for W-RGBD, we
evaluate on 9 textured objects.

Base Instance Detector In this work, we focus on improving the precision of an existing instance
detector. One could use any instance detector with our approach; we use target driven instance de-
tection (TDID) [11], as this method produces state-of-the-art results for instance detection, including
one-shot instance detection that we evaluate on in our work. In the one-shot scenario, the training
and validation objects are separate from the objects evaluated on at test time; the detector must gen-
eralize to novel objects. TDID showed state-of-the-art performance for this task [11]. Similarly, we
train other components of our system, such as FLOWMATCHNET, in a one-shot manner, such that
our entire system can be used to detect novel objects.

The base detector TDID is trained on the Active Vision Dataset (AVD) [34], W-RGBD scenes
Dataset [31], and synthetic images from Cut-Paste-Learn [35]. GMU objects common to the AVD
dataset are removed from training so that we can evaluate this detector in a one-shot manner. In
order to evaluate on W-RGBD Scenes dataset in a one-shot manner as well, for this evaluation we
use the TDID model released by [11] that is trained only on AVD.

FLOWMATCHNET. Similar to previous optical flow models [19, 20], we train FLOWMATCH-
NET on synthetic data for which ground-truth correspondences can be computed. We train FLOW-
MATCHNET successively on synthetic datasets of increasing difficulty. First we train on objects
from MS-COCO [36] with synthetic affine transformations; next we train on BigBIRD [32] images
that are cropped out and blended into background via homographic transformations, randomized
lighting conditions, and image blurs. More details are in Appendix C.

FLOWVERIFY. We use a validation set to tune the parameters for the tests in FLOWVER-
IFY. As our validation set, we use the YCB-Video training set, on which we tune the values
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Figure 2: Precision-Recall (PR) curves for the base instance detector, the detector improved by
FLOWVERIFY, and the SIFTVERIFY baseline, evaluated on the GMU (a) and W-RGBD (b)
datasets.

for aiyig, Qeotor, Qprec, Crec, Naiff € [0,1] by optimizing mAP. We find the optimal values to be
rig = 0.9, Aeolor = 0.5, Oprec = 0.9, pee = 0.3 and 7g;7y = 0.0 (meaning that all other object
classes should have strictly lesser confidence scores if detected).

5.1 Results

Figure 2 shows precision-recall curves of the base instance detector (TDID) and the improved detec-
tor using FLOWVERIFY, on GMU (a) and W-RGBD (b) datasets. On both datasets, FLOWVERIFY
significantly improves detection performance in the high-precision regime to the left end of the PR
curve. For high scoring detections, it makes significantly fewer errors than TDID as it is able to
filter out many false positive detections using the verification tests. Table 1 summarizes mAP and
maximum precision of baseline detectors and FLOWVERIFY on GMU and W-RGBD. It is worth
noting that although FLOW VERIFY is designed to reject false positives and improve performance in
the high-precision regime, the PR curves show that, with the re-ranking procedure, the performance
does not degrade in the low-precision regime (right side of the curve). In the low-precision regime,
FLOWVERIFY nearly matches the base detector in performance. This shows that verification tests
can make an instance detector more reliable and precise while simultaneously improving overall
performance.

GMU-Test RGBD
Method mAP  max Precision | mAP  max Precision | time(s)
Base Detector | 0.379 0.697 0.222 0.587 0.037
SIFTVERIFY | 0.382 0.781 0.228 0.767 0.940
FLOWVERIFY | 0.422 0.939 0.278 0.817 0.872

Table 1: Overall performance (mAP) and max Precision results.

We note that our method presents a tradeoff between precision/accuracy and timing performance.
As more template images are used, the precision/accuracy of our system increases, but it will take
longer to run. Hence, the user of our system can adjust the number of template images based on
their specific needs. We report the running times of our method for varying number of template
viewpoints in Table 2.

GMU-Test RGBD
Method mAP  max Precision | mAP max Precision | time(s)
FLOWVERIFY(15 vp) | 0.422 0.939 0.278 0.817 0.872
FLOWVERIFY-12vp | 0.413 0.946 0.278 0.838 0.696
FLOWVERIFY-9vp | 0411 0.962 0.275 0.847 0.540
FLOWVERIFY-6vp 0.408 0.898 0.263 0.766 0.379
FLOWVERIFY-3vp 0.405 0.932 0.252 0.783 0.201

Table 2: Tradeoff of performance vs speed as we vary the number of viewpoints.

7



(a) (b) (© (d

Figure 3: (a, b): False positives from the base detector filtered by FLOWVERIFY; (c, d): True
positives from the base detector accepted by FLOW VERIFY.

Table 3 in the Appendix shows an ablation analysis of our method; we remove verification tests in
FLOWVERIFY one at a time and report performance on the test set. Dropping FRIGIDITY leads to
the largest drop in performance in terms of both mAP and maximum precision.

5.2 SIFTVERIFY Baseline

We implemented and evaluated another verification method using SIFT-based [37, 4] keypoint cor-
respondences as a baseline for our learning-based dense-correspondences computed by FLOW-
MATCHNET. This baseline is designed to test our hypothesis that verification tests should make
use of both machine learning and non-machine learning approaches; we use machine learning for
computing the correspondences (FLOWMATCHNET) but we use the non-learning based verification
tests of FLOW VERIFY to verify detections.

In contrast, SIFT [37, 4] is a non-learning based approach for computing correspondences, and we
combine it with a non-learning based approach for verification. We implement verification tests on
top of SIFT that are analogous to FLOW VERIFY, described in more detail in Appendix E. We call
this baseline SIFTVERIFY. Figure 2 and Table 1 show the performance on the GMU and W-RGBD
datasets. For both datasets, SIFTVERIFY slightly improves performance over the base detector,
but performs consistently worse than FLOWVERIFY. This demonstrates the value of using machine
learning for computing correspondences, even if the final verification tests are not learned.

5.3 Qualitative Analysis

Figure 3 (a, b) shows examples of false positive detections output by the base detector (TDID) but
filtered out using FLOWVERIFY. Example (a) is a detection with high FRIGIDITY, FPRECISION,
and FRECALL scores, but with a low FCOLOR score. In such cases, the detection is of an object with
very different color and texture from the target object, resulting in low color similarity. Example (b)
shows a detection with high FCOLOR and FPRECISION scores but with a low FRIGIDITY score.
Here, the matched colors are fairly similar; however, the correspondences cannot be derived from a
rigid body transformation, and hence the detection has a low FRIGIDITY score. Examples (c) and
(d) in Figure 3 show true positive predictions output by the base detector which pass FLOW VERIFY.
We can see that the flow quality is also quite good by the correct matching of features across the
target and the bounding box area.

6 Conclusion

We have proposed a method to combine machine learning based detection and correspondence
matching with non-learning based verification tests to increase the accuracy of an existing instance-
detection system in the high-precision regime (without reducing overall detection performance).
The verification tests are based on dense-pixel correspondences computed between the detection and
template images; we reduce the confidence of any detection that does not pass these tests, thereby
rejecting many false positives. Our system is grounded in a novel theoretical framework that we
prove leads to no false positives, under certain assumptions. Furthermore, we use our method in
a one-shot fashion, applying our approach to a novel set of objects at test time without finetuning.
We hope that our system will be useful for robotic systems that need reliable performance for high
confidence detections.
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Appendix

A Theoretical Framework

In this section, we lay out a theoretical framework for instance detection with no false positives. We
will specify a set of assumptions and prove that our detector will have no false positives if these
assumptions are satisfied. Our practical system will make approximations to these assumptions;
nonetheless the below theoretical framework will form the basis to our approach.

Notation. We denote by O; the ith object from the O categories of objects. For each object O;,
we assume access to a dataset of M; images recorded from a variety of viewpoints and lighting
conditions; we denote I; ,,, as the mth image for object O;.

We denote by T : (u1,v1) — (usg,v2) a 2D mapping from pixels of one image to the pixels of
another image. We overload notation such that T'(I) is an application of the 2D mapping T to
all pixels in the image I to produce a new image T(I). We denote by T the set of such 2D
mappings which are perfectly rigid, i.e. mappings that could be derived from some rigid object
transformation. In other words, if T € T, then there exists some Fundamental Matrix F such that,
for all z = (u,v), we have that 2’7 Fz = 0, where 2’ = T'(u,v). Let 7(T') denote the “rigidity” of
such a transformation, measured by the fraction of inlier pixel matches under the best approximating
rigid transformation. In other words, for any given transformation 7', we find

2w W (u,0) = T(w,0)[| < €}
r(T) = max
TeTr Dl
where 1{-} is the indicator function and e is a constant. We describe our practical implementation of
this function in Section 4.1. Since T7 is the set of perfectly rigid transformations, for all T € T,

we have that 7(T) = 1. Also, if ¢ = 0, r(T') = 1 implies that T € TF. However for practical
reasons, we relax e to a non-zero but small value in our implementation.

(D

Let D denote a detection in a scene image (e.g. D is a crop of a scene image). We also denote gt(D)
as the ground-truth object class for the object contained in the image D. Note that we are implicitly
assuming that all detections contain an image of some object in our dataset.

We assume access to a similarity classifier which returns a score c(I1, I2) that indicates the con-
fidence that images I; and I, each contain the same object class. Practically, this corresponds to
our base one-shot instance detector. We will specify below the assumptions that we make about the
similarity classifier.

We also assume access to a distance metric d(I1,I2) which measures the the distance between
images I; and I»; Any distance function d : Z?> — R that satisfies the following two properties
can be used (the properties will be necessary for the proofs later):

1. Triangle Inequality: d(Iy,I3) < d(I1, I3) + d(I2, I3).

2. Permutational Invariance: d([1,Is) = d(o(I1),0(I2)), where o is any permutation of
image pixels.

Note that many distance metrics satisfy the above properties, such as the maximum difference in
pixel intensities d(I1,I2) = ||I1 — I2||co, any L, norm, or normalized cross-correlation that we
implement in our system.

We denote F'(Iy, I5) as a function that computes a 2D mapping between images I; and I5. Typically,
the objective of this function is to find a rigid 2D mapping that minimizes some distance metric d,
ie.
in d(T'(I), I 2

arg min d(T(1), I2) 2)
In the below theorem, we make no assumptions about the output of F'(I7, I5); we will prove that our
system will have no false positives, regardless of the output of F'(I1, I5). Nonetheless, if F'(I1, I5)
does output a transformation that optimizes Equation 2, then this will maximize the recall of our
algorithm.
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We make the below assumptions; we will prove that, with these assumptions, our algorithm will
lead to no false positives. In practice, we will need to relax these assumptions for a practical
implementation; nonetheless, this theoretical framework provides the basis for our approach.

Assumption 1. (Dense Dataset)
For each detection D of ground-truth class O;, 3m € M;, T € T% such that d(T(I; ), D) < 7.

This assumption states that our dataset is dense enough such that every detection can be constructed
as arigid transformation of some image in the dataset, with a bounded lighting change applied. Note
that this assumption implicitly ignores occlusions or background variation, although our practical
implementation handles occlusions and background variation for the detections.

Assumption 2. (Similarity Classifier Smoothness)

We have a similarity classifier ¢ with a corresponding constant § that satisfies the following property:
for any two images I; and I, and for any detection D, if 37" € T such that d(T(I), I3) < 27,
then |C(Il7 D) — C(IQ,D)| < 0.

This assumption states that the similarity classifier c is a smooth function, in the following sense: if
two images I; and I, are sufficiently similar such that I5 can be created by a rigid transformation
and a small lighting change applied to I;, then the similarity classifier ¢ will output a similar score
when comparing I; and D as when comparing I5 and D.

Note that we make no other assumptions on the output of the similarity classifier ¢, and hence this
similarity classifier is not, by itself, capable of creating the strong “no false positive” results that we
will provide below for our overall system; the similarity classifier must be combined with our other
tests for verifying dense correspondences.

Our pipeline for object detection proceeds as follows: we assume that an initial detector finds detec-
tions in an image and proposes an object class O; for each detection D. We then pass the detection
and its corresponding proposed class to our verification system THEORETICALFLOW VERIFY(z, D)
which returns True if it can verify that D contains an image of class O; and False otherwise. Note
that THEORETICALFLOW VERIFY may return False either because O; is the wrong object class or
because the algorithm is simply unable to verify the class of the object.

Our algorithm for THEORETICALFLOW VERIFY is described below. This algorithm is designed to
return False for all false positive detections; in other words, THEORETICALFLOW VERIFY (i, D)
will return False if gt(D) # O,. The algorithm proceeds as follows: For any detection D and
proposed object class O;, THEORETICALFLOW VERIFY iterates over all images m € M; in the
dataset for object class O;. It then compares each template image I; ,, to the detection D using
VERIFYMATCH, which either returns True if it can verify that O; is the correct object class of D
and False otherwise.

VERIFYMATCH proceeds as follows: First, for template image I; ,,,, it performs “Similar Object
Comparison”: it checks whether there is another object O; # O; in the dataset, and some template
image n of object O;, such that I; ,,, and I;,, both have a sufficiently similar appearance to D
according to the similarity classifier c. In such a case, we cannot verify whether D is an object of
class O; or Oj, so the method returns False.

Next, VERIFYMATCH computes a set of dense pixel-wise correspondences T (also referred to as
“Flow”) between template image I; ,,, and the detection D. These correspondences I’ represent a
2D mapping from pixels of I; ,, to the pixels of D, i.e. T : (u1,v1) — (u2, v2). Note that we make

no assumptions about T'; if our method for estimating correspondences is not very accurate, then
this will reduce the recall of our system but we will still have no false positives, since our system
will return False for such examples for all object classes.

Finally, VERIFYMATCH checks whether T corresponds to a rigid object transformation and returns
False otherwise.

Here we state the main theorem of our approach:

Theorem 1. (No False Positive Theorem)
Under assumptions 1 and 2, THEORETICALFLOWVERIFY does not produce any false positives.
That is, the following statement always holds: THEORETICALFLOW VERIFY (¢, D) returns False
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Algorithm 1 Theoretical Flow Verifier

1: procedure VERIFYMATCH(I; ,, D) > returns True if verification succeeds
2: /l Test 1: Similar Object Comparison

3 for j € Z\{i} do
4: for n € M; do
5: if ¢(I; mm, D) < c(Ijn, D)+ 6 then
6: return False
7 // Test 2: Color Comparision
8: T + F(I;m, D) > Estimated flow
9:  ifd(T(Ii,m), D) >~ then
10: return False

11: /I Test 3: Flow Rigidity

12: if 7(T') < 1 then

13: return False

14: return True

15: procedure THEORETICALFLOW VERIFY(%, D)
16: for m € M; do

17: if VERIFYMATCH(Z; ;,,, D) then
18: return True
19: return False

whenever gt(D) # O;, i.e. whenever the ground-truth class for detection D is different from class
i

Note that THEORETICALFLOW VERIFY (¢, D) may sometimes return False even if ¢ is the correct

ground-truth class of D if it cannot verify this proposal. In such cases, THEORETICALFLOW VER-

IFY will return false for all object classes, meaning that we cannot verify the category of detection

D using our approach. Still, the benefit of our approach is that, when THEORETICALFLOW VER-

IFY (¢, D)) returns true, we can be assured that detection D is an object of class O;.

Proof. We need to show that THEORETICALFLOWVERIFY(i, D) returns False whenever the
ground-truth class of object D is not O;. Note that from line 17, we need to prove that for any object
class O; that is not equal to the ground truth class, every template image I; ,,,, for all m € M; of ob-
ject O; needs to be rejected by VERIFYMATCH. That is, VERIFYMATCH(I; ,,,, D) = False, Ym €

Assume that the ground-truth object class of D is O;. We can partition M; into three classes:

1. My := {m : 3T € T such that d(T(I; ), D) < ~}.
2. Mo ={me M; | d(T(I;m), D) > y\Mi1.
3. Mi,g = Mi\(Mi,l U Mi,2)'

Now we show VERIFYMATCH(I; ,,,, D) = False, for each of the three cases above.

1. Case 1: m € M; ;. VERIFYMATCH will return False at line 6.

Since m € M, 1, we know that 37; € TE such that d(T;(L; ;m), D) < ~}. In other words,
M; 7 is a set of images of object class O; that can be described by a rigid transformation
and a small lighting change applied to D (which is an object of class O;). Thus there are
two object classes, O; and Oj, that both appear similar to detection D, although detection
D is an object of class O;.

From assumption 1, 3n € M;,T; € T* such that d(T}(1;,,), D) < ~. Let us define a new
operator T;; = (Tj)~! o T;, i.e. first apply 7; and then apply inverse of T}. First, note that,
if 7; € TH and T; € T, then T;; € T'* since the composition of these rigid transforms is
arigid transform. Secondly,
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d(Tij(Liim), Ijn) =

The first line holds by the permutation invariance property of d, since T’ is a permutation of
pixels. The second line holds by definition of T7;. The third line holds by triangle inequality
of d. The last line holds because of the definition of m and T; that d(T;(I;,,,,), D) < vy, and
by definition of n and T} that d(T(I; ), D) < 7.
By assumption 2, since d(T5;(1;,m), Ijn) < 27, then |¢(I;m, D) — c(I;n, D)| < 0. This
then implies that

C(Ii,m; D) < C(Ij,n, D) + )

c(Iim,D) < maxc(l,,D)+6

n

Hence, the conditional at line 5 will be true and so VERIFYMATCH(; ,,,, D) will return
False at line 6.

2. Case 2: m € M; . VERIFYMATCH will return False at line 10.

By definition of M; o, we know that d(7'(I;,,), D) > ~. Hence the conditional at line 9
will be true, so VERIFYMATCH(; ,,, D) will return False at line 10.

3. Case 3: m € M; 3. VERIFYMATCH will return False at line 13.

If m € M, 3, then by definition, m ¢ M, and m ¢ M, 5. Since m ¢ M, ;, then
BT € T such that d(T(I; ), D) < ~. Since m ¢ M; o, then d(T'(I; ,,), D) < ~y. Hence

we know that T ¢ TR, so r(T)) < 1. Hence the conditional at line 12 will be true, so
VERIFYMATCH(I; ,,, D) will return False at line 13.

Hence we have shown that Vi # j,Vm € M;, VERIFYMATCH(I, ,,,, D) = False.
This implies that THEORETICALFLOW VERIFY (4, D) = False whenever ¢ # j. O

B Network Architecture Details

We call our network for predicting dense pixel-wise correspondences FLOWMATCHNET. For every
proposed detection, we pad the detection to square, crop it (which we refer to as the ‘cropped scene
image’), and feed it to FLOWMATCHNET. FLOWMATCHNET also takes an image from the dataset
and computes a mapping from every pixel in the template image to some pixel in the cropped scene
image.

We compute pixel correspondence from each template image of the object to the cropped scene
image. We train a deep neural network using a modification of the FlowNetC neural network ar-
chitecture [19]. Specifically for FlowNetC, a series of convolutional layers are applied separately to
input images to extract features from each image. Then, a cross-correlation layer is used to com-
bine features coming from each image branch, to compare feature in every location in imagel with
every location in image2. However, FlowNetC was designed for optical flow, which is typically
applied to consecutive frames of a video with the assumption that pixels have small displacements
between consecutive frames. Therefore, in the original FlowNetC, cross-correlation is approximated
by considering only a 21 x 21 pixel neighborhood window [19, 20].

However, we cannot make such a ‘small displacement’ assumption in our case because the object in
the scene crop might have undergone a fairly large rotation and translation relative to the template
image. Hence, we perform a full cross correlation between all pixel pairs in the scene and template
images. Furthermore, flow prediction is traditionally made in terms of displacement vectors. Since
a full cross-correlations is implemented as unrolling the entire 2D feature map, we reparameterize
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Figure 4: (a), (b): Target and scene images from MS-COCO synthetic dataset that applies affine
transformations. (c), (d): Target and scene images from BigBIRD-RGBD synthetic dataset that
applies homography transformations.

flow in terms of global coordinates of pixels being mapped to in the second image. Hence we
concatenate (z,y) pixel coordinates as additional feature maps, following [38].

C Training details of FLOWMATCHNET

Optical flow models are trained using synthetic datasets that have ground truth flow [19, 20]. Flownet
based models have been shown to generalize well when trained on such synthetic datasets.

For training FLOWMATCHNET, we train our model successively on synthetic datasets with increas-
ing difficulty —

1. MS-COCO with affine transformations: we take images from the MS-COCO dataset [36],
crop an area around the object using its annotated bounding box to simualate detections
from a base detector, and apply a random rotation and translation to create a simulated
scene image. These transforations help the flow model to learn simple affine tranforma-
tions. Although the transformations are relatively simple, MS-COCO has a huge variety
of objects; training on such a diverse set of objects can help the network to generalize to
different objects types. Examples of transformations are in Figure 4.

2. BigBIRD + RGBD scenes with homographies: We take objects from the BigBIRD dataset
[32], crop them out using segmentation masks, and paste them onto background scenes
in the W-RGBD scenes dataset [31]. Since we want FLOWMATCHNET to generalize to
novel objects, we exclude training on the 11 objects that are part of GMU Kitchens [30],
our test set. We apply random homographies to the cropped images and blend them into
scenes using Cut-Paste-Learn [35], while simulating randomized lighting conditions and
image blurs. We limit the random homography to ensure that it is not too unrealistic and
does not distort the object too much; specifically we ensure that the top-left corner of
the bounding box is still the top-left corner after applying the homograph, the bottom-
right corner is still at the bottom-right, and so on. Importantly, since these are controlled
synthetic transformations, ground truth flow can be computed. We train on L2 loss for
optical flow similar to [19, 20].

We first trained on the MS-COCO synthetic flow dataset for 1.6M iterations using Adam optimizer
with a learning rate of 10~* with a batch size of 2. We then finetuned on the BigBIRD-RGBD
synthetic flow dataset for 50,500 iterations using Adam optimizer with a learning rate of 10~% and
batch size 2.

D Ablation Details

This section lists detailed results of our ablation analysis in terms of mAP and maximum preci-
sion for FLOW VERIFY, versus dropping each verification test one at a time. As shown in Table 3,
FLOWVERIFY has the best performance in terms of maximum precision and mAP on GMU-Test,
as well the second highest maximum precision on W-RGBD. Dropping FRIGIDITY results in the
largest drop in maximum precision and mAP on both GMU-Test and W-RGBD. This confirms the
importance of flow rigidity test as suggested by our theoretical framework.
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GMU-Test W-RGBD

Method mAP  max Precision | mAP  max Precision
FLOWVERIFY 0.422 0.939 0.278 0.817
FLOWVERIFY-SIMOBJ 0.412 0.906 0.316 0.727
FLOWVERIFY-FRIGIDITY | 0.394 0.808 0.235 0.700
FLOWVERIFY-FCOLOR 0.422 0.933 0.278 0.819
FLOWVERIFY-FPRECISION | 0.415 0913 0.280 0.811
FLOWVERIFY-FRECALL 0.413 0.887 0.277 0.753

Table 3: Ablation analysis.

E SIFTVERIFY

Here we describe the details of the verification tests used for SIFTVERIFY. For FPRECISION,
we computes the proportion of matched pixels that lie inside the predicted bounding box. This
test is often imprecise because SIFT matches are sparse, often as few as 2-3 matches. However,
to estimate rigidity using the fundamental matrix, we need at least 8 matches. Hence, instead we
simply compute the raw number of SIFT keypoint matches. Since SIFT matches are few in number,
it is also not possible to estimate recall the way we do for FRECALL, so we omit that test as well.
We find that these settings give the best performance for this baseline. We run grid-search to find
the best thresholds for SIFTVERIFYon YCB following the same procedure as for FLOWVERIFY.

F Further Qualitative Analysis

In this supplement, we perform a comparative and qualitative analysis of our method FLOW VERIFY
with the SIFTVERIFY baseline, to complement the quantitative analysis in the main paper. We
will first show examples where SIFTVERIFY succeeds in filtering out false positives from a base
detector and where it is successful in retaining true positives. Then we will analyze some failure
cases of SIFTVERIFY, where our model is able to filter false positives and retain correct detections
whereas SIFTVERIFYis not.

It is important to note that since we are interested in high-precision detection, we will analyze
detections which were given a very high confidence score (> 0.99) by the original detector on the
GMU Kitchens [30] test set. In order to improve detector performance in the high precision regime
(the leftmost parts of the PR-curve), the system must be able to filter out high-confidence false
positives whilst not rejecting too many true detections with high confidence.

As a reminder, FLOWVERIFY uses five tests — SIMOBJ, FCOLOR, FRIGIDITY, FPRECISION and
FRECALL . In order to pass a test, there must exist atleast one viewpoint of the target object whose
S1MOBJ, FCOLOR, FRIGIDITY, FPRECISION and FRECALL scores are all above their respective
thresholds. The thresholds that were tuned on YCB-Video train for FCOLOR, FRIGIDITY, FPRECI-
SION and FRECALL turn out to be 0.5, 0.9, 0.9, and 0.3 respectively, with parameters for SIMOBJ
being Niou = 0.5, Nratio = 0.0.

Similarly, SIFT filters detections by computing the number of keypoint matches between the target
image and cropped scene image. If the SMATCHES and SPRECISION are above their corresponding
thresholds, the detection is deemed to be true by the SIFT baseline. When tuned on YCB-Video
Train, the thresholds for SMATCHES and SPRECISION turns out to be 30 and 0.9 respectively.

F.1 Visualization Format

The visualization format is consistent across all Figure 5, Figure 6, Figure 7, and Figure 8 — the
top image shows a visualization of matching by FLOWMATCHNET and filtering by FLOW VERIFY,
whereas the bottom image shows matching using SIFTVERIFY. Each visualization consists of two
images. On the left is a ‘target image’ — it is an image of the object being detected. If the detection
passes the FLOWVERIFY or SIFT verification tests, the displayed viewpoint is the one that passes
all tests and has the largest product of scores, which denotes the “best” viewpoint of the object that
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is able to be matched by each of the methods. Otherwise, the canonical viewpoint of the object is
displayed in the visualization.

At the top of each visualization are scores for tests associated with that method, as well as thresholds,
in a score/threshold format. 20 randomly-chosen pixel-wise mappings are depicted. In the case of
SIFT, sometimes there are less than 20 keypoint matches found. In such cases, all keypoint matches
are depicted.

F.2 SIFT Successful Cases

In this section, we analyze cases where SIFT matching successfully filters false positives while
retaining true detections.

F.2.1 False Positives rejected by SIFT and FLOWVERIFY

Figure 5 contains four examples that denote false detections that are successfully filtered out by
both methods. In these examples , the homography based on flow computed by FLOWMATCHNET
produces many outliers, and hence are rejected by the FRIGIDITY test. This happens because when
the object are distinct and do not match, in which case the predicted flow can be arbitrary. SIFT also
successfully rejects all these examples, as it produces very few (< 30) keypoint matches.

F.2.2 True Positives accepted by SIFT and FLOWVERIFY

Figure 6 contains fours examples that represent true detections successfully retained by both meth-
ods. In these examples, FLOWMATCHNETand SIFT matches seem nearly perfect. This section
demonstrates that SIFT features can be effective in object matching, and our implementation of
SIFT is a reasonably strong baseline. However, we show below that SIFT can also fail on many
cases.

F.3 SIFT Unsuccessful Cases

In this section, we analyze cases where SIFT matching fails to filter false positives or retain high-
confidence true detections. We illustrate how FLOWVERIFY successfully handles these cases, to
highlight the strengths of our method over the SIFT baseline.

F.3.1 False Positives accepted by SIFT but rejected by FLOWVERIFY

In Figure 7, the four examples represent false detections that SIFT fails to filter out, but are suc-
cessfully filtered out our method. In Figure 7(a), the target object is different from the object in the
bounding box, but they have the same text in their logos. SIFT fails in this case since it can find
enough keypoint matches just in the logo area. FLOWVERIFY handles this case successfully since it
relies on dense pixelwise correspondence. As the object in the cropped scene is different from that
in the target image, FLOWMATCHNET cannot find a rigid transformation that matches color for all
pixels, thereby not passing the FRIGIDITY test.

Figure 7(b, c, d) illustrate another difference between dense and sparse pixel-wise matching. In these
examples, the bounding boxes are incomplete and the cropped scene only contains a part of the target
object. As SIFT only needs to match a few keypoints, even if small parts of two objects seem to
match, it is still enough for SIFT to accept it as a correct detection. FLOWVERIFY combined with
FLOWMATCHNET successfully rejects these as false detections since FLOWMATCHNET computes
dense matches across the entire object, resulting in flow fields that have a low FRIGIDITY score.

F.3.2 True Positives rejected by SIFT but retained by FLOWVERIFY

Figure 8 contains four examples that denote true positives, which are successfully retained by
FLOWVERIFY but are incorrectly rejected by SIFTVERIFY. In all examples (a, b, ¢, d) in Figure
8, FLOWMATCHNET produces good-quality pixel-wise correspondence, leading to high FCOLOR,
FRIGIDITY, FPRECISION and FRECALL scores. However, for most examples, SIFT can produce
very few keypoint matches.

Our experiments show that SIFT struggles to perform reliable keypoint matching in our setting
where there can be drastic changes in viewpoints, lighting conditions and even occlusions. We
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FRigid: 0.588/0.900, FColor: 0.456/0.500, FPrec: 1.000/0.900, FRecall: 0.093/0.300 FRigid: 0.610/0.900, FColor: 0.573/0.500, FPrec: 0.092/0.900, FRecall: 0.075/0.300
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FRigid: 0.702/0.900, FColor: 0.526/0.500,

, FPrec: 0.741/0.900, FRecall: 0.220/0.300 FRigid: 0.398/0.900, FColor: 0.540/0.500, FPrec: 1.000/0.900, FRecall: 0.155/0.300

©

Figure 5: False detections which are successfully filtered out by both FLOWVERIFY and SIFTVER-
IFY. In each image, top: FLOWVERIFY, bottom: SIFTVERIFY.

show that in such scenarios, predicting a dense pixel-wise correspondence and designing subsequent
verification tests can improve instance detectors towards high-precision and verifiable recognition.
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FRigid: 1.000/0.900, FColor: 0.678/0.500, FPrec: 1.000/0.900, FRecall: 0.661/0.300 FRigid: 0.993/0.900, FColor: 0.694/0.500, FPrec: 1.000/0.900, FRecall: 0.762/0.300

FRigid: 0.972/0.900, FColor: 0.571/0.500, FPrec: 1.000/0.900, FRecall: 0.559/0.300

SMatch: 36.00/30.0, SPrec: 0.97/0.9

(©) d

Figure 6: True detections that are successfully retained out by both FLOWVERIFY and SIFTVER-
IFY. In each image, top: FLOWVERIFY, bottom: SIFTVERIFY.

FRigid: 0.290/0.900, FColor: 0.504/0.500, FPrec: 1.000/0.900, FRecall: 0.070/0.300 FRigid: 0.490/0.900, FColor: 0.572/0.500, FPrec: 0.975/0.900, FRecall: 0.345/0.300

(b)

() ()]

Figure 7: False detections which are incorrectly retained by SIFTVERIFY. In each image, top:
FLOWVERIFY, bottom: SIFTVERIFY.
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FRigid: 0.990/0.900, FColor: 0.763/0.500, FPrec: 1.000/0.900, FRecall: 0.811/0.300

FRigid: 0.961/0.900, FColor: 0.767/0.500, FPrec: 1.000/0.900, FRecall: 0.538/0.300

(b)

() (d)

Figure 8: True detections that are incorrectly filtered by SIFTVERIFY. In each image, top:
FLOWVERIFY, bottom: SIFTVERIFY.
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