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Abstract: Data-efficiency is crucial for autonomous robots to adapt to new
tasks and environments. In this work, we focus on robotics problems with a
budget of only 10-20 trials. This is a very challenging setting even for data-
efficient approaches like Bayesian optimization (BO), especially when optimiz-
ing higher-dimensional controllers. Previous work extracted expert-designed low-
dimensional features from simulation trajectories to construct informed kernels
and run ultra sample-efficient BO on hardware. We remove the need for expert-
designed features by proposing a model and architecture for a sequential varia-
tional autoencoder that embeds the space of simulated trajectories into a lower-
dimensional space of latent paths in an unsupervised way. We further compress
the search space for BO by reducing exploration in parts of the state space that are
undesirable, without requiring explicit constraints on controller parameters. We
validate our approach with hardware experiments on a Daisy hexapod robot and
an ABB Yumi manipulator. We also present simulation experiments with further
comparisons to several baselines on Daisy and two manipulators. Our experiments
indicate the proposed trajectory-based kernel with dynamic compression can offer
ultra data-efficient optimization.

Keywords: Bayesian Optimization, Data-efficient Reinforcement Learning,
Variational Inference

1 Introduction

Reinforcement learning (RL) is becoming popular in robotics, since in some cases it can deal with
real-world challenges, such as noise in control and measurements, non-convexity and discontinuities
in objectives. However, most flexible RL methods require thousands to millions of data samples,
which can make direct application to real-world robotics infeasible. For example, 10,000 30s tri-
als/episodes on a real robot would require ~100 hours of operation. Most full-scale platforms,
especially in locomotion, cannot operate this long without maintenance. Nowadays, commercially
available arms can operate for longer, however sophisticated anthropomorphic hands and advanced
grippers are still highly prone to breakage after even a handful of trials [1]. Hence the need for al-
gorithms that can learn in very few trials, without causing significant wear-and tear to the hardware.

In this work we focus on cases with a budget of only 10-20 trials. In such settings, using ap-
proaches like Bayesian optimization (BO) to adjust parameters of structured controllers can help
improve data efficiency. However, success of BO on hardware has been demonstrated either with
low-dimensional controllers or with simulation-based kernels that required hand-designed features.
We propose learning simulation-based kernels in an unsupervised way with a sequential variational
autoencoder (SVAE). Our approach embeds simulated trajectories £ to a space of latent paths 7, and
jointly learns a probability distribution p(7|z) that controllers with parameters = induce over the
space of latent paths. We were inspired by initial success of trajectory-based BO kernels [2], how-
ever that was demonstrated for BO in low dimensions (2-4D). Our results show that performance of
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Figure 1: An overview of our approach: We start by simulating controllers and collecting their trajectories &,
along with the fraction of time spent in undesirable regions given by Gqq. Next, we learn to embed trajectories
into a lower-dimensional a space of latent paths 7. We use dynamic compression to scale distances between
latent paths based on their desirability. This dynamically compressed latent space is used for BO on hardware.
Trajectory data £ consists of high-frequency readings of robot joint angles and object position/velocity estimates
(the framework can accommodate vision-based data in the future, but we do not experiment with it in this work).

a kernel based on raw trajectories deteriorates quickly for higher-dimensional problems. In contrast,
our kernel based on latent paths can still offer gains even for 48-dimensional controllers.

Global optimization in latent space can still suffer from sampling unsuccessful controllers, espe-
cially in the absence of dense rewards. One solution can be adding domain-specific constraints to
point optimization in the right direction. While these can be hard to define in controller parameter
space, frequently they can be easily expressed in observation/state space. For example, high veloc-
ities might be undesirable if they result in hard impacts. However, formulating this as constrained
optimization could result in overly conservative controllers. Instead, we incorporate controller de-
sirability into BO by reducing exploration in the part of the trajectory space that leads to undesirable
behavior. We compress the search space during BO dynamically by scaling the distance between
controllers based on their desirability, initially inferred from simulation. BO can then quickly re-
ject the undesirable parts of the search space, allowing for more exploration in the desirable parts.
Figure 1 gives an overview of the proposed approach.

We test our approach (SVAE-DC: informed SVAE kernel with Dynamic Compression) on a Daisy
hexapod and an ABB Yumi manipulator on hardware. We also conduct further simulation-based
analysis on Daisy and two manipulators. On Daisy, our method consistently learns to walk in less
than 10 hardware trials, outperforming uninformed BO. We also demonstrate significant gains on a
nonprehensile manipulation task on Yumi. All latent components of our kernel can be adjusted on-
line (by optimizing marginal likelihood as is done for BO hyperparameters). We anticipate that such
adjustment could be useful for future works for settings with a medium budget of trials (=100+).
Our code builds on the recently released BoTorch library [3] that supports highly scalable BO on
GPUs. We open source our code for simulation environments, training and BO'.

2 Background and Related Work

For learning with a small number of trials we turn to Bayesian Optimization (BO). It can be thought
of as a data-efficient RL method that obtains a reward only at the end of each trial/episode. BO offers
a principled way to trade-off exploration vs exploitation (see BO introduction and overview in [4]).
For higher-dimensional robotics problems BO can benefit significantly from using simulation-based
kernels. However, previous work required defining domain-specific features to be extracted from
large-scale simulation data (see Section 2.1). Variational Autoencoders (VAEs) [5] provide an
unsupervised alternative for embedding high-dimensional observations into a lower-dimensional
space. For example, [6] recently used VAE in a Gaussian Process (GP) kernel to optimize chem-
ical molecules. In robotics, VAEs have been used to process visual and tactile data (see [7] for
a survey). We are interested in encoding trajectory data, so a sequential VAE (SVAE) could be
applicable. [8, 9] show SVAEs learning latent dynamics. However, their physics simulations are
low-dimensional (e.g. position of a 2D ball), sequences have length 20-30 steps, and the focus is on
visual reconstruction. We aim to develop SVAE architecture that can easily handle simulations from
full-scale robotics systems (state spaces 27D+) and much longer sequences (lengths S00-1000).

Our original motivation for embedding trajectory data into the kernel was Behavior Based Kernel
(BBK) [2]. On low-dimensional problems it outperformed PILCO [10], which is one of the most

'SVAE-DC and BO code: https://github.com/contactrika/bo-svae-dc
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popular model-based RL algorithms and has been widely used for small domains. For larger do-
mains, such as those in our experiments, scaling PILCO can be difficult or intractable (see Section 5
in [2]). Instead of a direct comparison to PILCO, we compare our approach to a scalable version
of BBK. BBK is directly applicable only to stochastic policies, but we adapted it to our setting as
BBK-KL baseline. We randomize simulator parameters when collecting trajectories. Hence, even if
the simulator and controllers are deterministic, each controller still induces a probability distribution
over the trajectories. As proposed for BBK, for kernel distances we used symmetrized KL between
trajectory distributions induced by the controllers. The generation and reconstruction parts of SVAE
were used to estimate this KL. Since this baseline uses a neural network in the kernel, there is some
relation to methods in [11, 12] (though these focused on GP regression, and did not use trajectories).

A part of our work can be viewed as learning a low-dimensional representation of trajectories, which
is widely studied in robotics. For example, [13] use dynamic movement primitives (DMPs) to en-
code human demonstrations. Our locomotion controller is a variant of a cyclic DMP, which assumes
synchronization between the different joints of the robot. For locomotion, we provide comparisons
to BO with a standard kernel, which gives a sense of the performance of optimizing DMP parame-
ters with standard BO. However, for manipulation DMPs require demonstrations for data-efficiency.
Since we do not assume access to those, such approaches cannot be directly compared to our setup.

2.1 BO for Locomotion and Manipulation

Locomotion controllers most commonly used for real systems are structured and parametric [14, 15,
16]. BO has been used to optimize their parameters, e.g. [17, 18, 19]. Typically, these methods take
~40 trials for low-dimensional controllers (3-5D). For high-dimensional controllers further domain
information is needed. For example [20] use simulation and user-defined features to transform the
space of a 36-dimensional controller into 6D, making the search for walking controllers of a hexa-
pod much more data-efficient. [21] employ bipedal locomotion features to build informed kernels.
While a number of other RL methods can succeed in simulation, obtaining results applicable for lo-
comotion on hardware is challenging. Recently, [22, 23] showed that a deep RL method (PPO [24])
can be used for locomotion on hardware. However, they learn conservative controllers in simulation
and help transfer via system identification of actuator dynamics [22] and a user-designed structured
controller [23]. While these methods can help, they do not guarantee that a controller learned in
simulation will perform well on hardware. [25] showed learning to walk on a Minitaur quadruped
in only two hours. Minitaur has 8 motors that control its longitudinal motion, and no actuation for
lateral movements. In comparison, our hexapod (Daisy) has 18 motors and omni-directional move-
ments. Hence, learning control for Daisy would require significantly longer training. Since most
present day locomotion robots (including Daisy) get damaged from wear and tear when operated for
long, approaches that succeed for simpler quadruped controllers could be intractable in this setting.

In manipulation, active learning and BO have been used, for example, for grasping [26, 27]. These
works did not incorporate simulation into the kernel, so their performance would be similar to BO
with uninformed/standard kernel. [28] showed advantages of a simulation-based kernel, but needed
grasping-specific features. Somewhat related are works in sim-to-real transfer, like [1], though many
have visuomotor control as the focus (not considered here) and usually do not adapt online. [29]
do adjust simulation parameters to match reality, so it would be interesting to combine this with
BO in the future for global optimality (their work employs PPO, which is locally optimal). Due to
uncertainty over friction and contact forces, sim-to-real is challenging for non-prehensile problems.
However, such motions can be useful to make solutions feasible (e.g pushing when the object is
too large/heavy to lift or the goal is out of reach). [30, 31] report success in transfer/adaptation on
a push-to-goal task, showing the task is challenging but feasible. In our experiments we consider
a ‘stable push’ task: push two tall objects across a table without tipping them over. The further
challenges come from interaction between objects and inability to recover from them tipping over.

3 SVAE-DC: Learning Informed Trajectory-based Embeddings

We model our setting as a joint Variational Inference problem: learning to compress/reconstruct
trajectories while at the same time learning to associate controllers with their corresponding proba-
bility distributions over the latent paths. For this we develop a version of sequential VAE (SVAE).
The training is guided by ELBO (Evidence Lower Bound) derived for our setting directly from the
modeling assumptions and doesn’t require any auxiliary objectives. First, we define notation:



iz : policy/controller with parameters z, z € RP; policies can be either deterministic or stochas-
tic; for brevity we will refer to 7, simply as ‘controller z’

& = &7 : original trajectory for T" time steps containing high-frequency sensor readings
T = T1.x : latent space ‘path’ (embedding of a trajectory)

p(&1.7|z) : a conditional probability distribution over the trajectories induced by controller z;
the relationship between the controller and trajectories could be probabilistic either because the
controller is stochastic, or because the simulator environment is stochastic, or both

p(T1.x|Z) : a conditional probability distribution over latent space paths induced controller by z
Gpad : S—{0,1} a map denoting whether an observation &; € S is within an undesirable region
y : fraction of time £ spends in undesirable regions; 9 learns analogous notion for a latent path 7

Our goal is to learn p(7,%|x). p(7|z) is analogous to p(§|x), only the
paths are encoded in a lower-dimensional latent space. This is useful
for constructing kernels for efficient BO on hardware. As a measure
of trajectory ‘quality’ we can keep track of how long each trajectory
spends in undesirable regions (y). For the latent paths we learn the
analogous notion (¥ = 1.k ), which enables modularity and fast on-
line updates (discussed in Section 4). We do not impose hard con-
straints during optimization, so Gp.q used to compute y can be speci-
fied roughly, with approximate guesses. Our framework also supports
Gpaq = S— 0, 1], but for users it is frequently easier to make a rough
thresholded estimate rather than providing smooth estimates or proba-
bilities. The graphical model we construct for this setting is shown in  Figure 2: A sketch of genera-
Figure 2. Not all independencies are captured by the illustration. So, tive and inference model.

explicitly, the generative model is: py (7,9, €,y | ) = p(T1.5,%l&)p(y1$) [T/_1 P(Erl€r1,71.50).
Approximate posterior is modeled by: ¢4(T,%.&,y) = ¢(T1i.x, ¥|&1:7, Y).
We collect trajectories § by simulating /N controllers with parameters z® for T time steps We

derive ELBO for this setting to maximize log p(Data) = log p({z® ,flzT}zzl___N). Using ‘’ over
the variables to indicate samples from the current variational approximation, we get:

LP(w, glz,&,y) = [logp(fl'f) +1log p(yli) +log p(F,Plx) — log (7, Y€, y)} )
q(T%1€,y)
w, ¢ are weights of deep neural networks optimized by gradient ascent on the ELBO.

4 Bayesian Optimization with Dynamic Compression

In Bayesian Optimization (BO), the problem of optimizing controllers is viewed as finding con-
troller parameters * that optimize some objective function f(z): f(z*) = max, f(z). At each
optimization trial BO optimizes an auxiliary function to select the next promising  to evaluate. f
is commonly modeled with a Gaussian process (GP): f(z) ~ GP(m(x), k(z;, x;)).

The key object is the kernel function k(-, -), which encodes similarity between inputs. If k(z;,x;)
is large for inputs x;, z;, then f(z;) strongly influences f(x;). One of the most widely used kernel
functions is the Squared Exponential (SE) kernel: ks (r = |z—=;|) = o exp (—1irT diag(€)?r),
where o2, £ are signal variance and a vector of length scales respectively. o7, £ are called ‘hyper-
parameters’ and are optimized automatically by maximizing marginal likelihood ([4], Section V-A).
SE belongs to a broader class of Matérn kernels. One common parameter choice yields Matérn; 5:
kMatérms /2( ) = (1 + ‘fr + 312 ) exp ( ‘[”) SE and Matérn kernels are stationary, since they de-
pendonr=z;,~x; sz, j» and not on individual z;, z ;. Section 2.1 discussed recent work that showed
how to effectively remove stationarity by using informed feature transforms for kernel computations.
But these required extracting domain-specific features manually, or learning to fit a pre-defined set
of features using a deterministic NN in a supervised way.

We propose to use p(7,%|z) learned by SVAE-DC. [2] showed that a ‘symmetrization” of KL diver-
gence can be used to define a KL-based kernel for trajectories in the original space:

kxr = exp(-aD(z;,x;)); D(z; z;) = \/KL (p(&lz:)|Ip(€lz;)) +\/KL (p(&lz;)|[p€lzi)) (2)

4



In theory, we could use this to define an analogous kernel in the latent space:

b = exp(-aDy (@0,2,)); D (@0,35) = \[KLp(rlzo) lp(rla;)) + /K L(p(riy) lp(rla:)

However, variational inference (VI) tends to under-estimate variances [32, 33, 34, 35]. Hence, our
kernel works with latent means 7, %, = E [p(r, ¢|a:)} directly. We define our kernel function with:

rr =D, (z;,x;) = ‘(1_37:1:1)7_'% - (1_Zja:j)7_'wj| b Yz NP(?/W’:::) 3)

kSVAE-DC(:Ei,:Ej) = O’]% exp (—%TZ diag(l)ﬁn) (4)
The form of Equation 4 allows us to apply existing machinery for optimizing kernel hyperparameters
0%,£ directly to the SVAE-DC kernel. Note that diag(€)™ is related to covariance in the case
diagonal Gaussians; L1 and L2 norms are related by L2 < L1 < /dimL2. So BO with [T, —Tx; | in
the kernel is related to using KL in the case of diagonal Gaussians (with a simplification to capture
variance-only terms by learning o). We can also conveniently obtain SVAE-DC-Matérn version of
the kernel by simply changing the form of Equation 4 to the Matérn function.

Scaling latent representations by 1—%, yields dynamic compression: latent representations that cor-
respond to controllers frequently visiting undesirable parts of the space are scaled down. With this,
we retain trajectory-based distance in the desirable parts of the space, but compress it in undesir-
able parts to reduce unwanted exploration. The ‘dynamic compression’ transformation is applied
after SVAE training, in addition to the compression obtained by SVAE. The scaling can be made
non-linear with sigmoid(a(gz — ¢)). This achieves aggressive compression in settings with an ex-
tremely small budget of trials. The additional parameters «, ¢, as well as p(T,¥|x), p(y|¥) can be
optimized online (as BO hyperparameters). Note that because of the multiplicative formulation, two
controllers with different 7 and y can appear similar during optimization. Theoretically, this can
also bring the undesirable space close to a part of desirable space. We address this by updating the
learned components online via GP’s marginal likelihood, as in Deep kernel learning [11, 12]. How-
ever, for large NNs such online updates would only be useful after a large number of hardware trials.
Hence, we provide a modular architecture to ensure that the multiplicative factors can be updated
faster. We structure SVAE to learn p(y|v) and p(T,%|z), instead of a joint p(y, T|x). This makes the
NN for p(y|t) small, facilitating more data-efficient NN updates during BO. Now, during hardware
trials, shifts in ¢ will be more pronounced, compared to updates in the full latent path representation.

In summary, SVAE-DC and the resulting kernel result in a fully automatic way of learning latent
trajectory embeddings in unsupervised way. For domains where G4 is given, we can also achieve
dynamic compression of the latent space, making BO ultra data-efficient. All the components used
during BO can be optimized online via the same methods as those for adjusting BO hyperparameters.

S SVAE-DC: NN Architecture and Training

We propose to use time convolution architecture for ¢(7|€), de-convolutions for p(§|7). For this we
use 1D convolutions for the sequential dimensions ¢, k and treat the dimensions of €;, 7, as different
channels. With that, for all our experiments (all different robot and controller architectures) we
were able to use the same network parameters: 3-layer 1D convolutions with [32, 64, 128] channels
(reverse order for de-convolutions; kernel size 4, stride 2) followed by MLP layer for y, o outputs.
We were also able to use same latent space sizes: 3-dimensional 7, latent sequence length K=3 for
all our experiments. This yielded a small 9D optimization space for BO, which is highly desirable
for optimization with few trials. Notably, this NN architecture also retained good reconstruction
accuracy, not far from results with larger latent spaces (7=6D,12D; K=>5,15) and hidden sizes
(256-1024). We also used de-convolutional architecture for p(7|z). Since p(7|z) was one of the key
parts for BO we used 4 layers with [512, 256, 128, 128] channels (though a smaller CNN could have
sufficed). For p(y|v) we used a 2-layer MLP (hidden size 64). Training took ~30-180 minutes on
1 GPU, using le-4 learning rate (decayed to 1e-5). We note that other advanced architectures like
RNNs, LSTMs and Quasi-RNNs [36] did not result in reliably robust training in our experiments.

6 Locomotion Experiments on the Daisy Hexapod

For locomotion experiments, we use a Daisy robot (Figure 3) from Hebi robotics [37]. It has six
legs, each with 3 motors — base, shoulder and elbow. A Vive tracking system measures the robot’s



position in a global frame for rewards. To obtain simulated trajectories for training SVAE we used
PyBullet [38]. The simulator was fast, but did not have an accurate contact model with the ground.
While free-space motion of individual joints transferred to hardware, the overall behavior of the
robot when interacting with the ground was very different between simulation and hardware. As a
result, rewards obtained by controllers in simulation could be significantly different on hardware.

Daisy Controllers: We used Central Pattern Generators
(CPGs) from [39]. CPGs are a variant of rhythmic DMPS
[13], capable of generating a large number of locomotion
gaits by changing the frequency, amplitude, and offset of
each joint, as well as the relative phase differences be-
tween joints. Different CPG parameters can be restricted
to obtain controllers with various dimensionalities. We
experimented with 11D controller on hardware and 27D
in simulation. For hardware, we assume that all joints
have the same amplitude, frequency and offset (3 param-
eters), all base motors have independent phases (6 param-
eters), all shoulders and elbows have the same phase dif-
ference w.r.t. the base (2 parameters). This assumption implies that all joints are treated identically,
which doesn’t always hold, since each motor has slightly different tracking and bandwidth. In the
future, we would like to use alternatives that allow each motor to learn independently. For simu-
lation: base, shoulder and elbow joints were allowed to have independent amplitudes, frequencies
and offsets, but fixed across the six legs (9 parameters); each of the 18 joints was allowed to have an
independent phase (18 parameters).

Figure 3: Daisy hexapod used in this work.

Daisy Hardware Experiments: To construct SVAE-DC kernel for BO we trained SVAE using
500, 000 simulated trajectories (1000 time steps each, ~16.5s). For dynamic compression the states
were marked as undesirable if they had: high joint velocities (more than 10rad/sec); robot base
tilting by more than 60°in roll and pitch, elbows hitting the ground; height of the base outside of
[0.1, 0.7]cm from the ground. These aimed to reduce the chance of the robot breaking: controllers
with high joint velocities can harm the motors on impact with the ground; tilting the torso can cause
the robot to fall on its back; scraping the ground or lifting off and then falling can cause further
damage. Since our BO trials were in a narrow walkway, we marked as undesirable states deviating
more than 0.5m from the starting x-coordinate of the base. 20

The objective for BO was: f(x) = 10 - Yfinal — Nnigh_vels e
where yrinq was the final y-coordinate of the robot (how ~- Random
much the robot walked forward), Np;gn_ver Was the number
of timesteps with velocities exceeding 10rad/sec. All BO ex-
periments used UCB acquisition function (with 5 =1). We
completed 5 runs of BO on the Daisy robot hardware, ini-
tializing with 2 random samples, followed by 10 trials of BO
(Figure 4). We also conducted baseline experiments with SE
kernel by directly searching in the space of CPG parame- y
ters. This served as a comparison to more traditional trajec- 0k i*‘ ‘ ‘
tory compression methods that optimize DMPs (since CPG T

can be seen as a DMP variant). For Daisy robot, the con- initint 1 2 3 4 5 6 7 8 9 10
troller would be considered acceptable if it walked forward ' ° trial

for more than 1.5m during a trial of 25 seconds on hardware, Figure 4: BO on Daisy hardware
For comparison to random search we sampled 60 controllers (means over 5 runs, 90% Cls).
atrandom. Of these only 2 were able to walk forward a distance of over 1.5m in 25s. So the problem
was challenging, as the chance of randomly sampling a successful controller was <4%. BO with
SVAE-DC kernel found walking controllers reliably in all 5/5 runs within fewer than 10 trials. In
contrast, both BO with SE found forward walking controllers only in 2/5 runs.
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Further experiments in simulation: We created an artificial ‘sim-to-real’ gap, allowing to gauge
the potential for simulation-based kernels without running all the experiments on hardware. For each
BO run we randomly sampled ground restitution parameters, and kept them fixed for all trials within
arun. Hence, simulation-based kernels did not have full information about the exact properties of the
environment used during BO. The range of parameters was the same for BO and for data collection,



so informed kernels could identify controllers that perform well
on average across settings. But such informed kernel could have
caused negative transfer by lagging to identify controllers best
for a particular BO setting, and instead favoring conservative
(crawling) best-across-settings controllers. Figure 5 shows BO
with 27D controller. BO with SVAE-DC outperformed all base-
lines. BBK-KL kernel obtained smaller improvements over SE *
and Random baselines. This indicated that a trajectory-based |
kernel was useful even when optimizing a high-dimensional con- N '

troller, although BBK-KL benefits were greatly diminished com- 4 x o
pared to BBK results for 2-4 dimensional controllers reported in 5t 5 i) i %
prior work. In these experiments, SVAE without dynamic com- ? ) wal
pression was very similar to SE (omitted from the plot for clarity, Flgure >: BO forS (l)) aisy 19no(sylnétila—
since it was overlapping with SE). This showed that dimensional- on (means over 50 runs, 90% CIs).
ity reduction alone does not guarantee improvement (even when the latent space contains informa-
tion needed to decode back into the space of original trajectories).
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7 Manipulation Experiments

Our manipulation task was to push two objects from one side
of the table to another without tipping them over. We used
ABB Yumi robot for our hardware experiments (Figure 6),
and conducted additional simulation experiments with Yumi
and Franka Emika robot models. We used PyBullet for sim- <
ulation. For Yumi environment the objects had mass and in- N J

A L

ertial properties similar to paper towel rolls (mass of 150g, [
22cm height, 5cm radius); for Franka these had properties sim- |
ilar to wooden rolls (2kg, 22cm height, 8cm radius). Com- [

pared to ‘push-to-target’ task, our task had two different chal- Figure 6: “Stable push” task with Yumi
lenges. The objects were likely to come into contact with each other (not only the robot arm).
Moreover, they could easily tip over, especially if forces were applied above an object’s center of
mass. Reward was given only at the end of the task: the distance each upright object moved in
the desired direction minus a penalty for objects that tipped over (with y,,,, being table width):
f(.’E) :Zi [(y;?q];al _y;‘)%:"t) ]lObji €Up— Ymax ]lObji ETipped] .

Controllers: We tested our approach on two types of controllers: 1) joint velocity controller suitable
for robots like ABB Yumi and 2) torque controller suitable for robots like Franka Emika. The first
was parameterized by 6 joint velocity “waypoints”, one target velocity for each joint of the robot
arm (so 6-7 =42 parameters for a 7DoF arm). Each “waypoint” also had a duration parameter that
specified the fraction of time to be spent attaining the desired joint velocities. Overall this yielded
a 48-dimensional parametric controller. The second controller type was aimed to be safe to use on
robots with torque control that are more powerful than ABB Yumi. Instead of exploring randomly
in torque space, we designed a parametric controller with desired waypoints in end-effector space.
Each of the 6 waypoints had 6 parameters for the pose (3D

position, 3D orientation) and 2 parameters for controller pro- I

portional and derivative gains. Overall this yielded a 48- 06 +1r++++++
dimensional parametric controller: 6 -(6+2). This controller S

interpolated between the waypoints using a 5" order min- 5

imum jerk trajectory for positions, and used linear interpo- g, ¥ e
lation for orientations. End effector Jacobian for the corre- 2 et
sponding robot model was used to convert to joint torques. %00 f R
Yumi Hardware Experiments: For constructing SVAE-DC b

kernel used during BO on hardware we simulated 500,000 02 i A

trajectories. These contained joint angles of the robot Hoprrt - SVAE-DC
and object poses at each time step (1000 steps per trajec-  ~0-4 i 2 random
tory). A step t on a trajectory & was marked as undesirable ine i oy 5878 91

(Gbad(&) = 1) when: any object tipped over or was pushed
beyond the table; robot collided with the table; the end effec-
tor was outside of main workspace (not over the table area).

Figure 7: BO on ABB Yumi hardware
(means over 5 runs, 90% Cls).
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Figure 9: BO with various kernels on Franka Emika simulation. Left: SVAE trained with same parameters as
in all the previous experiments. Middle: SVAE with larger latent space and NNs. Right: Matern used as outer
function for all kernel. The plots show means over 50 runs, 90% Cls.
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Mass, friction and restitution of the objects were randomized at the start of each episode/trajectory.
Randomization ranges were set to roughly resemble variability of how real-world objects behaved.
ABB Yumi robot available to us could operate effectively only at low velocities (% of simulation
maximum). High-velocity trajectories successful in simulation yielded different results on hard-
ware. To prevent Yumi from shutting down due to high load we stopped execution if the robot’s arm
extended too far outside the main workspace, also stopped if it was about to collide with the table
(giving —2y,q, reward in such cases). These factors caused a large sim-real gap. Nonetheless, BO
with SVAE-DC kernel was still able to significantly outperform BO with SE (Figure 7). Even when
controllers successful in simulation yielded very different outcomes on hardware, SVAE-DC kernel
was still able to find well-performing alternatives (more conservative, yet successful on hardware).

Further Yumi and Franka experiments in simulation: We emulated ‘sim-to-real’ gap as with
Daisy simulation: sampled different object properties (mass, friction, restitution) at the start of each
BO run. Results in Figure 8 show that BO on Yumi with SVAE-DC kernel yielded substantial
improvement over all baselines. BO in the latent space of SVAE (without dynamic compression)
was also able to substantially outperform all baselines, matching SVAE-DC gains after ~15 trials.

Figure 9 shows BO results on Franka Emika simulation (left). 0.7
Kernels were built in the same way as for Yumi, but from
shorter trajectories (500 steps). Furthermore, we analyze how 048] |l ot

increasing the size of SVAE latent space and NNs impacts per-
formance (middle). The larger latent space is 6-5=30D (vs 9D
in other experiments), the hidden layer size of NNs is increased
from 128 to 256. Larger latent space implies larger search
space for BO, which could impair data efficiency. BO with
SVAE kernel (no DC) still outperforms BBK-KL and SE ker-
nels, but only after 10 trials. BO with SVAE-DC offers imme- o1
diate gains with low variance between runs (well-performing ’ *
points are found more reliably). This indicates that dynamic 0.0 z o = %
compression could counter-balance increase in kernel dimen- 2 trial

sionality. Finally, we experimented with Matérn kernel (right ~Figure 8: BO on ABB Yumi simulation
plot in Figure 9), but it did not show benefits over using SE ~ (mean of 50 runs, 90% Cls).

kernel. We attempted changing hyperparameter prior and restricting hyperparameter ranges, but it
did not consistently outperform random search (same held for SE in high dimensions). The perfor-
mance of BO with SVAE kernel using Matérn as outer kernel function showed modest improvement
over baselines. In contrast, BO with SVAE-DC kernel still offered substantial improvements.
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8 Conclusion

In this work, we employed BO to optimize robot controllers with a small budget of trials. Previously,
the success of BO has been either limited to low-dimensional controllers or required kernels with
domain-specific features. We proposed an unsupervised alternative with sequential variational au-
toencoder. We used it to embed simulated trajectories into a latent space, and to jointly learn relating
controllers with latent space paths they induce. Furthermore, we provided a mechanism for dynamic
compression, helping BO reject undesirable regions quickly, and explore more in other regions. Our
approach yielded ultra-data efficient BO in hardware experiments with hexapod locomotion and a
manipulation task, using the same SVAE-DC architecture and training settings across experiments.
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