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Abstract: Existing on-policy imitation learning algorithms, such as DAgger, as-
sume access to a fixed supervisor. However, there are many settings where the
supervisor may evolve during policy learning, such as a human performing a novel
task or an improving algorithmic controller. We formalize imitation learning from a
“converging supervisor” and provide sublinear static and dynamic regret guarantees
against the best policy in hindsight with labels from the converged supervisor, even
when labels during learning are only from intermediate supervisors. We then show
that this framework is closely connected to a class of reinforcement learning (RL)
algorithms known as dual policy iteration (DPI), which alternate between training
a reactive learner with imitation learning and a model-based supervisor with data
from the learner. Experiments suggest that when this framework is applied with the
state-of-the-art deep model-based RL algorithm PETS as an improving supervisor,
it outperforms deep RL baselines on continuous control tasks and provides up to
an 80-fold speedup in policy evaluation.
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1 Introduction

In robotics there is significant interest in using human or algorithmic supervisors to train policies
via imitation learning [1, 2, 3, 4]. For example, a trained surgeon with experience teleoperating a
surgical robot can provide successful demonstrations of surgical maneuvers [5]. Similarly, known
dynamics models can be used by standard control techniques, such as model predictive control
(MPC), to generate controls to optimize task reward [6, 7]. However, there are many cases in
which the supervisor is not fixed, but is converging to improved behavior over time, such as when
a human is initially unfamiliar with a teleoperation interface or task or when the dynamics of the
system are initially unknown and estimated with experience from the environment when training
an algorithmic controller. Furthermore, these supervisors are often slow, as humans can struggle to
execute stable, high-frequency actions on a robot [7] and model-based control techniques, such as
MPC, typically require computationally expensive stochastic optimization techniques to plan over
complex dynamics models [8, 9, 10]. This motivates algorithms that can distill supervisors which
are both converging and slow into policies that can be efficiently executed in practice. The idea of
distilling improving algorithmic controllers into reactive policies has been explored in a class of
reinforcement learning (RL) algorithms known as dual policy iteration (DPI) [11, 12, 13], which
alternate between optimizing a reactive learner with imitation learning and a model-based supervisor
with data from the learner. However, past methods have mostly been applied in discrete settings
[11, 12] or make specific structural assumptions on the supervisor [13].

This paper analyzes learning from a converging supervisor in the context of on-policy imitation
learning. Prior analysis of on-policy imitation learning algorithms provide regret guarantees given
a fixed supervisor [14, 15, 16, 17]. We consider a converging sequence of supervisors and show
that similar guarantees hold for the regret against the best policy in hindsight with labels from the
converged supervisor, even when only intermediate supervisors provide labels during learning. Since
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the analysis makes no structural assumptions on the supervisor, this flexibility makes it possible to
use any off-policy method as the supervisor in the presented framework, such as an RL algorithm or
a human, provided that it converges to a good policy on the learner’s distribution. We implement an
instantiation of this framework with the deep MPC algorithm PETS [8] as an improving supervisor
and maintain the data efficiency of PETS while significantly reducing online computation time,
accelerating both policy learning and evaluation.

The key contribution of this work is a new framework for on-policy imitation learning from a
converging supervisor. We present a new notion of static and dynamic regret in this setting and provide
sublinear regret guarantees by showing a reduction from this new notion of regret to the standard
notion for the fixed supervisor setting. The dynamic regret result is particularly unintuitive, as it
indicates that it is possible to do well on each round of learning compared to a learner with labels from
the converged supervisor, even though labels are only provided by intermediate supervisors during
learning. We then show that the presented framework relaxes assumptions on the supervisor in DPI
and perform simulated continuous control experiments suggesting that when a PETS supervisor [8] is
used, we can outperform other deep RL baselines while achieving up to an 80-fold speedup in policy
evaluation. Experiments on a physical surgical robot yield up to an 20-fold reduction in query time
and 53% reduction in policy evaluation time after accounting for hardware constraints.

2 Related Work

On-policy imitation learning algorithms that directly learn reactive policies from a supervisor were
popularized with DAgger [18], which iteratively improves the learner by soliciting supervisor feed-
back on the learner’s trajectory distribution. This yields significant performance gains over analogous
off-policy methods [19, 20]. On-policy methods have been applied with both human [21] and algo-
rithmic supervisors [7], but with a fixed supervisor as the guiding policy. We propose a setting where
the supervisor improves over time, which is common when learning from a human or when distilling
a computationally expensive, iteratively improving controller into a policy that can be efficiently
executed in practice. Recently, convergence results and guarantees on regret metrics such as dynamic
regret have been shown for the fixed supervisor setting [16, 17, 22]. We extend these results and
present a static and dynamic analysis of on-policy imitation learning from a convergent sequence of
supervisors. Recent work proposes using inverse RL to outperform an improving supervisor [23, 24].
We instead study imitation learning in this context to use an evolving supervisor for policy learning.

Model-based planning has seen significant interest in RL due to the benefits of leveraging structure in
settings such as games and robotic control [11, 12, 13]. Deep model-based reinforcement learning
(MBRL) has demonstrated superior data efficiency compared to model-free methods and state-of-
the-art performance on a variety of continuous control tasks [8, 9, 10]. However, these techniques
are often too computationally expensive for high-frequency execution, significantly slowing down
policy evaluation. To address the online burden of model-based algorithms, Sun et al. [13] define
a novel class of algorithms, dual policy iteration (DPI), which alternate between optimizing a fast
learner for policy evaluation using labels from a model-based supervisor and optimizing a slower
model-based supervisor using trajectories from the learner. However, past work in DPI either involves
planning in discrete state spaces [11, 12], or making specific assumptions on the structure of the
model-based controller [13]. We discuss how the converging supervisor framework is connected
to DPI, but enables a more flexible supervisor specification. We then provide a practical algorithm
by using the deep MBRL algorithm PETS [8] as an improving supervisor to achieve fast policy
evaluation while maintaining the data efficiency of PETS.

3 Converging Supervisor Framework and Preliminaries

3.1 On-Policy Imitation Learning

We consider continuous control problems in a finite-horizon Markov decision process (MDP), which
is defined by a tuple (S,A, P (·, ·), T,R(·, ·)) where S is the state space and A is the action space.
The stochastic dynamics model P maps a state s and action a to a probability distribution over
states, T is the task horizon, and R is the reward function. A deterministic control policy π maps
an input state in S to an action in A. The goal in RL is to learn a policy π over the MDP which
induces a trajectory distribution that maximizes the sum of rewards along the trajectory. In imitation
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learning, this objective is simplified by instead optimizing a surrogate loss function which measures
the discrepancy between the actions chosen by learned parameterized policy πθ and supervisor ψ.

Rather than directly optimizing R from experience, on-policy imitation learning involves executing
a policy in the environment and then soliciting feedback from a supervisor on the visited states.
This is in contrast to off-policy methods, such as behavior cloning, in which policy learning is
performed entirely on states from the supervisor’s trajectory distribution. The surrogate loss of a
policy πθ along a trajectory is a supervised learning cost defined by the supervisor relabeling the
trajectory’s states with actions. The goal of on-policy imitation is to find the policy minimizing the
corresponding surrogate risk on its own trajectory distribution. On-policy algorithms typically adhere
to the following iterative procedure: (1) at iteration i, execute the current policy πθi by deploying the
learner in the MDP, observing states and actions as trajectories; (2) Receive labels for each state from
the supervisor ψ; (3) Update πθi according to the supervised learning loss to generate πθi+1

.

On-policy imitation learning has often been viewed as an instance of online optimization or online
learning [14, 16, 17]. Online optimization is posed as a game between an adversary, which generates a
loss function li at iteration i and an algorithm, which plays a policy πθi in an attempt to minimize the
total incurred losses. After observing li, the algorithm updates its policy πθi+1

for the next iteration.
In the context of imitation learning, the loss li(·) at iteration i corresponds to the supervised learning
loss function under the current policy. The loss function li(·) can then be used to update the policy
for the next iteration. The benefit of reducing on-policy imitation learning to online optimization
is that well-studied analyses and regret metrics from online optimization can be readily applied to
understand and improve imitation learning algorithms. Next, we outline a theoretical framework in
which to study on-policy imitation learning with a converging supervisor.

3.2 Converging Supervisor Framework (CSF)

We begin by presenting a set of definitions for on-policy imitation learning with a converging
supervisor in order to analyze the static regret (Section 4.1) and dynamic regret (Section 4.2) that
can be achieved in this setting. In this paper, we assume that policies πθ are parameterized by a
parameter θ from a convex compact set Θ ⊂ Rd equipped with the l2-norm, which we denote with
‖·‖ for simplicity for both vectors and operators.
Definition 3.1. Supervisor: We can think of a converging supervisor as a sequence of supervisors
(labelers), (ψi)

∞
i=1, where ψi defines a deterministic controller ψi : S → A. Supervisor ψi provides

labels for imitation learning policy updates at iteration i.
Definition 3.2. Learner: The learner is represented at iteration i by a parameterized policy πθi :
S → A where πθi is differentiable function in the policy parameter θi ∈ Θ.

We denote the state and action at timestep t in the trajectory τ sampled at iteration i by the learner
with sit and ait respectively.
Definition 3.3. Losses: We consider losses at each round i of the form: li(πθ, ψi) =

Eτ∼p(τ |θi)
[

1
T

∑T
t=1‖πθ(sit)− ψi(sit)‖2

]
where p(τ |θi) defines the distribution of trajectories gen-

erated by πθi . Gradients of li with respect to θ are defined as∇θli(πθi , ψi) = ∇θli(πθ, ψi)
∣∣
θ=θi

.

For analysis of the converging supervisor setting, we adopt the following standard assumptions. The
assumptions in this section and the loss formulation are consistent with those in Hazan [25] and Ross
et al. [14] for analysis of online optimization and imitation learning algorithms. The loss incurred
by the agent is the population risk of the policy, and extension to empirical risk can be derived via
standard concentration inequalities as in Ross et al. [14].
Assumption 3.1. Strongly convex losses: ∀θi ∈ Θ, li(πθ, ψ) is strongly convex with respect to θ
with parameter α ∈ R+. Precisely, we assume that

li(πθ2 , ψ) ≥ li(πθ1 , ψ) +∇θli(πθ1 , ψ)T (θ2 − θ1) +
α

2
‖θ2 − θ1‖2 ∀ θ1, θ2 ∈ Θ

The expectation over p(τ |θi) in Assumption 3.1 preserves strong convexity of the squared loss for an
individual sample, which is assumed to be convex in θ.
Assumption 3.2. Bounded operator norm of policy Jacobian: ‖∇θπθi(s)‖ ≤ G ∀s ∈ S,
∀ θ, θi ∈ Θ where G ∈ R+.
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Assumption 3.3. Bounded action space: The action space A has diameter δ. Equivalently stated:
δ = supa1,a2∈A ‖a1 − a2‖.

4 Regret Analysis

We analyze the performance of well-known algorithms in on-policy imitation learning and online
optimization under the converging supervisor framework. In this setting, we emphasize that the goal
is to achieve low loss li(πθi , ψN ) with respect to labels from the last observed supervisor ψN . We
achieve these results through regret analysis via reduction of on-policy imitation learning to online
optimization, where regret is a standard notion for measuring the performance of algorithms. We
consider two forms: static and dynamic regret [26], both of which have been utilized in previous
on-policy imitation learning analyses [14, 16]. In this paper, regret is defined with respect to the
expected losses under the trajectory distribution induced by the realized sequence of policies (πθi)

N
i=1.

Standard concentration inequalities can be used for finite sample analysis as in Ross et al. [14].

Using static regret, we can show a loose upper bound on average performance with respect to the last
observed supervisor with minimal assumptions, similar to [14]. Using dynamic regret, we can tighten
this upper bound, showing that θi is optimal in expectation on its own distribution with respect to
ψN for certain algorithms, similar to [16, 22]; however, to achieve this stronger result, we require an
additional continuity assumption on the dynamics of the system, which was shown to be necessary
by Cheng and Boots [17]. To harness regret analysis in imitation learning, we seek to show that
algorithms achieve sublinear regret (whether static or dynamic), denoted by O(N) where N is the
number of iterations. That is, the regret should grow at a slower rate than linear in the number of
iterations. While existing algorithms can achieve sublinear regret in the fixed supervisor setting,
we analyze regret with respect to the last observed supervisor ψN , even though the learner is only
provided labels from the intermediate ones during learning. See supplementary material for all proofs.

4.1 Static Regret

Here we show that as long as the supervisor labels are Cauchy, i.e. if ∀s ∈ S, ∀N > i, ‖ψi(s) −
ψN (s)‖ ≤ fi where limi→∞ fi = 0, it is possible to achieve sublinear static regret with respect
to the best policy in hindsight with labels from ψN for the whole dataset. This is a more difficult
metric than is typically considered in regret analysis for on-policy imitation learning since labels are
provided by the converging supervisor ψi at iteration i, but regret is evaluated with respect to the best
policy given labels from ψN . Past work has shown that it is possible to obtain sublinear static regret
in the fixed supervisor setting under strongly convex losses for standard on-policy imitation learning
algorithms such as online gradient descent [25] and DAgger [14]; we extend this and show that the
additional asymptotic regret in the converging supervisor setting depends only on the convergence
rate of the supervisor. The standard notion of static regret is given in Definition 4.1.
Definition 4.1. The static regret with respect to the sequence of supervisors (ψi)

N
i=1 is given by the

difference in the performance of policy πθi and that of the best policy in hindsight under the average
trajectory distribution induced by the incurred losses with labels from current supervisor ψi.

RegretSN ((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗ , ψi) where θ∗ = arg min
θ∈Θ

N∑
i=1

li(πθ, ψi)

However, we instead analyze the more difficult regret metric presented in Definition 4.2 below.
Definition 4.2. The static regret with respect to the supervisor ψN is given by the difference in
the performance of policy πθi and that of the best policy in hindsight under the average trajectory
distribution induced by the incurred losses with labels from the last observed supervisor ψN .

RegretSN (ψN ) =

N∑
i=1

li(πθi , ψN )−
N∑
i=1

li(πθ? , ψN ) where θ? = arg min
θ∈Θ

N∑
i=1

li(πθ, ψN )

Theorem 4.1. RegretSN (ψN ) can be bounded above as follows:

RegretSN (ψN ) ≤ RegretSN ((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]
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Theorem 4.1 essentially states that the expected static regret in the converging supervisor setting can
be decomposed into two terms: one that is the standard notion of static regret, and an additional term
that scales with the rate at which the supervisor changes. Thus, as long as there exists an algorithm to
achieve sublinear static regret on the standard problem, the only additional regret comes from the
evolution of the supervisor. Prior work has shown that algorithms such as online gradient descent [25]
and DAgger [14] achieve sublinear static regret under strongly convex losses. Given this reduction,
we see that these algorithms can also be used to achieve sublinear static regret in the converging
supervisor setup if the extra term is sublinear. Corollary 4.1 identifies when this is the case.
Corollary 4.1. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN (s)‖ ≤ fi where limi→∞ fi = 0, then
RegretSN (ψN ) can be decomposed as follows:

RegretSN (ψN ) = RegretSN ((ψi)
N
i=1) + O(N)

4.2 Dynamic Regret

Although the static regret analysis provides a bound on the average loss, the quality of that bound
depends on the term minθ

∑N
i=1 li(πθ, ψN ), which in practice is often very large due to approximation

error between the policy class and the actual supervisor. Furthermore, it has been shown that despite
sublinear static regret, policy learning may be unstable under certain dynamics [17, 21]. Recent
analyses have turned to dynamic regret [16, 17], which measures the sub-optimality of a policy on
its own distribution: li(πθi , ψN )−minθ li(πθ, ψN ). Thus, low dynamic regret shows that a policy
is on average performing optimally on its own distribution. This framework also helps determine
if policy learning will be stable or if convergence is possible [16]. However, these notions require
understanding the sensitivity of the MDP to changes in the policy. We quantify this with an additional
Lipschitz assumption on the trajectory distributions induced by the policy as in [16, 17, 22]. We show
that even in the converging supervisor setting, it is possible to achieve sublinear dynamic regret given
this additional assumption and a converging supervisor by reducing the problem to a predictable
online learning problem [22]. Note that this yields the surprising result that it is possible to do well
on each round even against a dynamic comparator which has labels from the last observed supervisor.
The standard notion of dynamic regret is given in Definition 4.3 below.
Definition 4.3. The dynamic regret with respect to the sequence of supervisors (ψi)

N
i=1 is given by

the difference in the performance of policy πθi and that of the best policy under the current round’s
loss, which compares the performance of current policy πθi and current supervisor ψi.

RegretDN ((ψi)
N
i=1) =

N∑
i=1

li(πθi , ψi)−
N∑
i=1

li(πθ∗i , ψi) where θ∗i = arg min
θ∈Θ

li(πθ, ψi)

However, similar to the static regret analysis in Section 4.1, we seek to analyze the dynamic regret
with respect to labels from the last observed supervisor ψN , which is defined as follows.
Definition 4.4. The dynamic regret with respect to supervisor ψN is given by the difference in the
performance of policy πθi and that of the best policy under the current round’s loss, which compares
the performance of current policy πθi and last observed supervisor ψN .

RegretDN (ψN ) =

N∑
i=1

li(πθi , ψN )−
N∑
i=1

li(πθ?i , ψN ) where θ?i = arg min
θ∈Θ

li(πθ, ψN )

We first show that there is a reduction from RegretDN (ψN ) to RegretDN ((ψi)
N
i=1).

Lemma 4.1. RegretDN (ψN ) can be bounded above as follows:

RegretDN (ψN ) ≤ RegretDN ((ψi)
N
i=1) + 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]

Given the notion of supervisor convergence discussed in Corollary 4.1, Corollary 4.2 shows that if
we can achieve sublinear RegretDN ((ψi)

N
i=1), we can also achieve sublinear RegretDN (ψN ).

Corollary 4.2. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN (s)‖ ≤ fi where limi→∞ fi = 0, then
RegretDN (ψN ) can be decomposed as follows:

RegretDN (ψN ) = RegretDN ((ψi)
N
i=1) + O(N)
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It is well known that RegretDN ((ψi)
N
i=1) cannot be sublinear in general [16]. However, as in [16, 17],

we can obtain conditions for sublinear regret by leveraging the structure in the imitation learning
problem with a Lipschitz continuity condition on the trajectory distribution. Let dTV (p, q) =
1
2

∫
|p− q|dτ denote the total variation distance between two trajectory distributions p and q.

Assumption 4.1. There exists η ≥ 0 such that the following holds on the trajectory distributions
induced by policies parameterized by θ1 and θ2:

dTV (p(τ |θ1), p(τ |θ2)) ≤ η‖θ1 − θ2‖

A similar assumption is made by popular RL algorithms [27, 28], and Lemma 4.2 shows that with it,
sublinear RegretDN ((ψi)

N
i=1) can be achieved using results from predictable online learning [22].

Lemma 4.2. If Assumption 4.1 holds and α > 4Gη supa∈A ‖a‖, then there exists an algorithm where
RegretDN ((ψi)

N
i=1) = O(N). If the diameter of the parameter space is bounded, the greedy algorithm,

which plays θi+1 = arg minθ∈Θ li(πθ, ψN ), achieves sublinear RegretDN ((ψi)
N
i=1). Furthermore,

if the losses are γ-smooth in θ and 4Gη supa∈A ‖a‖
α > α

2γ , then online gradient descent achieves

sublinear RegretDN ((ψi)
N
i=1).

Finally, we combine the results of Corollary 4.2 and Lemma 4.2 to conclude that since we can achieve
sublinear RegretDN ((ψi)

N
i=1) and have found a reduction from RegretDN (ψN ) to RegretDN ((ψi)

N
i=1),

we can also achieve sublinear dynamic regret in the converging supervisor setting.
Theorem 4.2. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN (s)‖ ≤ fi where limi→∞ fi = 0 and under the
assumptions in Lemma 4.2, there exists an algorithm where RegretDN (ψN ) = O(N). If the diameter
of the parameter space is bounded, the greedy algorithm that plays θi+1 = arg minθ∈Θ li(πθ, ψN )

achieves sublinear RegretDN (ψN ). Furthermore, if the losses are γ-smooth in θ and 4Gη supa∈A ‖a‖
α >

α
2γ , then online gradient descent achieves sublinear RegretDN (ψN ).

5 Converging Supervisors for Deep Continuous Control

Sun et al. [13] apply DPI to continuous control tasks, but assume that both the learner and supervisor
are of the same policy class and from a class of distributions for which computing the KL-divergence
is computationally tractable. These constraints on supervisor structure limit model capacity compared
to state-of-the-art deep RL algorithms. In contrast, we do not constrain the structure of the supervisor,
making it possible to use any converging, improving supervisor (algorithmic or human) with no
additional engineering effort. Note that while all provided guarantees only require that the supervisor
converges, we implicitly assume that the supervisor labels actually improve with respect to the MDP
reward function, R, when trained with data on the learner’s distribution for the learner to achieve
good task performance. This assumption is validated by the experimental results in this paper and
those in prior work [11, 12]. One strategy to encourage the supervisor to improve on the learner’s
distribution is to add noise to the learner policy to increase the variety of the experience used by the
supervisor to learn information such as system dynamics. However, this was not necessary for the
environments considered in this paper, and we defer further study in this direction to future work.

We utilize the converging supervisor framework (CSF) to motivate an algorithm that uses the state-of-
the-art deep MBRL algorithm, PETS, as an improving supervisor. Note that while for analysis we
assume a deterministic supervisor, PETS produces stochastic supervision for the agent. We observe
that this does not detrimentally impact performance of the policy in practice. PETS was chosen since
it has demonstrated superior data efficiency compared to other deep RL algorithms [8]. We collect
policy rollouts from a model-free learner policy and refit the policy on each episode using DAgger
[14] with supervision from PETS, which maintains a trained dynamics model based on the transitions
collected by the learner. Supervision is generated via MPC by using the cross entropy method to plan
over the learned dynamics for each state in the learner’s rollout, but is collected after the rollout has
completed rather than at each timestep of every policy rollout to reduce online computation time.

6 Experiments

The method presented in Section 5 uses the Converging Supervisor Framework (CSF) to train a learner
policy to imitate a PETS supervisor trained on the learner’s distribution. We expect the CSF learner to
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Figure 1: Simulation experiments: Training curves for the CSF learner, CSF supervisor, PETS, and baselines
for the MuJoCo Reacher (top) and Pusher (bottom) tasks for a linear (left) and neural network (NN) policy (right).
The linear policy is trained via ridge-regression with regularization parameter α = 1, satisfying the strongly-
convex loss assumption in Section 3. To test more complex policy representations, we repeat experiments with
a neural network (NN) learner with 2 hidden layers with 20 hidden units each. The CSF learner successfully
tracks the CSF supervisor on both domains, performs well compared to PETS, and outperforms other baselines
with both policy representations. The CSF learner is slightly less data efficient than PETS, but policy evaluation
is up to 80x faster than PETS. SAC, TD3, and ME-TRPO use a neural network policy/dynamics class.

be less data efficient than PETS, but have significantly faster policy evaluation time. To evaluate this
hypothesis, we measure the gap in data efficiency between the learner on its own distribution (CSF
learner), the supervisor on the learner’s distribution (CSF supervisor) and the supervisor on its own
distribution (PETS). Returns for the CSF learner and CSF supervisor are computed by rolling out the
model-free learner policy and model-based controller after each training episode. Because the CSF
supervisor is trained with off-policy data from the learner, the difference between the performance
of the CSF learner and CSF supervisor measures how effectively the CSF learner is able to track
the CSF supervisor’s performance. The difference in performance between the CSF supervisor
and PETS measures how important on-policy data is for PETS to generate good labels. All runs
are repeated 3 times to control for stochasticity in training; see supplementary material for further
experimental details. The DPI algorithm in Sun et al. [13] did not perform well on the presented
environments, so we do not report a comparison to it. However, we compare against the following set
of 3 state-of-the-art model-free and model-based RL baselines and demonstrate that the CSF learner
maintains the data efficiency of PETS while reducing online computation time significantly by only
collecting policy rollouts from the fast model-free learner instead of from the PETS supervisor.

1. Soft Actor Critic (SAC): State-of-the-art maximum entropy model-free RL algorithm [29].
2. Twin Delayed Deep Deterministic policy gradients (TD3): State-of-the-art model-free

RL algorithm [30] which uses target networks and delayed policy updates to improve
DDPG [31], a popular actor critic algorithm.

3. Model-Ensemble Trust Region Policy Optimization (ME-TRPO): State-of-the-art
model-free, model-based RL hybrid algorithm using a set of learned dynamics models
to update a closed-loop policy offline with model-free RL [28].

6.1 Simulation Experiments

We consider the PR2 Reacher and Pusher continuous control MuJoCo domains from Chua et al. [8]
(Figure 1) since these are standard benchmarks on which PETS attains good performance. For both
tasks, the CSF learner outperforms other state-of-the-art deep RL algorithms, demonstrating that
the CSF learner enables fast policy evaluation while maintaining data efficient learning. The CSF
learner closely matches the performance of both the CSF supervisor and PETS, indicating that the
CSF learner has similar data efficiency as PETS. Results using a neural network CSF learner suggest
that losses strongly-convex in θ may not be necessary in practice.
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Figure 2: Physical experiments: Training curves for the CSF learner, CSF supervisor and PETS on the da
Vinci surgical robot with a neural network policy. The CSF learner is able to track the CSF supervisor and PETS
effectively and can be queried up to 20x faster than PETS. However, due to control frequency limitations on
this system, the CSF learner has a policy evaluation time that is only 1.52 and 1.46 times faster than PETS for
the single and double-arm tasks respectively. The performance gap between the CSF learner and the supervisor
takes longer to diminish for the harder double-arm task.

Table 1: Policy evaluation and query times: We report policy evaluation times in seconds over 100 episodes
for the CSF learner and PETS (format: mean ± standard deviation). Furthermore, for physical experiments, we
also report the total time taken to query the learner and PETS over an episode, since this difference in query
times indicates the true speedup that CSF can enable (format: (total query time, policy evaluation time)). Policy
evaluation and query times are nearly identical for simulation experiments. We see that the CSF learner is 20-80
times faster to query than PETS across all tasks. Results are reported on a desktop running Ubuntu 16.04 with a
3.60 GHz Intel Core i7-6850K and a NVIDIA GeForce GTX 1080. We use the NN policy for all timing results.

PR2 Reacher (Sim) PR2 Pusher (Sim) dVRK Reacher dVRK Double-Arm Reacher

CSF Learner 0.29± 0.01 1.13± 0.66 (0.036± 0.009,5.54± 0.67) (0.038± 0.007,8.87± 1.12)
PETS 24.77± 0.08 57.77± 17.12 (0.78± 0.02, 8.43± 1.07) (0.88± 0.07, 12.97± 0.77)

This result is promising because if the model-free learner policy is able to achieve similar performance
to the supervisor on its own distribution, we can simultaneously achieve the data efficiency benefits
of MBRL and the low online computation time of model-free methods. To quantify this speedup,
we present timing results in Table 1, which demonstrate that a significant speedup (up to 80x in this
case) in policy evaluation is possible. Note that although we still need to evaluate the model-based
controller on each state visited by the learner to generate labels, since this only needs to be done
offline, this can be parallelized to reduce offline computation time as well.

6.2 Physical Robot Experiments

We also test CSF with a neural network policy on a physical da Vinci Surgical Robot (dVRK) [32] to
evaluate its performance on multi-goal tasks where the end effector must be controlled to desired
positions in the workspace. We evaluate the CSF learner/supervisor and PETS on the physical robot
for both single and double arm versions of this task, and find that the CSF learner is able to track the
PETS supervisor effectively (Figure 2) and provide up to a 22x speedup in policy query time (Table
1). We expect the CSF learner to demonstrate significantly greater speedups relative to standard deep
MBRL for higher dimensional tasks and for systems where higher-frequency commands are possible.

7 Conclusion

We formally introduce the converging supervisor framework for on-policy imitation learning and
show that under standard assumptions, we can achieve sublinear static and dynamic regret against
the best policy in hindsight with labels from the last observed supervisor, even when labels are only
provided by the converging supervisor during learning. We then show a connection between the
converging supervisor framework and DPI, and use this to present an algorithm to accelerate policy
evaluation for model-based RL without making any assumptions on the structure of the supervisor.
We use the state-of-the-art deep MBRL algorithm, PETS, as an improving supervisor and maintain its
data efficiency while significantly accelerating policy evaluation. Finally, we evaluate the efficiency
of the method by successfully training a policy on a multi-goal reacher task directly on a physical
surgical robot. The provided analysis and framework suggests a number of interesting questions
regarding the degree to which non-stationary supervisors affect policy learning. In future work, it
would be interesting to derive specific convergence guarantees for the converging supervisor setting,
consider different notions of supervisor convergence, and study the trade-offs between supervision
quality and quantity.
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A Static Regret

A.1 Proof of Theorem 4.1

Recall the standard notion of static regret as defined in Definition 4.1:

RegretSN ((ψi)
N
i=1) =

N∑
i=1

[li(πθi , ψi)− li(πθ∗ , ψi)] where θ∗ = arg min
θ∈Θ

N∑
i=1

li(πθ, ψi) (1)

However, we seek to bound

RegretSN (ψN ) =

N∑
i=1

[li(πθi , ψN )− li(πθ? , ψN )] where θ? = arg min
θ∈Θ

N∑
i=1

li(πθ, ψN ) (2)

as defined in Definition 4.2.

Notice that this corresponds to the static regret of the agent with respect to the losses parameterized
by the last observed supervisor ψN . We can do this as follows:

RegretSN (ψN ) =

N∑
i=1

[li(πθi , ψN )− li(πθ? , ψN )] (3)

=

N∑
i=1

[li(πθi , ψN )− li(πθ? , ψN )]− RegretSN ((ψi)
N
i=1) + RegretSN ((ψi)

N
i=1) (4)

=

N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[li(πθ∗ , ψi)− li(πθ? , ψN )]

+ RegretSN ((ψi)
N
i=1)

(5)

≤
N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[li(πθ? , ψi)− li(πθ? , ψN )]

+ RegretSN ((ψi)
N
i=1)

(6)

Here, inequality 6 follows from the fact that
∑N
i=1 li(πθ∗ , ψi) ≤

∑N
i=1 li(πθ? , ψi). Now, we can

focus on bounding the extra term. Let h(x, y) = ‖x− y‖2.

N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[li(πθ? , ψi)− li(πθ? , ψN )] (7)

=

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN (sit))− h(πθi(s

i
t), ψi(s

i
t))

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ?(sit), ψi(s
i
t))− h(πθ?(sit), ψN (sit))

] (8)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθi(s
i
t), ψN (sit)), ψN (sit)− ψi(sit)〉

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθ?(sit), ψi(s
i
t)), ψi(s

i
t)− ψN (sit)〉

] (9)
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=

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψN (sit)− πθi(st)), ψN (sit)− ψi(sit)〉

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψi(s
i
t)− πθ?(st)), ψi(s

i
t)− ψN (sit)〉

] (10)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψN (sit)− πθi(st)‖‖ψN (sit)− ψi(sit)‖

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψi(sit)− πθ?(st)‖‖ψi(sit)− ψN (sit)‖

] (11)

≤ 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]
(12)

Equation 8 follows from applying the definition of the loss function. Inequality 9 follows from
applying convexity of h in ψ. Equation 10 follows from evaluating the corresponding gradients.
Inequality 11 follows from Cauchy-Schwarz and inequality 12 follows from the action space bound.
Thus, we have:

RegretSN (ψN ) ≤ 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]
+ RegretSN ((ψi)

N
i=1) (13)

A.2 Proof of Corollary 4.1

∀s ∈ S, ∀N > i, ‖ψi(s)− ψN (s)‖ ≤ fi where lim
i→∞

fi = 0 (14)

implies that

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN (sit)‖

]
≤ fi ∀N > i ∈ N (15)

This in turn implies that
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN (sit)‖

]
≤

N∑
i=1

fi (16)

Remark: For sublinearity, we really only need inequality 15 to hold. Due to the dependence of p(τ |θi)
on the parameter θi of the policy at iteration i, we tighten this assumption with the stricter Cauchy
condition 14 to remove the dependence of a component of the regret on the sequence of policies used.

The Additive Cesàro’s Theorem states that if the sequence (an)∞n=1 has a limit, then

lim
n→∞

a1 + a2 . . . an
n

= lim
n→∞

an

Thus, we see that if limi→∞ fi = 0, then it must be the case that limN→∞
1
N

∑N
i=1 fi = 0. This

shows that for some (fi)
N
i=1 converging to 0, it must be the case that

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN (sit)‖

]
≤

N∑
i=1

fi = O(N)

Thus, based on the regret bound in Theorem 4.1, we can achieve sublinear RegretSN (ψN ) for any
sequence (fi)

N
i=1 which converges to 0 given an algorithm that achieves sublinear RegretSN ((ψi)

N
i=1):

RegretSN (ψN ) = RegretSN ((ψi)
N
i=1) + O(N)
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B Dynamic Regret

B.1 Proof of Lemma 4.1

Recall the standard notion of dynamic regret as defined in Definition 4.3:

RegretDN ((ψi)
N
i=1) =

N∑
i=1

[
li(πθi , ψi)− li(πθ∗i , ψi)

]
where θ∗i = arg min

θ∈Θ
li(πθ, ψi) (17)

However, we seek to bound

RegretDN (ψN ) =

N∑
i=1

[
li(πθi , ψN )− li(πθ?i , ψN )

]
where θ?i = arg min

θ∈Θ
li(πθ, ψN ) (18)

as defined in Definition 4.4.

Notice that this corresponds to the dynamic regret of the agent with respect to the losses parameterized
by the most recent supervisor ψN . We can do this as follows:

RegretDN (ψN ) =

N∑
i=1

[
li(πθi , ψN )− li(πθ?i , ψN )

]
(19)

=

N∑
i=1

[
li(πθi , ψN )− li(πθ?i , ψN )

]
− RegretDN ((ψi)

N
i=1)

+ RegretDN ((ψi)
N
i=1)

(20)

=

N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[
li(πθ∗i , ψi)− li(πθ?i , ψN )

]
+ RegretDN ((ψi)

N
i=1)

(21)

≤
N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[
li(πθ?i , ψi)− li(πθ?i , ψN )

]
+ RegretDN ((ψi)

N
i=1)

(22)

Here, inequality 22 follows from the fact that li(πθ∗i , ψi) ≤ li(πθ?i , ψi). Now as before, we can focus
on bounding the extra term. Let h(x, y) = ‖x− y‖2.

N∑
i=1

[li(πθi , ψN )− li(πθi , ψi)] +

N∑
i=1

[
li(πθ?i , ψi)− li(πθ?i , ψN )

]
(23)

=

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθi(s
i
t), ψN (sit))− h(πθi(s

i
t), ψi(s

i
t))

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

h(πθ?i (sit), ψi(s
i
t))− h(πθ?i (sit), ψN (sit))

] (24)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθi(s
i
t), ψN (sit)), ψN (sit)− ψi(sit)〉

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈∇ψh(πθ?i (sit), ψi(s
i
t)), ψi(s

i
t)− ψN (sit)〉

] (25)
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=

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψN (sit)− πθi(st)), ψN (sit)− ψi(sit)〉

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

〈2(ψi(s
i
t)− πθ?i (st)), ψi(s

i
t)− ψN (sit)〉

] (26)

≤
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψN (sit)− πθi(st)‖‖ψN (sit)− ψi(sit)‖

]

+

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

2‖ψi(sit)− πθ?i (st)‖‖ψi(sit)− ψN (sit)‖

] (27)

≤ 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]
(28)

The steps of this proof follow as in the proof of the static regret reduction. Equation 24 follows from
applying the definition of the loss function. Inequality 25 follows from applying convexity of h in
ψ. Equation 26 follows from evaluating the corresponding gradients. Inequality 27 follows from
Cauchy-Schwarz and inequality 28 follows from the action space bound. Combining this bound
with 22, we have our desired result:

RegretDN (ψN ) ≤ 4δ

N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψN (sit)− ψi(sit)‖

]
+ RegretDN ((ψi)

N
i=1) (29)

B.2 Proof of Corollary 4.2

By Corollary 4.1,
N∑
i=1

Eτ∼p(τ |θi)

[
1

T

T∑
t=1

‖ψi(sit)− ψN (sit)‖

]
= O(N)

which implies that
RegretDN (ψN ) = RegretDN ((ψi)

N
i=1) + O(N)

B.3 Predictability of Online Learning Problems

Next, we establish that the online learning problem defined by the losses defined in Section 3 is an
(α, β)-predictable online learning problem as defined in Cheng et al. [22]. An online learning problem
is (α, β)-predictable if it satisfies ∀θ ∈ Θ, (1) li(.) is α strongly convex in θ, (2) ‖∇θli+1(πθ, ψi+1)−
∇θli(πθ, ψi)‖ ≤ β‖θi+1 − θi‖ + ζi where

∑N
i=1 ζi = O(N). Proposition 12 in Cheng et al. [22]

shows that for (α, β)-predictable problems, sublinear dynamic regret can be achieved if α > β.
Furthermore, Theorem 3 in Cheng et al. [22] shows that if α is sufficiently large and β sufficiently
small, then sublinear dynamic regret can be achieved by online gradient descent.
Lemma B.1. If ∀s ∈ S, ∀N > i, ‖ψi(s) − ψN (s)‖ ≤ fi where limi→∞ fi = 0, the learning
problem is (α, 4Gη supa∈A ‖a‖)-predictable in θ: li(πθ, ψ) is α-strongly convex by assumption and
if Assumption 4.1 holds, then li(πθ, ψ) satisfies:

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ ≤ 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖+ ζi where

N∑
i=1

ζi = O(N)

Proof of Lemma B.1 We have bounded RegretDN (ψN ) by the sum of RegretDN ((ψi)
N
i=1) and a

sublinear term. Now, we analyze RegretDN ((ψi)
N
i=1). We note that we can achieve sublinear

RegretDN ((ψi)
N
i=1) if the losses satisfy

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ ≤ β‖θi+1 − θi‖+ ζi

14



where
∑N
i=1 ζi = O(N) by Proposition 12 in Cheng et al. [22].

Note that for Jτ (πθ, ψ) = 1
T

∑T
t=1‖ψ(st)− πθ(st)‖2, we have

∇θli(πθ, ψ) = Eτ∼p(τ |θi)
1

T

T∑
t=1

∇θ‖ψ(st)− πθ(st)‖2 (30)

= Eτ∼p(τ |θi)∇θJτ (πθ, ψ) (31)

=

∫
p(τ |θi)∇θJτ (πθ, ψ)dτ (32)

∇θJτ (πθ, ψ) =
1

T

∑
st∈τ

2∇θπθ(st)T (πθ(st)− ψ(st)) (33)

=
2

T
∇θπθ(τ)T (πθ(τ)− ψ(τ)) (34)

where

ψ(τ) =

ψ(s0)
...

ψ(sT )

 , πθ(τ) =

πθ(s0)
...

πθ(sT )

 , ∇θπθ(τ) =

∇θπθ(s0)
...

∇θπθ(sT )

 (35)

Taking the difference of the above loss gradients, we obtain:

‖∇θli+1(πθ, ψi+1)−∇θli(πθ, ψi)‖ (36)

=

∥∥∥∥∫ p(τ |θi+1)∇θJτ (πθ, ψi+1)dτ −
∫
p(τ |θi)∇θJτ (πθ, ψi)dτ

∥∥∥∥ (37)

≤
∫
‖p(τ |θi+1)∇θJτ (πθ, ψi+1)− p(τ |θi)∇θJτ (πθ, ψi)‖dτ (38)

=

∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

+
2

T
∇θπθ(τ)T (p(τ |θi+1)πθ(τ)− p(τ |θi)πθ(τ))

∥∥∥∥dτ (39)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+

∫ ∥∥∥∥ 2

T
∇θπθ(τ)Tπθ(τ)(p(τ |θi+1)− p(τ |θi))

∥∥∥∥dτ (40)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ
+ 2G sup

a∈A
‖a‖

∫
|p(τ |θi+1)− p(τ |θi)|dτ

(41)

≤
∫ ∥∥∥∥ 2

T
∇θπθ(τ)T (p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ))

∥∥∥∥dτ + 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖ (42)

≤ 2

T
G

∫
‖p(τ |θi)ψi(τ)− p(τ |θi+1)ψi+1(τ)‖dτ + 2Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (43)

=
2

T
G

∫
‖p(τ |θi)ψi(τ)− p(τ |θi)ψi+1(τ) + p(τ |θi)ψi+1(τ)− p(τ |θi+1)ψi+1(τ)‖dτ

+ 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖

(44)
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≤ 2

T
G

∫
‖p(τ |θi)(ψi(τ)− ψi+1(τ))‖+ ‖(p(τ |θi)− p(τ |θi+1))ψi+1(τ)‖dτ

+ 2Gη sup
a∈A
‖a‖‖θi+1 − θi‖

(45)

≤ 2

T
G

∫
p(τ |θi)‖ψi(τ)− ψi+1(τ)‖dτ + 4Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (46)

≤ 2Gfi

∫
p(τ |θi)dτ + 4Gη sup

a∈A
‖a‖‖θi+1 − θi‖ (47)

≤ 2Gfi + 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖ (48)

= 4Gη sup
a∈A
‖a‖‖θi+1 − θi‖+ ζi (49)

where here ζi = 2Gfi and we see that 2G
∑N
i=1 fi = O(N) as desired for some (fi)

N
i=1 where

limi→∞ fi = 0 as in Corollary 4.1. Equation 37 follows from applying definitions. Equation 38
follows from the triangle inequality. Equation 39 follows from substitution of the loss gradients.
Inequality 40 follows from the triangle inequality and factoring out common terms. Inequality 41
follows from subadditivity, the policy Jacobian diameter and action space bound. Inequality 42
follows from Assumption 4.1. Equation 43 follows from subadditivity of the operator norm and the
policy Jacobian bound. Equation 45 follows from the triangle inequality, and equation 46 follows
from the triangle inequality and Assumption 4.1. Equations 47 and 49 follow from the convergence
assumption of the supervisor and the triangle inequality.
Lemma B.2. Assumption 3.2 implies that the loss function gradients are bounded as follows:

‖∇θli(πθ, ψ)‖ ≤ 2Gδ ∀θ, θi ∈ Θ, ∀ψ

Proof of Lemma B.2∥∥∥∥∥Eτ∼p(τ |θi)
[

1

T

T∑
t=1

2(∇θπθ(sit))T
(
πθ(s

i
t)− ψi(sit)

)] ∥∥∥∥∥ ≤
Eτ∼p(τ |θi)

[
1

T

T∑
t=1

∥∥∥∥2(∇θπθ(sit))T
(
πθ(s

i
t)− ψi(sit)

) ∥∥∥∥
]

by convexity of norms ‖·‖ and Jensen’s inequality.

Then, we have that

‖(∇θπθ(s))T (πθ(s)− ψ(s))‖ ≤ ‖∇θπθ(s)‖‖πθ(s)− ψ(s)‖ ≤ Gδ ∀θ ∈ Θ, ∀s ∈ S, ∀ψ

due to subadditivity and the assumption that the action space diameter is bounded. Thus, we have that

∀θ, θi ∈ Θ,∀ψ, ‖∇θli(πθ, ψ)‖ ≤ 2Gδ

B.4 Proof of Lemma 4.2

From Lemma B.1, the loss gradients are bounded by the sum of a Lipschitz-type term and a sublinear
term, satisfying the conditions for Proposition 12 from Cheng et al. [22]. Thus, by Proposition 12
from Cheng et al. [22], we see that as long as α > 4Gη supa∈A‖a‖, there exists an algorithm that can
achieve sublinear RegretDN ((ψi)

N
i=1). An example of an algorithm that achieves sublinear dynamic

regret under this condition is the greedy algorithm [22]: θi+1 = arg minθ∈Θ li(πθ, ψi).

Define β = 4Gη supa∈A‖a‖, λ = β/α, and ξi = ζi/α. For the greedy algorithm, the result can be
shown in a similar fashion to Theorem 3 of Cheng et al. [22]:

‖θ∗i − θi‖ = ‖θ∗i − θ∗i−1‖ ≤ λ‖θi − θi−1‖+
ζi
α
≤ λi‖θ1 − θ0‖+

i∑
j=1

λi−jξj

where the first inequality follows from Proposition 1 of Lee et al. [16] and the second inequality
follows from repeated application of the same proposition. Summing from 1 to N with ζi = 2Gfi as
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in the proof of Lemma 4.2, we have
N∑
i=1

i∑
j=1

λi−jξj ≤
N∑
i=1

ξi(1 + λ+ λ2 + . . .) ≤ 1

1− λ

N∑
i=1

ξi =
2G

α(1− λ)

N∑
i=1

fi

Thus, if
∑N
i=1 fi = O(N), we can show that the greedy algorithm achieves sublinear

RegretDN ((ψi)
N
i=1) by using the Lipschitz continuity of the losses as shown in the proof of Lemma B.2

if the parameter space diameter is bounded as follows: D = supθ,θ′∈Θ ‖θ − θ′‖.

RegretDN ((ψi)
N
i=1) ≤ 2Gδ

N∑
i=1

‖θi − θ∗i ‖

≤ 2Gδ

(
D

N∑
i=1

λi +
2G

α(1− λ)

N∑
i=1

fi

)

≤ 2Gδ

(
D

1− λ
+

2G

α(1− λ)

N∑
i=1

fi

)
= O(N)

For the last part of the lemma, the fact that online gradient descent achieves sublinear
RegretDN ((ψi)

N
i=1) follows directly from applying Theorem 3 from Cheng et al. [22] with

4Gη supa∈A ‖a‖
α > α

2γ if the losses are γ-smooth in θ.

B.5 Proof of Theorem 4.2

The proof follows immediately from combining the result of Corollary 4.2 and Lemma 4.2.

C Training Details

C.1 CSF Learner

For the linear policy, the CSF learner is trained via linear regression with regularization parameter
α = 1. For the neural network policy, the CSF learner is represented with an ensemble of 5 neural
networks, each with 1 layer with 20 hidden units and swish activations.

C.2 PETS

PETS learns an ensemble of neural network dynamics models using sampled transitions and updates
them on-policy to better reflect the dynamics local to the learned policy’s state distribution. We use
the implementation from [33]. MPC is run over the learned dynamics to select actions for the next
iteration. For all environments, a probabilistic ensemble of 5 neural networks with 3 hidden layers,
each with 200 hidden units and swish activations are used to represent the dynamics model. The
TS-∞ sampling procedure is used for planning. We use an MPC planning horizon of length 25 for
all environments and 1 initial random rollout to seed the learned dynamics model. Chua et al. [8]
contains further details on training PETS.

C.3 SAC

We use the rlkit implementation [34] of soft actor critic with the following parameters: batch size =
128, discount factor = 0.99, soft target τ = 0.001, policy learning rate = 0.0003, Q function learning
rate = 0.0003, value function learning rate = 0.0003, and replay buffer size = 1000000. All networks
are two-layer multi-layer perceptrons with 300 hidden units.

C.4 TD3

We use the rlkit implementation [34] of TD3 with the following parameters: batch size = 128, discount
factor = 0.99, and replay buffer size = 1000000. The exploration strategy consists of adding Gaussian
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noise N (0, 0.1) to actions chosen by the policy. All networks are two-layer multi-layer perceptrons
with 300 hidden units.

C.5 ME-TRPO

We model both the policy and dynamics with neural networks, using an ensemble of dynamics
models to avoid exploitation of model bias. We use the ME-TRPO implementation from [35] with the
following hyperparameters: batch size=128, discount factor=1, and learning rate =.001 for both the
policy and dynamics. The policy network has two hidden layers with 64 units each and all dynamics
networks have two hidden layers with 512 units each and ReLU activation.

D Experimental Details

D.1 Simulated Experiments

Both simulated experiments involve manipulation tasks on a simulated PR2 robot and are from the
provided code in Chua et al. [8]. Both are implemented as 7-DOF torque control tasks. For all tasks,
we plot the sum of rewards for each training episode.

D.2 Physical Experiments

Both physical experiments involve delta-position control in 3D space on the daVinci surgical system,
which is cable driven and hard to precisely control, making it difficult to reliably reach a desired pose
without appropriate compensation [36]. The CSF learner policy and supervisor dynamics are modeled
by 3 hidden-layer feed-forward neural networks with 200 hidden units each. The tasks involve
guiding the end effectors to targets in the workspace and isotropic concave quadratic rewards are used.
For all tasks, we plot the sum of rewards for each training episode. For multi-arm experiments, the
arms are limited to subsets of the state space where collisions are not possible. We are investigating
modeling arm collisions for future work. Since the da Vinci surgical system has relatively limited
control frequency, although the CSF learner often enables significantly faster query time than PETS,
the improvement in policy evaluation time was somewhat less significant due to physical hardware
constraints. In future work, we plan to implement the proposed algorithm on a robot with higher
frequency control capability.
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