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Abstract: Curiosity as a means to explore during reinforcement learning prob-
lems has recently become very popular. However, very little progress has been
made in utilizing curiosity for learning control. In this work, we propose a model-
based reinforcement learning (MBRL) framework that combines Bayesian mod-
eling of the system dynamics with curious iLQR , an iterative LQR approach that
considers model uncertainty. During trajectory optimization the curious iLQR
attempts to minimize both the task-dependent cost and the uncertainty in the dy-
namics model. We demonstrate the approach on reaching tasks with 7-DoF ma-
nipulators in simulation and on a real robot. Our experiments show that MBRL
with curious iLQR reaches desired end-effector targets more reliably and with
less system rollouts when learning a new task from scratch, and that the learned
model generalizes better to new reaching tasks.
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1 Introduction

Model-based reinforcement learning holds promise for sample-efficient learning on real robots [1].
The hope is that a model learned on a set of tasks can be used to learn to achieve new tasks faster. A
challenge is then to ensure that the learned model generalizes beyond the specific tasks used to learn
it. We believe that curiosity, as means of exploration, can help with this challenge. Though curiosity
has been defined in various ways, it is generally considered a fundamental building block of human
behaviour [2] and essential for the development of autonomous behaviour [3].

In this work, we take inspiration from [4], which defines curiosity as motivation to resolve uncer-
tainty in the environment. Following this definition, we postulate that by seeking out uncertainties,
a robot is able to learn a model faster and therefore achieve lower costs more quickly compared to
a non-curious robot. Keeping real robot experiments in mind, our goal is to develop a model-based
reinforcement learning (MBRL) algorithm that optimizes action sequences to not only minimize a
task cost but also to reduce model uncertainty.

Initial motor 
babbling data

Optimize a curious 
iLQR policy using 

the dynamics model

Learn a probabilistic 
dynamics model

Figure 1: Approach overview: motor babbling data
initializes the dynamic model, the main loop then alter-
nates between model learning and policy updates.

Specifically, our MBRL algorithm iterates be-
tween learning a probabilistic model of the
robot dynamics and using that model to opti-
mize local control policies (i.e. desired joint
trajectories and feedback gains) via a curious
version of the iterative Linear Quadratic Regu-
lator (iLQR) [5]. These policies are executed
on the robot to gather new data to improve the
dynamics model, closing the loop, as summa-
rized in Figure 1.

In a nutshell, our curious iLQR aims at opti-
mizing local policies that minimize the cost and
explore parts of the model with high uncertainty. In order to encourage actions that explore states for
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which the dynamics model is uncertain, we incorporate the variance of the model predictions into
the cost function evaluation. We propose a computationally efficient approach to incorporate this
uncertainty by leveraging results on risk-sensitive optimal control [6, 7]. [6] showed that optimizing
actions with respect to the expected exponentiated cost directly takes into account higher order mo-
ments of the cost distribution while affording the explicit computation of the optimal control through
Riccati equations. A risk-sensitive version of iLQR was recently proposed in [7]. While in these
approaches the dynamic model is typically considered known and uncertainty comes from external
disturbances, we propose to instead explicitly incorporate model uncertainty in the algorithm to fa-
vor the exploration of uncertain parts of the model. The proposed coupling between model learning
and risk-sensitive control explicitly favours actions that resolve the uncertainty in the model while
minimizing a task-related cost.

The contributions of this work are as follows: 1) We present a MBRL algorithm that learns a global
probabilistic model of the dynamics of the robot from data and show how to utilize the uncertainty
of the model for exploration through our curious iLQR optimization. 2) We demonstrate that our
MBRL algorithm can scale to seven degree of freedom (DoF) manipulation platform in the real
world without requiring demonstrations to initialize the MBRL loop. 3) The results show that using
curiosity not only learns a better model faster on the initial task, but also that this model generalizes
to new tasks more reliably. We perform an extensive evaluation in both simulation and on hardware.

2 Background

The goal of MBRL is to solve a task through learning a model f of the true dynamics freal of the
system that is subsequently used to solve an optimal control problem. The dynamics are described
through xt+1 = f(xt, ut) where xt and ut are the state and action of the current time step, and
xt+1 the state at the next time step. f represents the learned model of the dynamics. MBRL seeks
to find a policy ut = π(xt) that minimizes a cost J (xt, ut) describing the desired behavior. Policy
optimization can be performed in various ways such as trajectory sampling approaches as summa-
rized and evaluated in [8], random shooting methods, where trajectories are randomly chosen and
evaluated with the learned model, or iterative LQG approaches, as in [9]. Model learning also can
be tackled with various methods. [10] proposes learning linear models of the forward dynamics. In
[8] the dynamics are learned with an ensemble of neural networks. In general, the learned model of
dynamics can be deterministic as in [10] or probabilistic as in [11, 8].

In MBRL, the learned model is used to simulate the robot behaviour when optimizing a trajectory
or control policy. The learned model and the optimizer are task independent; this independence
promises sample efficiency and generalization capabilities, as an already learned model can be
reused for new tasks. As a side effect, however, the learned models quality can drastically affect
the computed solution, as pointed out in [12, 1, 13], since the policy is optimized given the current
learned model and not by interacting with the robot. This effect is called model bias [13] and can
lead to a policy with drastically lower performance on the real robot. We argue that exploration
can alleviate this model-bias. Resolving model uncertainty while optimizing for a task can encour-
age visiting states which resolve ambiguities in the learned model and therefore lead to both better
models and control policies.

2.1 Intrinsic motivation for RL

The concept of curiosity has also been explored within the reinforcement learning literature from
various angles. For example, a first attempt towards intrinsically motivated agents consisted in
rewarding agents to minimize prediction errors of sensory events [14, 15, 16]. This initial work was
designed for low-dimensional and discrete state-and-action spaces. Recently, curiosity as a means
to better explore was also investigated for high-dimensional continuous state spaces [17, 18]. Most
of this work, including recent efforts towards curiosity driven robot learning [19, 20], has defined
curiosity as a function of model prediction error and within a model-free reinforcement learning
framework. In MBRL, [21] recently proposed a measure of disagreement as exploration signal.
[22] propose a maximum entropy exploration behaviour. Other algorithms which take uncertainty
into account have been presented as well [11, 23, 8, 24]. They differ in their choice of policy
optimization, dynamics model representation and how they incorporate uncertainty. While [11, 8]
utilize model uncertainty to generate trajectory distributions, the uncertainty does not play an explicit
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role in the cost. Thus, these approaches do not explicitly optimize actions that resolve uncertainty
in the current model of the dynamics, which is in contrast to the approach we propose in this paper.

2.2 Risk Sensitive stochastic optimal control

Risk-sensitive optimal control has a long history [6, 25]. The central idea is to not only minimize
the expectation of the performance objective under the stochastic dynamics but to also take into
account higher-order moments of the cost distribution. The objective function takes the form of
an exponential transformation of the performance criteria J = minπ E {exp[σJ (π)]} [6]. Here,
J (π) is the performance index, which is a random variable, and a functional of the policy π. E
is the expected value of J over stochastic trajectories induced by the policy π. σ ∈ R accounts
for the sensitivity of the cost to higher order moments (variance, skewness, etc.). Notably, from
[7], the cost is 1

σ log(J) = E(J ∗) + σ
2 var(J ∗) + σ2

6 sk(J ∗) + · · · , where var and sk stand for
variance and skewness and J ∗ is the optimal task cost. When σ > 0 the optimal control will be
risk-averse, favoring low costs with low variance but when σ < 0 the optimal control will be risk-
seeking, favoring low costs with high variance. σ = 0, reduces to the standard, risk-neutral, optimal
control problem. Jacobson [6] originally demonstrated that for linear dynamics and quadratic costs
the optimal control could be computed as the solution of a Riccati equation. Leveraging this result,
[7] recently proposed a risk-sensitive extension of iLQR and [26] further extended the approach to
explicitly incorporate measurement noise.

3 MBRL via Curious iLQR

We present our approach to incorporate curious behaviour into a robot’s learning control loop. We
are interested in minimizing a performance objective J to achieve a desired robot behavior and
approximate the true dynamics of the system with a discrete-time dynamical system

xt+1 = xt + f (xt,ut) ∆t (1)
where xt denotes the state of the system at time step t and f represents the unknown model of the
dynamics of the system and needs to be learned to achieve the desired task. The hypothesis we seek
to confirm is that, by trying to explore uncertain parts of the model, our MBRL algorithm can learn
a good dynamics model more quickly and find behaviors with higher performance. Our algorithm
learns a probabilistic model of the system dynamics while concurrently optimizing a desired cost
objective (Figure 1). It combines i) a risk-seeking iLQR algorithm and ii) a probabilistic model of
the dynamics. We describe the algorithm in the following. In particular, we show how to incorporate
model uncertainty in risk-sensitive optimal control. Algorithm 1 shows the complete algorithm.

Algorithm 1 MBRL Algorithm
1: D ← motor babbling data
2: train model fon D
3: while i < iter do
4: π ← optimize policy via Alg 3
5: Dnew ← rollout π on system
6: D = D ∪Dnew
7: train model fon D
8: end while

Algorithm 2 simulate-policy(x, τ, k,K, α)
1: xnew

0 ← x0
2: while t < T do
3: τ new

t ← τt + αkt +Kt(xt − xnew
t )

4: xnew
t+1 ← f(xnew

t , τt)
5: end while
6: return τ new, xnew

Algorithm 3 curious-iLQR
1: τ ← Initial random torque trajectory
2: x∗ ← unroll τ using f
3: A← Line search parameters, [0,. . . ,1]
4: J∗ ← Optimal iLQR cost so far
5: while i < opt iter do
6: k,K ← backward pass, see 3.2
7: for α ∈ A do
8: τnew, xnew ← simulate-policy(x, τ, k,K, α)
9: Jnew ← Compute cost of τ new, xnew

10: if Jnew < J∗ then
11: τ, x∗ ← xnew, τnew

12: end if
13: if converged then
14: return π(x) = τ +K(x− x∗)
15: end if
16: end for
17: end while

3.1 Risk-sensitive iLQR

Consider the following general nonlinear stochastic difference equation
xt+1 = xt + f (xt,ut) ∆t+ g (xt,ut) ∆ω (2)
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where g maps a Brownian motion ∆ω, with 0 mean and covariance (Σ · ∆t), to system states.
∆ω and the nonlinear map g, typically model an unknown physical disturbance, while assuming
a known model f of the dynamics. When considering the exponentiated performance criteria J =
minπ E {exp[σJ (π)]} (see 2 for more details), it has been shown that iLQR [5] can be extended
to risk-sensitive stochastic nonlinear optimal control problems [7]. The algorithm begins with a
nominal state and control input trajectory xn and un. The dynamics and cost are approximated to
first and second order respectively along the nominal trajectories un

t , xn
t in terms of state and control

deviations δxt = xt−xn
t , δut = ut−un

t . Given a quadratic control cost, the locally optimal control
law will be of the form δut = kt + Ktδxt. The underlying optimal control problem can be solved
by using Bellman equation

Ψσ(δxt, t) = min
u
{l(x,u, t) + E[Ψσ(δxt+1, t + 1)]} (3)

where l is the quadratic cost, and by making the following quadratic approximation of the value
function Ψ(δxt, t) = 1

2δx
T
t Stδx + δxT

t st + st where St = ∇δxδxΨ and st = ∇δxΨ− Stδxt are
functions of the partial derivatives of the value function.

Using the (time-varying) linear dynamics, the quadratic cost and the quadratic approximation of Ψ,
and solving for the optimal control, we get

δut = kt + Ktδxt, kt = −H−1
t gt, and Kt = −H−1

t Gt (4)

where Ht, gt, Gt are given by

Ht = Rt + BT
t StBt + σBT

t ST
t CΣt+1CTStBt

gt = rt + BT
t st + σBT

t ST
t CΣt+1CTst

Gt = PT
t + BT

t StAt + σBT
t ST

t CΣt+1CTStAt

(5)

where At = ∆t ∂f∂xt
, Bt = ∆t ∂f∂ut

and qt, rt, Qt, Rt and Pt are the coefficients of the Taylor ex-
pansion of the cost function around the nominal trajectory. The corresponding backward recursions
are

st = qt + AT
t st+1 + GT

t kt + KT
t Htkt + σAT

t ST
t+1CΣt+1CTst+1 (6)

St = Qt + AT
t St+1At + KT

t HtKt + GT
t Kt + KT

t Gt + σAT
t ST

t+1CΣt+1CTSt+1At (7)

We note that this Riccati recursion is different from usual iLQR ([5]) due to the presence of the
covariance Σ: the locally optimal control law explicitly depends on the noise uncertainty.

3.2 Curious iLQR: seeking out uncertainties

We use Gaussian Process (GP) regression to learn a probabilistic model of the dynamics in order to
include the predictive variance from the model into the risk-sensitive iLQR algorithm. This predic-
tive variance will then capture both model as well as measurement uncertainty. Specifically, we set
xt = [θt, θ̇t] where θt, θ̇t are joint position and velocity vectors respectively. We let ut denote
the vector of commanded torques. After each system rollout, we get a new set of tuples of states
and actions (xt,ut) as inputs and θ̈t+1, joint accelerations at the next time step, as outputs which
we add to our dataset D on which we re-train the probabilistic dynamics model (see Algorithm 1).
Once trained, the model produces a one step prediction of the joint accelerations of the robot as a
probability distribution of the form

p(θ̈t+1|xt,ut) = N (θ̈t+1|h (xt,ut) ∆t,Σt+1) (8)

where h is the mean vector and Σt+1 the covariance matrix of the predictive distribution evaluated
at (xt, ut). The outputs is the acceleration at the next time step θ̈t+1 which is numerically integrated
to velocity θ̈t+1∆t + θ̇t = θ̇t+1 and position θ̇t+1∆t + θt = θt+1. This results in a Gaussian
predictive distribution of the system dynamics f

xt+1 ∼ N (xt+1|xt + h (xt,ut) ∆t,Σt+1) (9)

It is the covariance matrix Σt+1 of this distribution that is incorporated into the Riccati equations
from above. Specifically, during each MBRL iteration we optimize a new local feedback policy
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under the current dynamics model f , via Algorithm 3. Each outer loop of the optimization, re-
linearizes f with respect to the current nominal trajectories un

t , xn
t in the backward-pass:

δxt+1 = Atδxt + Btδut + Ctωt (10)

with At = ∆t ∂f
∂xt

n , Bt = ∆t ∂f
∂ut

n and ωt ∼ N (ωt|0,Σt+1), where At and Bt are the analytical
gradients of the probabilistic model prediction at each time step and Ct weights how the uncertainty
is propagated trough the system. We utilize the Riccati equations from Section 3.1, Equations (5)
and (6), to optimize a new local feedback policy that utilizes the models predictive covariance Σt+1.
During the shooting phase of the algorithm, we integrate the nonlinear model from the GP and, to
guarantee convergence to lower costs, we use a line search approach during the optimization. We
leverage the risk-seeking capabilities of the optimization by setting σ < 0. The algorithm then
favors costs with higher variance which is related to exploring regions of the state space with higher
uncertainty in the dynamics. As a result, the agent is encouraged to select actions that explore
uncertain regions of the dynamic model while still trying to reduce the task specific error. With
σ = 0 the agent will ignore any uncertainty in the environment and therefore not explore. This is
equivalent to standard iLQR optimization which ignores higher order statistics of the cost function.
An overview of curious iLQR is given in Algorithm 3.

4 Illustration: Curious iLQR

In this section, we want to illustrate the advantages of using the motivation to resolve model uncer-
tainty as an exploration tool. The objectives of this section is to give an intuitive example of the
effect of our MBRL loop. In the following, and throughout the paper, we will refer to the agent that
tries to resolve the uncertainty in its environment as curious and the one that is not following the
uncertainty but only optimizes for the task related cost as normal.

Figure 2: End-effector position of curious and normal agent for 4 learning iterations on 2 different
targets. The targets are represented by the black dots, the starting position by the black squares.

Figure 3: Reacher performance /10 trials.

The experimental platform is the OpenAI Gym Reacher
environment [27], a two degrees of freedom arm attached
at the center of the scene. The goal of the task is to reach a
target placed in the environment. In the experiments pre-
sented here, actions were optimized as described in sec-
tion 3. The probabilistic model was learned with Gaus-
sian Process (GP) regression using the GPy library [28].
The intuition behind this experiment is that, if an agent is
driven to resolve uncertainty in its model, a better model
of the system dynamics can be learned and therefore used
to optimize a control sequence more reliably. Our hypoth-
esis is that, the model learned by the curious agent is better by the end of learning and therefore we
expect it to perform better when using it to solve new reaching tasks. In Figure 2 we show the result-

Figure 4: The uncertainty and the prediction error in end-effector space after training, for the normal and
curious agent. The cross is the initial position. Regions that are not by the arm reachable are shown in blue.
ing end-effector trajectories of 8 consecutive MBRL iterations when optimizing to reach 2 different
targets in sequence. We compare the behavior of the curious and normal agent in orange and blue,
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respectively. The targets are represented by the black dot. The curious agent tries to resolve the
uncertainty within the model; the normal agent optimizes only for the task related cost. The normal
agent seemingly reaches the first target after the second learning iteration; the curious agent only
manages to reach the target during the third iteration. Interestingly, the exploration of the curious
agent leverages the arm to reach the second target immediately and continues to reach it consistently
thereafter. Figure 4 confirms the intuition that the curious agent has learned a better model than
the normal agent. The figure shows the uncertainty and the prediction error (in end-effector space)
of the model learned by the normal and the curious agent respectively. With curiosity, the learned
model has overall lower uncertainty and prediction error values over the whole state space. We also
compare our MBRL loop via curious iLQR optimization to: normal iLQR, a random exploration
controller that adds Gaussian noise to the actions with mean 0 and variance 0.2, a maximum entropy
exploration behaviour following the approach proposed in [22] and PILCO [11], in Figure 3. For
these experiments, we initialize the model with only two data points collected randomly during mo-
tor babbling. We report the mean and the standard deviation across 10 trials, where each trial starts
from a different initial joint configuration and is initialized with a different initial torque trajectory
for optimization. In this scenario, with a very poor initial model quality, PILCO could not perform
comparably to our MBRL loop. MBRL via curious iLQR outperforms all the other approaches.
Furthermore it converges to solutions more reliably, as the variance between trials is lowest.

5 Experiments on high-dimensional problems

Finally, the goal of this work is to learn motor skills on a torque-controlled manipulator. Our exper-
imental platform is the Sawyer robot from Rethink Robotics [29], a 7 degrees of freedom manipula-
tor. We start with experiments performed in the PyBullet physics simulator [30]. In the next Section,
we present results on the Sawyer robot arm hardware. Previous work such as [7] and [26], which
use risk-sensitive control variations of iLQR, primarily deal with simplified, low dimensional prob-
lems. Our experiments are conducted on a 7 degree of freedom robot, and the higher dimensional
system adds some complexities to the approach: the gradients in Section 3.1 of the value function
(Equations (6), (7)) tend to suffer from numerical ill-conditioning in high-dimensions. We account
for this issue with Tikhonov regularization: before inversion for calculating the optimal control we
add a diagonal matrix to Hk from Equation (5). The regularization parameter and the line search
parameter α are adapted following the Levenberg Marquardt heuristic [5].

The goal of these experiments is to reach a desired target joint configuration θ. We show results for
dynamics learned with GP regression (GPR), as well as initial results on ensemble of probabilistic
neural networks (EPNN) following the approach presented in [31]. When using GPs, a separate GP
is trained for each output dimension.

We perform two sets of experiments, both in simulation and on hardware, to analyze the effect of
using curiosity. Specifically, we believe that curiosity helps to find better solutions faster, because it
guides exploration within the MBRL loop. Intuitively, curiosity helps to observe more diverse data
samples during each rollout such that the model learns more about the dynamics.

We start with evaluation in simulation. Throughout all of the simulation experiments the optimiza-
tion horizon was 150 time steps long at a sampling rate of 240 Hz. Motor babbling was performed
at the beginning for 0.5s by commanding random torques in each joint.

5.1 Reaching task from scratch

During the first set of experiments, we compare the performance when learning to reach a given
target configuration from scratch. We compare our MBRL loop, as before, when using our curious
iLQR optimization, regular iLQR, a random exploration controller and a maximum entropy explo-
ration behaviour as described previously. PILCO was not able to learn the reaching movement on
the 7-DoF manipulator, so we exclude the results from the analysis. We perform this experiments
for each kind of controller 5 times. Each run slightly perturbs the initial joint positions, and uses
a random initial torque trajectories for the optimizer. For a given target joint configuration, 5 itera-
tions of optimizing the trajectory, running the trajectory on the system and updating the dynamics
model, were performed. We perform this experiment for 3 different target joint configurations. The
following results are averaged across the 5x3 runs (5 runs per target). The left most plot in Figure 5
compares performance of curious iLQR when using EPNN vs GPR for dynamics model learning,
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Figure 5: Distance in end effector space for EPNN vs. GP in m (1). Distance in end effector space in m (2),
iLQR rollout cost (3) and model prediction error (4) with the GP model, compared to our baselines.

with and without curiosity. Our analysis shows that MBRL via curious iLQR improves performance
over regular iLQR, for both model architectures. While the EPNN is more promising in scaling our
approach, it currently requires more data to train. For this reason we will focus on the GP model
for the remainder of our experimental section. In the 2nd to 4th plot of Figure 5, we compare the
performance of curious iLQR against the above mentioned baselines for exploration during pol-
icy optimization, when using GPR for model learning. We compare the methods with respect to 3
metrics: final Euclidean end-effector distance (plot 2), iLQR cost (plot 3) and the predictive perfor-
mance of the model on each rollout (plot 4). We can consistently see that, on average, MBRL via
curious iLQR outperforms the other approaches: the error/cost is smaller and the solutions are more
consistent across trials as the standard deviation is lower. This shows that curiosity can lead to faster
learning of a new task, when learning from scratch.The results on the predictive performance of the
model suggest that the quality of the model learned via curious iLQR might be better in terms of
generalization. In the next section we present results that investigate this assumption.

5.2 Optimizing towards new targets after model learning

Figure 6: Optimizing to reach new targets with regular iLQR after models were learned. 4 different targets
(one per row) are evaluated and the final end-effector trajectories presented. Constant lines are targets for x/y/z.
To confirm the hypothesis that the models learned by MBRL with curious iLQR generalize better,
because they have explored the state space better, we decided to evaluate the learned dynamics
models on a second set of experiments in which the robot tries to reach new, unseen targets. In
this experiment we take the GP models learned during experiment 1 in Section 5.1 and use them to
optimize trajectories to reach new targets that were not seen during training of the model. The results
are shown in Figure 6, where four randomly chosen targets were set and the trajectory was optimized
with regular iLQR. Note, that here we use regular iLQR to optimize for the trajectory so that we can
better compare the models learned with/without curiosity in the previous set of experiments. Figure
6 shows the trajectory in end effector space for each coordinate dimension, together with the target
end effector position as a solid horizontal line. The results are averaged across 5 trials. The trials
correspond to using one of the 5 dynamics models at the end of Experiment 1 in Section 5.1. For each
trial, the initial torque trajectory was initialized randomly, and the initial joint configuration slightly
perturbed. The mean and the standard deviation of the optimized trajectories are computed across
the 5 models learned via MBRL with curious iLQR (first col), MBRL with normal iLQR (second
col), iLQR with random exploration (third col) and iLQR with maximum entropy exploration bonus
(fourth col.). We see that MBRL with curious iLQR results in a model that performs better when
presented with a new target. The new targets are reached more reliably and precisely.
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6 Real hardware experiments
Target Distance to Target in m (Learning Iteration)

Curious Normal
1 0.05 (6) 0.09 (2) 0.09 (3) 0.07 (3.67) 0.37 (8) 0.08 (2) 0.18 (8) 0.21 (7.0)
2 0.05 (3) 0.09 (4) 0.09 (4) 0.07 (3.67) 0.20 (8) 0.08 (3) 0.09 (5) 0.12 (5.3)
3 0.09 (6) 0.09 (4) 0.09 (3) 0.09 (4.33) 0.17 (8) 0.16 (8) 0.11 (8) 0.15 (8.0)
4 0.04 (2) 0.07 (2) 0.07 (2) 0.06 (2.33) 0.04 (3) 0.08 (3) 0.05 (3) 0.06 (3.0)

0.07 (3.5) 0.14 (5.9)

Table 1: Results on a reaching task. Each task (target) was re-
peated three times. The mean values are reported in bold font.

Reaching Precision (m)
Target Curious Normal
1 0.20 0.67
2 0.26 0.61
3 0.25 1.06
4 0.24 0.67
5 0.37 0.49

0.26 0.7

Table 2: Reaching a new target
not seen during training.

The experimental platform for our hardware experiments is the Sawyer Robot [29]. The pur-
pose of the experiments was to demonstrate the applicability and the benefits of our algorithm
on real hardware. We perform reaching experiments for 4 different target locations. Each ex-
periment is started from scratch with no prior data, and the number of hardware experiments
needed to reach the target are compared. The results are summarized in Table 1 and show
the number of learning iterations needed in order to reach the target together with the preci-
sion in end-effector space. If the target was reached with a precision of below 10 cm, we
would consider the task as achieved; if the target was not reached after the 8th learning itera-
tion we would stop the experiment and consider the last end-effector position. We decided to
terminate our experiments after the eight iteration as running the experiment on hardware was
a lengthy process, as the GP training and the rollout would happen iteratively and GP train-
ing time increases with growing amount of data. Also, the reaching precision that we were
able to achieve on hardware was significantly lower, compared to the simulation experiments.

(a) start configuration (b) target configuration

Figure 7: Joint configuration of Sawyer.

We believe this is due to the data collected from the
Sawyer robot, as we could only control the robot at
100Hz which introduces inaccuracies when reading
the effects of the sent torque command. We repeated
each experiment three times to demonstrate the re-
peatability of our method as we expected measure-
ment noise to affect solutions. From the table we
can see that MBRL with curious iLQR would reach
a target on average after 3.5 iterations with an aver-
age precision of 7 cm, compared to MBRL with reg-
ular iLQR that needed 5.9 iterations (often not ever

reaching the target after eight iterations with the desired precision), with a precision of 14cm on av-
erage. As in simulation, similar to Experiment 5.2 we wanted to evaluate the quality of the learned
models on new target positions. The results are summarized in Table 2 and are similar to what we
observe in simulation: the models learned with curiosity, when used to optimize for new targets, can
achieve higher precision than when using the models learned without curiosity.

7 Conclusion and future work

In this work, we presented a model-based reinforcement learning algorithm that uses an optimal
control framework to trade-off between optimizing for a task specific cost and exploring around a
locally optimal trajectory. Our algorithm explicitly encourages actions that seek out uncertainties
in our model by incorporating them into the cost. By doing so, we are able to learn a model of the
dynamics that achieves the task faster than MBRL with standard iLQR, and also transfers well to
other tasks. We present experiments on a Sawyer robot in simulation and on hardware. In both sets of
experiments, MBRL with curious iLQR (our approach) not only learns to achieve the specified task
faster, but also generalizes to new tasks and initial conditions. All this points towards the conclusion
that resolving dynamics uncertainty during model-based reinforcement learning is indeed a powerful
tool. As [2] states, curiosity is a superficial affection: it can arise, diverge and end promptly. We
were able to observe similar behaviour in our experiments as well, as can be seen in Figure 5:
towards the end of learning, the exploration signal around the trajectory decreases and the robot
would explore, deviate from the task slightly, before going back to exploiting once it is fairly certain
about the dynamics. In the future, we would like to explore this direction by considering how to
maintain exploration strategies. This could be helpful if the robot is still certain about a task, even
though the environment or task has changed.
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