
Hybrid system identification
using switching density networks

Michael Burke
School of Informatics

University of Edinburgh
michael.burke@ed.ac.uk

Yordan Hristov
School of Informatics

University of Edinburgh
yordan.hristov@ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
s.ramamoorthy@ed.ac.uk

Abstract:
Behaviour cloning is a commonly used strategy for imitation learning and can
be extremely effective in constrained domains. However, in cases where the dy-
namics of an environment may be state dependent and varying, behaviour cloning
places a burden on model capacity and the number of demonstrations required.
This paper introduces switching density networks, which rely on a categorical
reparametrisation for hybrid system identification. This results in a network com-
prising a classification layer that is followed by a regression layer. We use switch-
ing density networks to predict the parameters of hybrid control laws, which are
toggled by a switching layer to produce different controller outputs, when condi-
tioned on an input state. This work shows how switching density networks can be
used for hybrid system identification in a variety of tasks, successfully identifying
the key joint angle goals that make up manipulation tasks, while simultaneously
learning image-based goal classifiers and regression networks that predict joint
angles from images. We also show that they can cluster the phase space of an
inverted pendulum, identifying the balance, spin and pump controllers required
to solve this task. Switching density networks can be difficult to train, but we
introduce a cross entropy regularisation loss that stabilises training.

Keywords: Behaviour cloning, switching density networks, hybrid systems

1 Introduction

Behaviour cloning is a commonly used technique in learning from demonstration or imitation learn-
ing. Here, demonstrations of successful behaviours are used to train models that replicate the demon-
strated behaviour [1, 2]. Supervised learning problems such as these are often formulated as classi-
fication or regression tasks. The former typically assumes that some prior categorisation has been
done, possibly through an initial clustering phase, while the latter tends to ignore these aspects and
focuses only on predicting some real-valued output. However, many learning problems require that
a hierarchical model be learned, where some latent symbolic aspect of a problem maps to a real
valued observation.

This is particularly true in robotics applications, where hierarchical learning is often key to robust,
generalisable control, and learned skills are typically required to be decomposable for re-use in other
applications. Historically, this problem has been addressed in a multi-stage process. For example,
in the context of learning from demonstration, behaviours or low-level skills are often first identified
through a clustering process, before being grounded through some learning process [3, 4]. Hybrid
systems [5] offer a rich mechanism for expressing behaviours, but are typically obtained by hand.
More recently, differentiable parametrisations have been exploited for gradient-based inference in
hierarchical latent variable models [6, 7]. This has paved the way to incorporating valuable struc-
ture into end-to-end learning models. The incorporation of structure into neural models, while still
subject to debate, has gained in popularity recently [8, 9, 10], motivated as a mechanism for inter-
pretable learning and as a means of improving performance. Interpretable robot behaviour is key if
learning robots are to be trusted in practical settings.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

This work introduces switching density networks (SDN) for switching control law identification.
Switching density networks are a form of mixture density network [11] leveraging Gumbel-Softmax
[7] gating to learn to generate densities based on a binary encoded bottleneck layer. This forces
the network to perform an intermediate clustering phase prior to making output predictions, which
results in more interpretable, hierarchical models that allow for further reasoning. Unlike traditional
hybrid system identification, which typically occurs in simple state spaces [12], switching density
networks allow for hybrid system identification with richer sensor data such as images.

This interpretability is a particularly useful property in robotics, and can be used to learn composi-
tional control strategies from demonstration. In our experiments, SDNs are used to predict the con-
troller parameters and reference states for a family of proportional-integral-derivative (PID) control
laws. Hybrid systems of these control laws are applied ubiquitously across domains [13] includ-
ing process control and automotive applications, so this family covers a broad class of applications.
Experimental results show that switching density networks are able to identify the robot joint an-
gle goals that constitute a demonstration sequence and can successfully learning visual grounding
of these goals. Moreover, we show that SDNs learning PID control law families can identify the
state-space regions required for pumping, spinning and balancing an inverted pendulum.

Training such SDNs can be challenging, and we show that they are indeed vulnerable to mode
collapse. This work introduces a cross-entropy batch regularisation loss that remedies this and
allows for reliable training.

Formally, our goal is to identify hybrid systems or state space models conditioned on a discrete
switching process, that is, to find a mapping from observation zt to a state of interest, xt, in a
stochastic dynamical system conditioned on a discrete latent variable it,

q(xt|zt) = p(xt|zt, it) (1)
it ∼ p(it|it−1). (2)

State space models of this form are particularly powerful, as they can be used to express complex
motions and behaviours using interpretable sub-components In the context of sensorimotor control
for robotics, let zt denote sensor data captured at time t and xt the pose or configuration of a robot
at time t. it is a discrete indicator variable controlling the transition between robot behaviour states
or environment dynamics.

2 Related work

Numerous models and approaches [14] have been developed to address the learning problem formu-
lated above. Gaussian mixture models fit using expectation maximisation [15] are widely used for
clustering, while their switching state space analog, Gaussian emission hidden Markov models have
a long history of application in sequence learning. Although typically fit using the Baum-Welch al-
gorithm [16] (a form of expectation maximisation), variational approaches have also been proposed
for a broader class of switching state space models [17].

Learning for switching state space models can also be considered from a changepoint detection
perspective, and a range of numerical inference techniques have been used to detect changepoints in
sequential data [18]. More recently, variational and gradient-based inference strategies for Bayesian
learning have proved useful in hierarchical modelling [6, 7] and variational auto-encoding [19].

Hierarchical modelling is an effective means of incorporating structure into a learning problem,
so as to avoid sample inefficient learning and improve generalisation through abstraction. Work on
options learning [20, 21] and skill identification [22, 23] has paid significant attention to hierarchical
learning, but has been a particular challenge for visuomotor control.

Our work is inspired by sequential composition theories in robotics [24], where tasks are solved
by moving between sub-controllers lying within the domains of one another. Here, we seek to
identify the sub-controllers required for a given task in an end-to-end fashion, from demonstration
sequences. Learning from demonstration (LfD) [25] is widely acknowledged as a particularly useful
paradigm for robot programming. Significant progress has been made in LfD, moving beyond the
direct replication of motions to produce more robust approaches [26] through the introduction of
more general schemes for modelling motion like dynamic motion primitives [27], linear dynamical
attractor systems [28], sparse online Gaussian processes [29, 30] or conditionally linear Gaussian

2

models [31, 3] that can be used for trajectory optimisation. It is important to note that each of these
systems behaves as a hybrid system, decomposing a state space into specific regions, and learning
appropriate dynamics for each region.

More recently, trajectory optimisation approaches have been extended to incorporate end-to-end
learning, demonstrating robust task level visuomotor control [32] through guided policy search, or
using deep dynamic motion primitives [33]. End-to-end learning has allowed for the use of domain
transfer to facilitate one-shot learning [34] from human video demonstrations, and for the use of re-
inforcement learning to learn optimised control policies [35, 36]. Unfortunately, end-to-end learning
approaches typically lack interpretability and are difficult to verify without policy distillation [37].
Burke et al. [38] fit a sequence of proportional control laws to end-to-end model demonstrations
using particle filters, in an attempt to obtain a more interpretable control system, but this approach is
vulnerable to performance loss if important properties of the network fail to be inferred. In contrast,
this paper shows that it is possible to learn switching proportional control laws in an end-to-end
fashion, by emdedding this structure into the learning process.

In computer vision, spatial transformers [39] and capsule networks [40] embed learnable structured
transformations in an attempt to better capture the relational properties of image attributes in con-
volutional neural networks. Without this structure, convolution neural networks can learn jumbled
image representations [41]. This work shows that mixture density networks suffer from a similar
problem, which switching density networks address. Switching density networks are conceptually
similar to the stochastic neural network architecture proposed by Florensa et al. [42], which uses a
switching structure to learn reusible skills in a reinforcement learning setting. Our work differs by
considering the use of switching structures for parameter prediction for state space models, thereby
incorporating known controller structure into the learning process in a lightly supervised manner.

Switching density networks are closely related to mixture density networks [11], a family of neu-
ral network constructed using K output distributions. In the Gaussian mixture case, MDNs fit a
weighted combination of Gaussian distributions,

q(xt|zt) =

K∑
i=1

πi(zt)N (xt|µ(zt),Σ(zt)), (3)

using mean µ(zt), variance Σ(zt) and normalised weight parameters πi(zt), which are predicted
using a neural network. Unfortunately, there is no direct link between weight components and mean
or variance components, so mixture density networks often learn seemingly arbitrary connections.
We illustrate this experimentally in Section 4.2, showing that an MDN trained to predict manip-
ulator joint angles will use only a single mixture component for completely different joint angle
predictions, somewhat unintuitively learning to change the mean and variance parameters instead of
toggling between mixture components. This occurs because no structure forces mixture consistency
in the network.

3 Switching density networks for hybrid control

Switching state space models are typically learned using a multi-stage process. For example, Gaus-
sian mixture models could be fit to robot state measurements, and perception networks trained to
predict hidden states from image observations. Switching density networks attempt to learn hy-
brid systems like this jointly in an end-to-end fashion. More formally, given a hybrid system of
i = 1→ N dynamical systems, each with parameters θi,

ẋt = q(xt; i, θi), (4)

we train a SDN to predict parameters θi, maximising the log likelihood of the distribution
N (ẋt|q(xt; i, θi),Σi), where Σi denotes the measurement uncertainty. Figure 1 shows an exam-
ple SDN architecture. A SDN is similar to a mixture density network, which typically consists of
a neural architecture that predicts K different sets of distribution parameters, along with a set of
discrete weights K. However, unlike mixture models, switching models only predict a single output
distribution, which is conditioned on aK-dimensional one-hot encoded discrete latent variable. The
final layer of a SDN is a fully connected layer with no bias parameters. When combined with the
bottleneck switching layer, this produces a switching state as output.

3

Gradient-based learning with discrete latent variables is challenging, as backpropagation is unsuit-
able for non-differentiable layers. The Gumbel-softmax distribution [7] approximates a categorical
distribution using a temperature (τ) controlled softmax function,

yi =
exp ((log(πi) + gi)/τ)∑K
j=1 exp ((log(πi) + gi)/τ)

for i = 1 . . .K, (5)

with logits πi and i.i.d samples gi drawn from a Gumbel(0,1) distribution. As the temper-
ature τ tends to 0, samples from the Gumbel-softmax distribution tend towards a one-hot
encoded binary vector. As a result, neural model training using temperature annealing al-
lows for backpropagation to be used to learn models with discrete latent parametrisations.

12
8

(3
,3

)
R

eL
U

 S
tr

id
e

2

25
6

(3
,3

)
R

eL
U

 S
tr

id
e

2

Classification

64
 (

3,
3)

 R
eL

U
 S

tr
id

e
2

32
 (

3,
3)

 R
eL

U
 S

tr
id

e
2

8
Li

ne
ar

10
24

 R
eL

U

10
24

 R
eL

U

64x64

D
ro

po
ut

 0
.6

Ba
tc

h
no

rm
al

isa
tio

n

6
G

um
be

l-S
of

tm
ax

8
Li

ne
ar

8
Li

ne
ar

8
Li

ne
ar

Mean

Var

One-hot encoded binary switching layer

Output density

Regression

Clustering

Figure 1: Switching density networks are discrete latent
variable models that switch between output densities. This
architecture is used for reaching controller identification in
8 DOF joint angle space.

The Gumbel-softmax reparametrisa-
tion allows switching density net-
works to be trained with a discrete
bottleneck layer, using stochastic gra-
dient descent to minimise the nega-
tive log likelihood of a state given a
network prediction conditioned on an
input observation.

In contrast to typical hybrid system
identification problems, where sys-
tem dynamics are identified, in a be-
haviour cloning setting we only ob-
serve the closed-loop or controlled
response of the system of interest,
so need to infer switching controller
models. As a particularly useful ex-
ample, we choose to express the behaviour of a robot using a generative switching model compris-
ing a sequence of PID controllers, motivated by the proportional control formulation of Burke et al.
[38]. PID control laws produce controller actions uk,

uk = Kp(xk − µ) +Ki

L∑
l=1

(xk−l − µ) +Kd
xk − xk−1

∆t
, (6)

using three error terms comprising a proportional gain Kp acting on the error between state xk
at time step k and a desired reference point µ, an integral gain Ki acting on the cumulative error
between state xk and a desired reference point µ over a window of time steps l, and a derivative gain
Kd acting on the change in state, over a time difference ∆t.

In a behaviour cloning setting, we typically observe state-action pairs and train models to regress
the appropriate action for a given state. However, if we assume that actions should be produced by
proportional-integral-control laws, we can reformulate the regression problem as one of predicting
the controller gains and reference points that generate observed actions. In complex systems, it may
be the case that we require multiple PID control laws in different states and are required to switch
between control laws. In this case, and assuming Gaussian observation noise, we can model the
controller action,

uk ∼ Kp(zt, it) [xt − µ(zt, it)] +Ki(zt, it)

L∑
l=1

[xk−l − µ(zt, it)]+

Kd(zt, it)
xk − xk−1

∆t
+N (0,Σ(zt, it)), (7)

using a hybrid system of i distinct control law parameters and reference points conditioned on some
sensor data. Here, each controller is parametrised by a set of gains,Kp(zt, it),Ki(zt, it),Kd(zt, it),
and goal configuration states, µ(zt, it). Controller action is measured subject to uncertainty,
Σ(zt, it). Sequencing a number of these controllers allows a robot to transition through the set
of states required to solve many manipulation and navigation tasks.

4

Given this model and a demonstration sequence of state and observation pairs, our goal is to learn to
identifyK suitable sub-controllers that make up the demonstrated robot behaviour. For the Gaussian
proportional controller model of (7), we train switching density networks using the log-likelihood
(LL) objective:

θ∗ = argminθ − LL(uk|Kp(zt; θ),Kd(zt; θ),Ki(zt; θ), µ(zt; θ),Σ(zt; θ)), (8)

In many cases, there may be multiple possible gains and reference points that produce an observed
controller action. In practice, we address this by only predicting a subset of the controller parame-
ters, through sensible weight initialisation in the final layer of the SDN and by relying on persistent
excitation in the demonstration sequence.

Unfortunately, training a switching density network frequently results in mode collapse. Here, all
probability mass becomes concentrated in a single class, and the network merely learns to regress
the mean state. We remedy this by using an additional cross-entropy loss term, which serves as a
batch-level regulariser. Here, we assume that all categories are likely to occur at a similar rate in a
given batch, and minimise the cross-entropy between the average Gumbel-softmax distribution over
a batch ŷi and a uniform distribution,

θ∗ = argminθ − LL(uk|Kp(zt; θ),Kd(zt; θ),Ki(zt; θ), µ(zt; θ),Σ(zt; θ))−
K∑
i=1

1

K
log(ŷi). (9)

This ensures that on average no individual category in the switching layer becomes dominant, and
helps to counter mode collapse.

4 Experimental Results

We evaluate SDN controller identification in two distinct domains. The first, an inverted pendulum,
is a canonical hybrid continuous control problem, while the second, a set of visuomotor manipulation
tasks, illustrates the applicability of SDNs to higher dimensional input and output spaces. For both
experiments, we specify the exact number of controllers to be identified. In practice, should this
number not be known, more controller switches could be specified, to allow for redundancy.

4.1 Balancing an inverted pendulum

We demonstrate the use of SDN PID controller laws on a simulated, under-actuated inverted pendu-
lum. Closed-loop control of an inverted pendulum can be accomplished using a hybrid system with
three key modes [43], that derive from fundamental properties of the physics of this system. In the
pump mode, energy is injected to the system, such that it can be swung up. In the spin mode, energy
is removed from the system through damping action. Finally, when the pendulum is near vertical, a
balancing controller can be used to maintain the pendulum in an upright position. Control in each
mode can be provided by a proportional control law, with the energy in the system used to determine
which control law to apply.

We train a SDN (3 fully connected layers of 16 neurons, and 3 switching states) to predict the
proportional controller gains (no reference points are needed as the pendulum goal state is known)
for the three controllers described above, using 10,000 state-action pairs provided by the original
hybrid controller [43]. Figure 2 shows the controller response in different regions of the state space,
with the three controller regions clearly visible. Importantly, the figure shows that SDNs learn to
identify the regions in which each of these controllers should be applied, in addition to the required
sub-controller parameters. Direct behaviour cloning using a neural network is still effective, but
does not provide the same level of interpretability as the learned hybrid control system.

Table 1: Pendulum experiments
Average reward

Hybrid controller −0.812± 0.514
SDN PID −0.857± 0.621
Fully connected −0.850± 0.538

The latent structure can be used to interpret and rea-
son about the underlying dynamics and physics of the
controlled system and environment. For example, by
analysing the regions in which sub-controllers operate
(Figure 2), along with the inferred controller parameters,
we can see that the pendulum requires positive feedback

control in the blue region, indicating the presence of a system with a stable equilibrium point, and
negative feedback control in the blue-green region, indicating an unstable equilibrium point.

5

−3 −2 −1 0 1 2 3
Pendulum angle

−3

−2

−1

0

1

2

3

Pe
nd

ul
um

 sp
ee

d

−4

−2

0

2

4

(a) Hybrid controller

−3 −2 −1 0 1 2 3
Pendulum angle

−3

−2

−1

0

1

2

3

Pe
nd

ul
um

 sp
ee

d

(b) Sub-controller regions

−3 −2 −1 0 1 2 3
Pendulum angle

−3

−2

−1

0

1

2

3

Pe
nd

ul
um

 sp
ee

d

−3

−2

−1

0

1

2

3

(c) SDN response

Figure 2: Controller responses for inverted pendulum learned using the SDN closely match those of
the ground truth hybrid controller used for demonstration. Importantly, the SDN correctly identifies
the regions in state space in which each controller should be applied.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
RMSE cluster

0

1

2

3

4

5

6

7

De
ns

ity

Batch size
16
32
4
8

0.0 0.1 0.2 0.3 0.4 0.5 0.6
RMSE cluster

0

1

2

3

4

5

6

7
De

ns
ity

Temperature annealing
False
True

0.0 0.1 0.2 0.3 0.4 0.5 0.6
RMSE cluster

0

1

2

3

4

5

6

7

De
ns

ity

Cross entropy loss
False
True

Figure 3: Kernel density estimates of root mean square error between true controller goals and PR2
goal predictions highlight the value of cross entropy regularisation and temperature annealing.

Table 1 shows the average reward (θ2 + 0.1θ̇2 + 0.001u2, where (θ, θ̇) denotes pendulum angle and
velocity, and u the control) obtained over 1,000 randomly initialised tests using the ground truth
hybrid controller, and controllers learned using a SDN. Behaviour cloning using a baseline, fully
connected network with no structure performs similarly to a SDN, but the latter is more interpretable,
as specific control laws can be linked to regions in state space, allowing for more detailed controller
analysis. Importantly, the inferred control law parameters are close to the ground truth values,
indicating that the SDN has successfully identified the underlying control laws demonstrated.

4.2 Identifying PR2 manipulation controllers

We also evaluate the use of switching density networks (Architecture in Figure 1) for controller goal
identification using an inspection task with a PR2 robot. Here, the PR2 is required to repeatedly
reach to a series of components. We hard coded this behaviour and collected approximately 2,000
images and corresponding joint angle (8 dimensions) and velocity measurements, while the PR2
repeated this process 10 times. Our goal is to learn to identify the sub-controllers that make up this
sequence, and train a model to predict these controller parameters from image observations. We
split this set into two, with the first 1,000 frames used for training and the remainder for testing.

Table 2: RMSE
SDN 0.8◦

CNN 1.47◦

MDN 3.95◦

Here, we assume that the controller gains are known, and only learn to predict
controller reference points. Figure 3 shows the distribution over the root mean
square error in predicted joint angle goals for each frame in the test set. Results
are provided for varying batch sizes, using varying Gumbel-softmax tempera-
ture annealing schedules, and with or without the proposed cross-entropy loss.

Experiments were repeated 10 times for each parameter setting combination.

It is clear that both temperature annealing and the cross-entropy loss are required for stable training.
Batch size is a proxy for the rate of temperature annealing, since temperature was annealed at each
epoch step, but also affects the cross-entropy loss term. If the batch size is too low, the assumptions
governing the cross entropy regularisation loss are less likely to be true. This effect is clearly visible

6

(a) Cross entropy, temperature (b) Cross entropy, no temperature

(c) No cross entropy, temperature (d) No cross entropy, no temperature

Figure 4: Projected joint angle goals (dots) identified using the SDN highlight the importance of
cross entropy regularisation. Failed goal identification is indicated using a red border.

for the batch size of 4. Figure 4 shows the projection of the detected joint angle goals into the image
plane for experimental runs using the various parameter configurations. When trained with both a
cross-entropy loss and temperature annealing the SDN successfully identifies the inspection goals
comprising this task. Without the cross-entropy loss, the network is vulnerable to mode collapse,
where predicted goals regress to the mean.

0 200 400 600 800
Time step

0

1

2

3

4

5

M
ix

tu
re

 c
om

po
ne

nt

SDN

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 p
ro

ba
bi

lit
y

0 200 400 600 800
Time step

0

1

2

3

4

5

M
ix

tu
re

 c
om

po
ne

nt

MDN

0.0

0.2

0.4

0.6

0.8

1.0

M
ix

tu
re

 p
ro

ba
bi

lit
y

Figure 5: Unlike the SDN, MDNs do not necessarily use different
mixture components for similar regressions.

It is important to note the dif-
ference between switching and
mixture density networks. The
former enforces a hierarchical
latent model structure, while
the latter places no constraints
on the mapping between mix-
ture components and distribu-
tion outputs. This can be ob-
served when the distribution of
the mixture weights is shown for
the test sequence for switching
and mixture density networks, when both are trained to predict controller goals. SDNs implicitly
learn the latent task behaviour, while MDNs simply regress using arbitrary paths through the net-
work. Table 2 shows the root mean square errors over all joints for the best performing parameter
settings on the inspection task. The MDN performs substantially worse than the SDN, which cap-
tures the inherent switching structure of the inspection task. In general, larger batch sizes improve
MDN results, as does temperature annealing, but cross entropy regularisation has little effect. Fig-
ure 5 shows the trace of mixture component densities, which highlights the fact that SDNs learn
intrinsically meaningful grounded predictions, while MDNs rely on an arbitrary mapping between
input and output.

Figure 6 shows the projected controller rollouts obtained using the SDN. It is clear that the SDN has
identified the appropriate switching points and control strategies need to replicate the inspection task.
This is particularly useful for learning from demonstration, as this options discovery allows for the
inclusion of higher level reasoning about the inspection plan being followed, and the identification
of implicit constraints or search patterns followed by the demonstrator.

Although seemingly simple, even contact rich behaviours can be expressed using PID control laws.
For example, when we applied a SDN to a kinesthetically demonstrated suitcase opening task, we
discovered two primary controllers (Figure 7), one moving beneath the case lid, and a second that
opened it by moving to a goal state above the case. Importantly, the SDN allows for the use of vision
to determine which controller to apply.

7

Figure 6: Inferred controller rollouts (joint angles projected into the image plane) are obtained by
predicting the controller goal state for the given image using the SDN, and then using the associated
PID controller to generate a trajectory.

Move to case Open case

0 20 40 60 80 100
Frame

0
1M

ix
tu

re

Figure 7: Two controllers are identified for a kinesthet-
ically demonstrated suitcase opening task.

Empirically, we have found that fully con-
nected networks were easier to train (faster
convergence) and perform slightly better
than SDNs on tasks that can be solved us-
ing a smooth non-linear controller (pendu-
lum), but that SDN’s are easier to train and
provide substantial improvements over di-
rect CNNs on tasks with a clear switching
structure (inspection task). Our hypoth-
esis is thus that SDNs are best suited to
hybrid systems, which cover a broad set
of processes. However, we believe that
the increased training difficulty in the first
case is made up for by the substantial in-
terpretability gains that can be obtained by
discretising a process using an SDN.

5 Conclusion

This work has introduced an approach for end-to-end hybrid system identification using switch-
ing density networks and generalised state-space control laws, in the context of behaviour cloning.
Switching density networks are harder to train than their fully connected counterparts, but this work
has shown empirically that the addition of a cross-entropy regularisation term stabilises training. Hy-
brid systems are frequently used in robotics, and PID controllers are a trusted and well understood
control paradigm, used widely across domains and disciplines. Although demonstrated using PID
control laws, the proposed approach allows for hybrid system identification using other controller
families. Importantly, jointly inferring sub-controllers and the states in which they are applied allows
for reasoning about implicit constraints and the physical properties of systems and environments.

This work has shown that SDNs can be used to perform goal identification in a visuomotor manipu-
lation tasks and inverted pendulum controller discovery, identifying compositional control strategies
that can be directly used for explainable control. We have contrasted these with MDNs and fully
connected neural networks, which are unable to learn interpretable latent representations. Moreover,
hybrid system identification using SDNs allows for the re-use of learned policies in downstream
tasks, through hierarchical reinforcement learning or options scheduling. Future work will involve
exploring options scheduling with sub-controllers learned using SDNs.

Acknowledgments

This work is supported by funding from the Turing Institute, as part of the Safe AI for surgical
assistance project. We are particularly grateful to the Edinburgh RAD group for valuable discussions
and recommendations.

8

References
[1] D. A. Pomerleau. Efficient Training of Artificial Neural Networks for Autonomous Navigation.

Neural Computation, 3(1):88–97, March 1991.

[2] J. A. D. Bagnell. An Invitation to Imitation. Technical Report CMU-RI-TR-15-08, Carnegie
Mellon University, Pittsburgh, PA, March 2015.

[3] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In NIPS, 2014.

[4] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G. Barto. Learning
grounded finite-state representations from unstructured demonstrations. IJRR, 34(2):131–157,
2015.

[5] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE Control Systems,
29(2):28–93, 2009.

[6] D. Kingma and M. Welling. Efficient Gradient-Based Inference through Transformations be-
tween Bayes Nets and Neural Nets. In ICML, volume 32, pages 1782–1790, 2014.

[7] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-softmax. In ICLR,
2017.

[8] S. Penkov and S. Ramamoorthy. Learning Programmatically Structured Representations with
Perceptor Gradients. In ICLR, 2019.

[9] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-Pérez. Differentiable
Algorithm Networks for Composable Robot Learning. RSS, 2019.

[10] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia. CompILE: Compositional Imitation Learning and Execution. In ICML, pages
3418–3428, 2019.

[11] C. M. Bishop. Mixture density networks. Technical report, Citeseer, 1994.

[12] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identification of hybrid systems a
tutorial. European journal of control, 13(2-3):242–260, 2007.

[13] J. Lunze and F. Lamnabhi-Lagarrigue. Handbook of hybrid systems control: theory, tools,
applications. Cambridge University Press, 2009.

[14] R. Murray-Smith and T. A. J. (Eds.). Multiple Model Approaches to Modelling and Control.
Taylor and Francis, London, 1997.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

[16] L. R. Rabiner. An introduction to hidden Markov models. IEEE ASSP magazine, 3(1):4–16,
1986.

[17] Z. Ghahramani and G. E. Hinton. Variational learning for switching state-space models. Neural
computation, 12(4):831–864, 2000.

[18] J. O. Ruanaidh, W. J. Fitzgerald, and K. J. Pope. Recursive Bayesian location of a discontinuity
in time series. In ICASSP, volume 4. IEEE, 1994.

[19] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[20] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[21] G. Konidaris and A. G. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In NIPS, pages 1015–1023, 2009.

9

https://doi.org/10.1162/neco.1991.3.1.88
https://www.ri.cmu.edu/pub_files/2015/3/InvitationToImitation_3_1415.pdf
http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf
https://journals.sagepub.com/doi/abs/10.1177/0278364914554471
https://journals.sagepub.com/doi/abs/10.1177/0278364914554471
https://doi.org/10.1109/MCS.2008.931718
https://arxiv.org/pdf/1402.0480
https://arxiv.org/pdf/1402.0480
https://arxiv.org/pdf/1611.01144
https://openreview.net/forum?id=SJggZnRcFQ
https://openreview.net/forum?id=SJggZnRcFQ
https://arxiv.org/pdf/1905.11602
https://arxiv.org/pdf/1905.11602
https://arxiv.org/pdf/1812.01483
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.634.6007&rep=rep1&type=pdf
https://doi.org/10.3166/ejc.13.242-260
https://doi.org/10.3166/ejc.13.242-260
https://www.jstor.org/stable/pdf/2984875.pdf
https://www.jstor.org/stable/pdf/2984875.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.957.202&rep=rep1&type=pdf
https://doi.org/10.1162/089976600300015619
https://doi.org/10.1109/ICASSP.1994.389767
https://doi.org/10.1109/ICASSP.1994.389767
https://arxiv.org/pdf/1312.6114
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
http://papers.nips.cc/paper/3683-skill-discovery-in-continuous-reinforcement-learning-domains-using-skill-chaining
http://papers.nips.cc/paper/3683-skill-discovery-in-continuous-reinforcement-learning-domains-using-skill-chaining

[22] S. Niekum and A. G. Barto. Clustering via Dirichlet Process Mixture Models for Portable Skill
Discovery. In NIPS, pages 1818–1826, 2011.

[23] P. Ranchod, B. Rosman, and G. Konidaris. Nonparametric bayesian reward segmentation for
skill discovery using inverse reinforcement learning. In IROS, pages 471–477. IEEE, 2015.

[24] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential Composition of Dynamically
Dexterous Robot Behaviors. IJRR, 18(6):534–555, 1999.

[25] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469 – 483, 2009. ISSN 0921-8890.

[26] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In ICML, volume 97, pages
12–20, 1997.

[27] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills
by learning from demonstration. In ICRA, pages 763–768. IEEE, 2009.

[28] K. R. Dixon and P. K. Khosla. Trajectory representation using sequenced linear dynamical
systems. In ICRA, volume 4, pages 3925–3930 Vol.4, April 2004.

[29] J. Butterfield, S. Osentoski, G. Jay, and O. C. Jenkins. Learning from demonstration using a
multi-valued function regressor for time-series data. In Humanoids, pages 328–333, Dec 2010.

[30] D. H. Grollman and O. C. Jenkins. Sparse incremental learning for interactive robot control
policy estimation. In ICRA, pages 3315–3320. IEEE, 2008.

[31] S. Chiappa and J. R. Peters. Movement extraction by detecting dynamics switches and repeti-
tions. In NIPS, pages 388–396, 2010.

[32] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
JMLR, 17(1):1334–1373, 2016.

[33] A. Pervez, Y. Mao, and D. Lee. Learning deep movement primitives using convolutional neural
networks. In Humanoids, pages 191–197, Nov 2017.

[34] T. Yu, C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and S. Levine. One-Shot Imitation from
Observing Humans via Domain-Adaptive Meta-Learning. In RSS, Pittsburgh, Pennsylvania,
June 2018.

[35] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations. In RSS, Pittsburgh, Pennsylvania, June 2018.

[36] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramr, R. Had-
sell, N. de Freitas, and N. Heess. Reinforcement and Imitation Learning for Diverse Visuomo-
tor Skills. In RSS, Pittsburgh, Pennsylvania, June 2018.

[37] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable Reinforcement Learning via Policy Extrac-
tion. In NIPS, 2018.

[38] M. Burke, S. Penkov, and S. Ramamoorthy. From explanation to synthesis: Compositional
program induction for learning from demonstration. RSS, 2019.

[39] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial Transformer Net-
works. In NIPS, 2015.

[40] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In NIPS, pages
3856–3866, 2017.

[41] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In ICANN, pages
44–51. Springer, 2011.

[42] C. Florensa, Y. Duan, and P. Abbeel. Stochastic Neural Networks for Hierarchical Reinforce-
ment Learning. ICLR, 2017.

[43] B. Kuipers and S. Ramamoorthy. Qualitative Modeling and Heterogeneous Control of Global
System Behavior. In Hybrid Systems: Computation and Control, pages 294–307, 2002.

10

https://papers.nips.cc/paper/4238-clustering-via-dirichlet-process-mixture-models-for-portable-skill-discovery.pdf
https://papers.nips.cc/paper/4238-clustering-via-dirichlet-process-mixture-models-for-portable-skill-discovery.pdf
https://doi.org/10.1109/IROS.2015.7353414
https://doi.org/10.1109/IROS.2015.7353414
https://doi.org/10.1177/02783649922066385
https://doi.org/10.1177/02783649922066385
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8531&rep=rep1&type=pdf
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2004.1308881
https://doi.org/10.1109/ROBOT.2004.1308881
https://doi.org/10.1109/ICHR.2010.5686284
https://doi.org/10.1109/ICHR.2010.5686284
https://doi.org/10.1109/ROBOT.2008.4543716
https://doi.org/10.1109/ROBOT.2008.4543716
https://papers.nips.cc/paper/4109-movement-extraction-by-detecting-dynamics-switches-and-repetitions.pdf
https://papers.nips.cc/paper/4109-movement-extraction-by-detecting-dynamics-switches-and-repetitions.pdf
http://www.jmlr.org/papers/volume17/15-522/15-522.pdf
https://doi.org/10.1109/HUMANOIDS.2017.8246874
https://doi.org/10.1109/HUMANOIDS.2017.8246874
http://roboticsproceedings.org/rss14/p02.html
http://roboticsproceedings.org/rss14/p02.html
http://roboticsproceedings.org/rss14/p49.html
http://roboticsproceedings.org/rss14/p49.html
http://roboticsproceedings.org/rss14/p12.pdf
http://roboticsproceedings.org/rss14/p12.pdf
https://arxiv.org/pdf/1805.08328.pdf
https://arxiv.org/pdf/1805.08328.pdf
https://arxiv.org/pdf/1902.10657
https://arxiv.org/pdf/1902.10657
https://arxiv.org/pdf/1506.02025
https://arxiv.org/pdf/1506.02025
https://arxiv.org/pdf/1710.09829
https://link.springer.com/chapter/10.1007/978-3-642-21735-7_6
https://arxiv.org/pdf/1704.03012
https://arxiv.org/pdf/1704.03012
https://link.springer.com/chapter/10.1007/3-540-45873-5_24
https://link.springer.com/chapter/10.1007/3-540-45873-5_24

	Introduction
	Related work
	Switching density networks for hybrid control
	Experimental Results
	Balancing an inverted pendulum
	Identifying PR2 manipulation controllers

	Conclusion

