
An Online Learning Procedure
for Feedback Linearization Control

without Torque Measurements

M. Capotondi, G. Turrisi, C. Gaz, V. Modugno, G. Oriolo, A. De Luca
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Sapienza Università di Roma,
Via Ariosto 25, 00185 Roma, Italy
surname@diag.uniroma1.it

Abstract:
By exploiting an a-priori estimate of the dynamic model of a manipulator, it is
possible to command joint torques which ideally realize a Feedback Linearization
(FL) controller. The exact cancellation may nevertheless not be achieved due to
model uncertainties and possible errors in the estimation of the dynamic coeffi-
cients. In this work, an online learning scheme for control based on FL is pre-
sented. By reading joint positions and joint velocities information only (without
the use of any torque measurement), we are able to learn those model uncertain-
ties and thus achieve perfect FL control. Simulations results on the popular KUKA
LWR iiwa robot are reported to show the quality of the proposed approach.

Keywords: Robot Learning, Model Estimation, Model Predictive Control, Gaus-
sian Process Regression

1 Introduction

The knowledge of accurate dynamic models is of paramount importance for several robotic applica-
tions. It is necessary, in fact, for designing control laws with superior performances [1], during robot
interactions with the environment (for example when implementing strategies for the sensorless de-
tection, isolation and reaction to unexpected collisions [2]), or when regulating force or imposing
a desired impedance control at the contact [3] is required. In order to retrieve an estimation of the
dynamic model, regression techniques are widely employed [4, 5]. These techniques are hinged on
a well-known property: the linear dependence of the robot dynamic equations in terms of a set of
ρ dynamic coefficients [6], (also denoted in the literature as base parameters) [7], which are lin-
ear combinations of the dynamic parameters of the links composing the robot (masses, centers of
gravity and inertia tensors).

In order to retrieve a reliable estimation of the dynamic model, a series of exciting trajectories are
typically commanded to the robot, and the joint positions and torques are recorded during motion.
It is eventually possible to obtain a numerical estimation of the dynamic coefficients by exploiting
the filtered joint torques and the filtered joint positions, velocities and accelerations obtained by
numerical derivation [7]. Typically, this whole procedure, whose output is the estimation of the
dynamic model of the robot under study, is performed offline. Therefore, in case of changes in
the structural parameters of the robot, the identification procedure has to be carried out again from
scratch. This is the case, for instance, when unknown payloads are attached to the end-effector of a
manipulator: in this regard, a method to update the dynamic model has been presented recently [8],
but it requires an initial phase of setup for updating the dynamic model parameters. Especially
when collision detection and reaction strategies are adopted during motion, it is essential to have
an adaptable and reliable estimation of the dynamic model, employed to properly implement those
algorithms [2].

In the last years, to overcome the limitations imposed by the aforementioned approaches, a new set
of techniques has emerged relying on the employment of regression techniques to face the problem

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

of robotics model learning. In literature there exist two different way to tackle this issue [9]: by
learning the direct model [10], [11], [12], [13] or by reconstructing an inverse representation of the
robot’s dynamic [14],[15],[16]. In the first case, the aforementioned methods try to understand how
the system, given its actual state, responds to a certain input, while the second approaches focus
on estimating the input that needs to be given to the system in order to achieve a certain desired
new state. In regards of the first class of methods in [10], the authors propose to learn the transi-
tion probability model, while in [12] the authors try to reconstruct the system nonlinear dynamics
with a Gaussian Process (GP) in order to improve approximate linearization of the system around
an operating point. In [13] the authors utilize a regressor as predictive model for a nonlinear Model
Predictive Control (MPC). In our approach we make use of a linear MPC in the control scheme, but
we design a procedure for learning the inverse dynamics of the system. In the context of inverse
model learning, in [17] the authors describe a way to learn a computed torque controller, employing
the torque measurements to build their training dataset. In our work we learn the unmodeled dynam-
ics to improve the feedback linearization process without the use of any joint torque measurements,
which are known to be noisy.

In the present work, we propose a method to reconstruct dynamic model uncertainties and parame-
ters variations by means of an online algorithm based on Gaussian Process (GP) Regression. Having
an a priori estimation of the dynamic model of a robot, we show that it is possible to improve the
model by exploiting only joint position measures, without the need of any joint torque data. Indeed,
torque measurements are usually affected by a high level of noise, typically higher than the noise
added to the measures coming from the encoders which return joint positions [1]: thus, the employed
algorithm is able to obtain a reliable estimate of dynamic uncertainties. This paper is organized as
follows: in Sec. 2 the problem of not exact Feedback Linearization (FL) is stated; in Sec. 3 the
learning procedure is presented along with the needed formalism; in Sec. 4 the complete control
architecture is discussed and in Sec. 5 experimental results are shown; Finally, Sec. 6 concludes the
paper.

2 Problem Formulation

For a n-DoFs robot, its dynamics can be described by the following equation:
M(q)q̈ + η(q, q̇) = τ , (1)

in which q, q̇, q̈ ∈ Rn are, respectively, the joint positions, velocities and accelerations;M ∈ Rn×n

is the inertia matrix and η ∈ Rn is a vector obtained by the sum of the Coriolis and centrifugal
forces and the gravity vector. Supposing that the robot is fully actuated, it is possible to design a
FL controller [1]. This method provides a control input τ FL that cancels the nonlinear dynamics
components of the model in eq. (1), as:

τ FL = M(q)q̈d + η(q, q̇), (2)
where q̈d ∈ Rn represents the desired joint accelerations vector. In principle, given a perfect knowl-
edge of the system dynamic model and applying the FL controller we would get:

q̈ = q̈d, (3)
but in reality it is typically not true due to unmodeled dynamics and uncertainties in the system
parameters. If we explicitly account for these uncertainties in the model, we have therefore:

M(q) = M̂(q) + ∆M(q) (4)
η(q, q̇) = η̂(q, q̇) + ∆η(q, q̇) + τ f (q̇) (5)

where M̂ and η̂ are nominal quantities (for instance, previously estimated), ∆M and ∆η are in-
crements characterizing the uncertainties, and τ f ∈ Rn represents the joint friction torques. Thus,
M̂ and η̂ incorporate our a priori knowledge of the system. If we apply the nominal FL control on
the real system of eq. (1), that is

τ̂ FL = M̂(q)q̈d + η̂(q, q̇), (6)

considering eqs. (4) and (5), we obtain:

q̈ = M(q)−1M̂(q)q̈d −M(q)−1(∆η(q, q̇) + τ f (q̇)) = q̈d + ε(q, q̇, q̈d) (7)
where ε(q, q̇, q̈d) accounts for all the unmodeled dynamic terms. One of the objectives of the present
work is to retrieve an estimate of ε.

ii

Figure 1: The scheme in the image describes the procedure used for the construction of the dataset
for the online learning scheme.

3 Learning Algorithm

In this section we describe the entire pipeline for the dataset construction, as depicted in Fig. 1.

3.1 Dataset collection procedure

At first, we suppose that it is possible to drive the manipulator by commanding joint torques. Refer-
ring to Fig. 1, the current robot state is xk = (qk, q̇k)T and we want to reach a desired target state
xd,k+1 = (qd,k+1, q̇d,k+1)T . We compute the input acceleration q̈d,k that should drive the robot
to the desired state supposing a perfect FL controller, i.e. by imposing the joint torque τ̂ FL from
eq. (6):

M(qk)q̈k + η(qk, q̇k) = τ̂ FL,k = M̂(qk)q̈d,k + η̂(qk, q̇k). (8)

Due to the effect of unmodeled dynamics, the robot reaches a different state xk+1 = (qk+1, q̇k+1).
At this point, from eq. (8), it is possible to compute the unmodeled dynamics that depends only on
the system state at time xk, the desired and actual system accelerations q̈d,k, q̈k:

M̂(qk)(q̈d,k − q̈k) = ∆M(qk)q̈k + ∆η(qk, q̇k). (9)

In eq. (9) the term q̈k cannot be known in advance and has to be computed a posteriori using the
information about the states xk and xk+1. To this aim, we can utilize the notion of Controllability
Gramian by calculating the true joints acceleration q̈g,k that would have brought the perfectly feed-
back linearized system in the state xk+1 in the first place. In section 3.2 we will show that under
certain conditions q̈g,k = q̈k.

Our learning framework is based on a torque controller to command the robot while collecting the
data for estimating the model. By introducing a function regressor f(·) (see Fig. 1) in the FL control
law, we show that with our method it’s possible to progressively (and thus online) improve the con-
trol performances exploiting all the data about the unknown dynamics acquired while commanding
the robot. Therefore, we introduce the new FL control input τ FL,k defined as the summation of the
nominal FL torque and the regressor prediction f(·), as:

τ FL,k = τ̂ FL,k + fk = M̂(qk)q̈d,k + η̂(qk, q̇k) + fk. (10)

Considering the new FL torque τ FL,k, we can rewrite eq. (9) as follows:

M̂(qk)(q̈d,k − q̈g,k) + fk = ∆M(qk)q̈g,k + ∆η(qk, q̇k). (11)

where q̈g,k is used in place of q̈k to ensure causality. If we repeat this procedure for several states,
we can incrementally construct a dataset D = {(Xi,Yi) |i = 1, . . . , nd}, where nd is the number
of elements in our dataset. For each sample i, we have:

Xi = (qi, q̇i, q̈g,i); Yi = M̂(q̈d,i − q̈g,i) + fi (12)

iii

It is clear that this dataset fulfills the properties of uniqueness and causality, which are fundamental
for learning inverse model for control [9]. At this stage it’s important to point out that only the
knowledge of state xk and xk+1 and of the desired acceleration q̈d,i are needed while no torque
information is necessary to build the dataset D.

When, a time k, we want to predict the compensation torques that are required for cancelling the
unmodeled dynamics, the regressor input will be:

f(qk, q̇k, q̈d,k) (13)

where q̈d,k is the desired joint acceleration that we would be able to reach under the assumption of
perfect FL. Unfortunately, due to the prediction error of our regressor, small errors will be always
committed that will be eventually reduced over time by increasing the dataset size.

3.2 Controllability Gramian

The control algorithm presented in this manuscript requires the estimation of the real joint accelera-
tions q̈k, in order to reconstruct the unknown part of the dynamic model of the robot.

For this purpose we employ the concept of the Controllability Gramian on the perfect feedback
linearized system [18]. Given a generic continuous linear system{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(14)

where x ∈ Rn is the state vector, A ∈ Rn×n is the state matrix, B ∈ Rn×p is the input matrix,
u ∈ Rp is the input vector, y ∈ Rq is the output vector and C ∈ Rq×n is the output matrix.

If we have only discrete observations (measurements) yk, it is necessary to modify the system (14)
into the form (15):{

xk+1 = Φxk + Γuk

yk = Cxk
, with

{
Φ(Ts) = eATs

Γ(Ts) =
∫ Ts

0
eAsdsB,

(15)

where Ts is the sampling time, yk is the k-th measure, xk+1 is the (k + 1)-th state, and the k-th
input uk is kept constant in the time interval t ∈ [tk, tk+1] by means of a Zero-Order Hold (ZOH).

In this work, the state consists of joint positions and joint velocities: in particular, for a n-DoFs
robot, the state is x = (q, q̇)T ∈ R2n. Under the hypothesis of a perfectly feedback linearized
system, it is possible to represent it as chain of integrators, separating the whole system (14) into n
independent subsystems of dimension 2. Therefore after FL, a single joint j, will have the following
linear state-space representation:

ẋj(t) =

[
q̇j(t)

q̈j(t)

]
= Axj(t) +Buj(t) =

[
0 1

0 0

] [
qj(t)

q̇j(t)

]
+

[
0

1

]
q̈d(t)

yj(t) = Cxj(t) =
[

1 0
] [qj

q̇j

]
,

(16)

where xj ∈ R2 is the associate state for joint j. Thus, its discrete formulation (15) becomes:

xj
(k+1)·Ts

=

[
1 Ts
0 1

]
xj
k·Ts

+

[
0.5 T 2

s
Ts

]
uj
k·Ts

yjk·Ts
= [1 0]xj

k·Ts. (17)

If the sampling time Ts is sufficiently small, the discrete system (17) approximates well its con-
tinuous counterpart (16). In simulation, using realistic robot dynamic parameters, exploiting the
Controllability Gramian we obtained very good estimates of the actual joint accelerations, with an
average error of 10−11 rad/s2. The main advantage of using the Controllability Gramian is that we
do not need any numerical differentiation to retrieve the joint accelerations.

The system (17) is controllable since:

rank(B AB) = rank

([
0.5Ts2 1.5Ts2

Ts Ts

])
= 2, (18)

iv

Figure 2: Control and Dataset Acquisition scheme. Note that to preserve the formalism introduced
in the previous section, we consider as the actual state the one at time k + 1. The Hold block is a
Zero-Order Hold (ZOH) that keeps constant the input value for one sample interval. Therefore, it is
possible to hold the measured state value at time tk in order to make it available at tk+1.

therefore it is possible to define the discrete Controllability Gramian as

W (k − 1) =

k−1∑
m=0

AmBBT (AT)m. (19)

At this stage, it is possible to retrieve the input that drives the system from an initial state xinit to a
final state xgoal in m steps, as:

uk = −BT (AT)m−kW−1(m)[(AT)mxinit − xgoal] k = 0, . . . ,m− 1. (20)

Since the systems consists in a chain of two integrators, only to two steps are required:

u = u0 + u1 = (BTAT +BT)W−1(1)[ATxinit − xgoal]. (21)

Finally, to summarize the whole process: in case of perfect modeling, the FL would be exact and
the system would act like a double integrator. Since the nominal model presents a mismatch with
respect to the real one, the controlled system will behave in a different way, performing a diverse
motion. This unexpected motion can be interpreted as if the feedback linearization was correct while
the robot was driven by another unknown acceleration reference. Following this interpretation, it is
always possible to use the Controllability Gramian on a double integrator in order to estimate this
new reference acceleration, that will be used for the construction of the dataset, as explained in
section 3. For this reason, the acceleration estimated by the Controllability Gramian is correct and
it is independent from the current knowledge about the system’s complete model.

4 Control Architecture

In this section we describe in detail the control algorithm (see Fig. 2). Our method allows for
robot trajectory tracking even if we have only partial knowledge of its dynamic model. In order to
achieve perfect FL, we estimate the unknown part of the model by means of a Gaussian Process
(GP) Regression method, which is more effective for online estimation purposes [19]. GP balance
poor generalization with the possibility to implement local algorithms [20] obtaining good results,
comparable to the global case. In order to avoid unfeasible control actions or unfeasible reached
states (i.e., out of known mechanical ranges), we generate the desired joint accelerations through
a Model Predictive Control (MPC) algorithm, which is able to provide smooth joint acceleration
signals while satisfying constraints.

4.1 Gaussian Process regression

Given a set of noisy observation D =
{(

Xi, Y i = f
(
Xi
)

+ εi
)
|1 ≤ i ≤ nd

}
with ε ∼ N (0, Σε)

the prior on the values of f is Y ∼ N (0, K(X,X) + σ2
nI) with K(X,X) the covariance matrix.

v

Given a query point X∗, the conditional probability of f(X∗) is

f (X∗) |D ∼ N
(
k (X∗,X)β, k (X∗,X∗)− k (X∗,X)

(
K(X,X) + σ2

nI
)−1

k (X,X∗)
)

(22)

Since no assumption has been made on the structure of the unmodeled dynamics, a squared expo-
nential kernel is employed to define the covariance matrix.

In this work, f reconstruct the unmodeled dynamics of the system. Since f outputs is multivariate,
we set conditionally independent GPs for each joint of the manipulator.

4.2 Model Predictive Control

MPC [21] is a closed loop model based control scheme which is formulated as an optimal control
problem. The optimal solution is represented by the sequence of control inputs for the Np steps
ahead that satisfy the constraints while optimizing the corresponding cost function. Once a solution
is computed only the first optimal input is then applied to the system. Under the assumption of
perfect FL, the prediction model of the robot can be represented as set of n independent systems
(one for each joint) as described in eq. (16). Each joint receives as input uj = q̈jd with j = 1, . . . , n.
In this work we define the cost function as the sum of a tracking cost Jt and a smoothness cost Js:

J = αJt + γJs (23)

Jt =

Np∑
i=1

(qd,i − qi)T (qd,i − qi) (24)

Js =

Np∑
i=0

(ui+1 − ui)
T (ui+1 − ui) (25)

with Np the number of step for the prediction horizon, qd,i the desired joint positions, qi the pre-
dicted position of the joints, ui the input with i = 0, . . . , Np and α, γ weighting coefficients. The
Js term penalizes all the input signal uj that change too rapidly from one step to the next to guar-
antee that the control input is suitable for the robot actuators. The feasibility of the commanded
acceleration qd,k is obtained by imposing a set of state and control constraints for our optimization
problem:

qm ≤ q ≤ qM (26)
q̇m ≤ q̇ ≤ q̇M (27)
q̈m ≤ u ≤ q̈m (28)

where qm, q̇m, q̈m and qM , q̇M , q̈M are the lower and upper bounds for, respectively, joint posi-
tions, velocities and accelerations. The MPC constraints do not provide strict safety guarantee at the
beginning of the learning process. Over time the online learning strategy improves the correction of
the unmodeled dynamics resulting in a better correspondence between the MPC internal model and
the real robot. Therefore, once the GP prediction error will became negligible, the optimal control
input from the MPC will assure constraint satisfaction for the real manipulator as well.

5 Simulation results

In this section we report the results of a simulation performed using Matlab. We applied the proposed
method on a KUKA LBR iiwa 7 R800 manipulator performing a trajectory tracking task. We analyze
the tracking capabilities of the simulated robot, whose dynamic parameters are the ones reported
in [22, 6] (originally identified for the academic version of the iiwa robot, namely the LightWeight
Robot (LWR) 4+, which shares with the iiwa the same kinematics) with a deviation from the nominal
parameters (around 20 % of their value), comparing the performances with and without the GP
correction. In the experiment, for the simulated robot we employ a friction model with nonlinear
and non-smooth behaviors (i.e., viscous and Coulomb friction with a Stribeck effect) [23]. The
evolution of the system is discretized at 1 ms, the high level MPC runs at 200 Hz while the dataset
acquisition is carried out at the same frequency of the FL controller. The simulations task consists
in following a given reference trajectory in joint space, both for joint positions and velocities. In

vi

0 1 2 3 4 5 6 7

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 1

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 2

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 3

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

0.5

1

1.5

2

2.5

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 4

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

1

2

3

4

5

6

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 5

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 6

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

1

2

3

4

5

6

7

8

J
o

in
t

e
rr

o
r

(d
e
g

)

Joint 7

GP error

nominal error

0 1 2 3 4 5 6 7

Time(s)

0

2

4

6

8

10

12

14

16

J
o

in
t

e
rr

o
r

(d
e

g
)

Sum of joint errors

GP error

nominal error

Figure 4: Joints angular position error comparison.

0 1 2 3 4 5 6 7

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C
a
rt

e
s
ia

n
 p

o
s
it

io
n

 (
m

)

X

GP

nominal

true

0 1 2 3 4 5 6 7

Time(s)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
a
rt

e
s
ia

n
 p

o
s
it

io
n

 (
m

)

Y

GP

nominal

true

0 1 2 3 4 5 6 7

Time(s)

1.14

1.16

1.18

1.2

1.22

1.24

1.26

C
a
rt

e
s
ia

n
 p

o
s
it

io
n

 (
m

)

Z

GP

nominal

true

Figure 5: Comparison between two different control modalities: using the nominal dynamic model
(red line) and improving it with the Gaussian Process Regression (blue line). The first three panels
show the x, y and z coordinates of the end-effector during motion, while the fourth panel shows the
end-effector trajectory in the Cartesian space.

particular, the first six joints should follow a sinusoidal path while the last one should remain at rest.
The approach presented in this paper doesn’t need Persistent Exciting Trajectories (PETs) because it
is based on a non parametric regressor (PETs may be used, however, to identify the nominal model).
Fig. 4 reports the joint angular position errors during the tracking task. The blue curves show the
absolute value of the error when the learning scheme of Fig. 2 is adopted. The red curves show,
instead, the absolute values of the errors when only the nominal model (a priori knowledge) is
employed to compute the driving torque. It is evident that our learning scheme improves the quality
of the tracking capabilities of the controller.

The tracking error in the joint space has a direct effect on the cartesian error as well. Indeed, even
small errors of the angular positions of the joints may dramatically deviate the end-effector position
from the desired path. Fig. 5 reports the cartesian error of the end-effector when the GP correction
is active (blue curves) and when it is not (red curves). The first three panels report, respectively, the
coordinates x, y and z of the end-effector, while the last panel shows its position in Cartesian space.
Even in this case, the use of the learning routines improves the quality of the tracking controller.
As shown in Fig. 1 of the supplementary material, we show that, with our framework, the reference
accelerations computed by the MPC reach the measured ones on the controlled system. In fact, since
the robot is torque-controlled, the accelerations convergence occurs only when the GP correctly
reproduces the model mismatch, producing an exact FL.

6 Conclusion and Future Work

In this work we introduce a new approach for online learning the exact FL of a manipulator while
executing a predefined task. The proposed method is composed by a dataset collection procedure
,designed to reconstruct the unmodeled dynamics, and by a controller that computes the command-
ing joint torques according to a desired trajectory. Assuming that the size of our dataset is small,

vii

we employ Gaussian Process Regression to learn the unmodeled dynamics. In this work we showed
that the proposed approach requires only the knowledge of joint positions and velocities without the
need of any torque measurements. The Controllability Gramian is used for computing the joint’s
accelerations. Simulation results show that our framework has higher precision for the estimation
of the model mismatch and a lower tracking error with respect to other approaches without online
correction.

Possible extensions of this algorithm will be the implementation of the proposed method on a real
manipulator, the analysis of the effect of the learning transient for the constraints satisfaction, the
implementation of approximated methods to speed up the regressor prediction time and eventually
the use of variance information for improving generalization. Moreover, since the framework
presented is able to improve the knowledge of the robot dynamic model, it is possible to retrieve a
more reliable estimation of the external torques – possibly, due to unforeseen contacts, for example
using the methods presented in [2], which require an accurate knowledge of the dynamic model of
the robot.

viii

References
[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modeling, Planning and Con-

trol. Springer, London, 3rd edition, 2008.

[2] S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A survey on detection,
isolation, and identification. IEEE Transactions on Robotics, 33(6):1292–1312, Dec 2017.
ISSN 1552-3098. doi:10.1109/TRO.2017.2723903.

[3] E. Magrini and A. De Luca. Hybrid force/velocity control for physical human-robot collabo-
ration tasks. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct. 2016.

[4] J. Hollerbach, W. Khalil, and M. Gautier. Model identification. In Handbook of Robotics,
pages 321–344. Springer, 2008.

[5] A. Janot, P. Vandanjon, and M. Gautier. A generic instrumental variable approach for industrial
robot identification. IEEE Transactions on Control Systems Technology, 22(1):132–145, 2014.

[6] C. Gaz, F. Flacco, and A. De Luca. Extracting feasible robot parameters from dynamic co-
efficients using nonlinear optimization methods. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 2075–2081, 2016.

[7] W. Khalil and E. Dombre. Modeling, Identification and Control of Robots. Hermes Penton
London, 2002.

[8] C. Gaz and A. De Luca. Payload estimation based on identified coefficients of robot dynamics
with an application to collision detection. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3033–3040, Sep. 2017.

[9] D. Nguyen-Tuong and J. Peters. Model learning for robot control: A survey. Cognitive pro-
cessing, 12:319–40, 04 2011. doi:10.1007/s10339-011-0404-1.

[10] M. Deisenroth, D. Fox, and C. Edward Rasmussen. Gaussian processes for data-efficient learn-
ing in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence,
37:408–423, 02 2015. doi:10.1109/TPAMI.2013.218.

[11] S. Kamthe and M. Deisenroth. Data-efficient reinforcement learning with probabilistic model
predictive control. In Proc. of the International Conference on Artificial Intelligence and Statis-
tics (AISTATS), 2018.

[12] F. Berkenkamp and A. P. Schoellig. Safe and robust learning control with gaussian processes.
In 2015 European Control Conference (ECC), pages 2496–2501, July 2015. doi:10.1109/ECC.
2015.7330913.

[13] C. Ostafew, A. Schoellig, and T. D. Barfoot. Robust constrained learning-based NMPC en-
abling reliable mobile robot path tracking. The International Journal of Robotics Research,
35, 05 2016. doi:10.1177/0278364916645661.

[14] Z. Shareef, P. Mohammadi, and J. Steil. Improving the inverse dynamics model of the KUKA
LWR IV+ using independent joint learning. IFAC-PapersOnLine, 49(21), 09 2016.

[15] T. Waegeman, F. Wyffels, and B. Schrauwen. Feedback control by online learning an inverse
model. Neural Networks and Learning Systems, IEEE Transactions on, 23:1637–1648, 10
2012. doi:10.1109/TNNLS.2012.2208655.

[16] J. Umlauft, T. Beckers, M. Kimmel, and S. Hirche. Feedback linearization using gaussian
processes. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages
5249–5255, Dec 2017. doi:10.1109/CDC.2017.8264435.

[17] D. Nguyen-Tuong, M. Seeger, and J. Peters. Computed torque control with nonparametric
regression models. In 2008 American Control Conference, pages 212–217, June 2008. doi:
10.1109/ACC.2008.4586493.

[18] C.-T. Chen. Linear System Theory and Design. Oxford University Press, 2012.

ix

http://dx.doi.org/10.1109/TRO.2017.2723903
http://dx.doi.org/10.1007/s10339-011-0404-1
http://dx.doi.org/10.1109/TPAMI.2013.218
http://dx.doi.org/10.1109/ECC.2015.7330913
http://dx.doi.org/10.1109/ECC.2015.7330913
http://dx.doi.org/10.1177/0278364916645661
http://dx.doi.org/10.1109/TNNLS.2012.2208655
http://dx.doi.org/10.1109/CDC.2017.8264435
http://dx.doi.org/10.1109/ACC.2008.4586493
http://dx.doi.org/10.1109/ACC.2008.4586493

[19] R. C. Grande, G. Chowdhary, and J. How. Experimental validation of bayesian nonparametric
adaptive control using gaussian processes. Journal of Aerospace Information Systems, 11:
565–578, 09 2014. doi:10.2514/1.I010190.

[20] D. Nguyen-Tuong, M. Seeger, J. Peters, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou.
Local gaussian process regression for real time online model learning and control. Advances in
Neural Information Processing Systems 21: Proceedings of the 2008 Conference, 1193-1200
(2009), 01 2008.

[21] F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems.
Cambridge University Press, 2017. doi:10.1017/9781139061759.

[22] C. Gaz, F. Flacco, and A. De Luca. Identifying the dynamic model used by the KUKA LWR:
A reverse engineering approach. Proceedings - IEEE International Conference on Robotics
and Automation, pages 1386–1392, 09 2014. doi:10.1109/ICRA.2014.6907033.

[23] F. Al-Bender, V. Lampaert, and J. Swevers. Modeling of dry sliding friction dynamics: From
heuristic models to physically motivated models and back. Chaos (Woodbury, N.Y.), 14:446–
60, 07 2004. doi:10.1063/1.1741752.

x

http://dx.doi.org/10.2514/1.I010190
http://dx.doi.org/10.1017/9781139061759
http://dx.doi.org/10.1109/ICRA.2014.6907033
http://dx.doi.org/10.1063/1.1741752

	Introduction
	Problem Formulation
	Learning Algorithm
	Dataset collection procedure
	Controllability Gramian

	Control Architecture
	Gaussian Process regression
	Model Predictive Control

	Simulation results
	Conclusion and Future Work

