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Abstract: There is a growing interest in building autonomous systems that in-
teract with complex environments. The difficulty associated with obtaining an
accurate model for such environments poses a challenge to the task of assessing
and guaranteeing the system’s performance. We present a data-driven solution
that allows for a system to be evaluated for specification conformance without an
accurate model of the environment. Our approach involves learning a conservative
reactive bound of the environment’s behavior using data and specification of the
system’s desired behavior. First, the approach begins by learning a conservative
reactive bound on the environment’s actions that captures its possible behaviors
with high probability. This bound is then used to assist verification, and if the ver-
ification fails under this bound, the algorithm returns counter-examples to show
how failure occurs and then uses these to refine the bound. We demonstrate the
applicability of the approach through two case-studies: i) verifying controllers for
a toy multi-robot system, and ii) verifying an instance of human-robot interaction
during a lane-change maneuver given real-world human driving data.

1 Introduction

In control and decision-making tasks, typically, the system can be divided into the controlled agent
and the uncontrolled environment, which is the source of exogenous disturbances and uncertainties.
For systems that are safety-critical, given a control policy, it is desirable that we are able to provide
guarantees with regard to task fulfillment and safe behavior. In this regard, formal verification allows
us to provide strong guarantees about the absence of unsafe behavior for the controlled agent under
all possible behaviors of the environment. However, to leverage the power of formal verification
it is necessary to obtain a reliable model of the environment. For systems that exhibit complex
behavior, accurately modeling the complex environment can be limited by the expressiveness of the
model being used, and the amount of data available. In addition, the environment behavior is usually
nondeterministic, which may be hard to express.

To overcome this need for explicitly modeling the complete environment, we instead propose an
alternative approach that computes reactive bounds on the set of feasible behaviors of the environ-
ment by leveraging i) a specification for the behavior of the system, and ii) the controller being
verified, in addition to the real data collected from naturalistic environment behaviors. The bounds
computed here are reactive in that they capture the reactiveness of the environment towards the con-
trolled agent, i.e., the set of possible environment behaviors changes with the scenario described by
the system states. For the purpose of verification, it often may suffice to compute a conservative
bound on the possible behaviors of the unmodeled environment as opposed to learning a complete
model of the environment. For example, consider a scenario where two cars are driving perpendic-
ularly towards an intersection with the same distance d to the intersection, and the controlled car
(whose controller we seek to verify) drives with a constant velocity v. To verify that there will be
no collision (the desired specification), it suffices to bound the velocity of the other car by u such
that: d+w

u < d
v , where w is the width of the intersection. This guarantees that the uncontrolled car

will not enter the intersection before the controlled car leaves the intersection. Here, a conserva-
tive bound on the behavior of the uncontrolled agent (environment) suffices to verify the behavior
of the controlled agent, without modeling the exact behavior of the environment. However, having
bounds on the behavior of the environment that are too loose might result in the controller not being
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provably safe with regard to the bound, despite being safe with regard to the true environment. In
this direction, we present a novel approach where the specification and the controller being verified
guide the learning of a reactive bound from data.

Recently, there has been an increased interest in data-driven verification for cyber-physical systems
[1, 2, 3]. In [4], a data-driven automated approach is proposed to identify non-converging behaviors
in black box control systems. In [5], the authors propose an approach based on Bayesian inference
and reachability analysis for verifying the behavior of systems. However, the approach does not
decompose the system into the uncontrolled environment and the controller, and is limited to the
model class of linear time-invariant systems. In contrast, our approach leverages known policies for
the controlled agent to enable verification of their behavior with complex environments. A closely
related direction of work is on mining specifications [6, 7, 8] from data. The mined specifications
are often used as task specifications, as opposed to being used to verify a given controller. For the
case of human-robot interaction, treating it as a multi-agent task and leveraging the influence of
the autonomous agent on the (uncontrolled) human has been considered before [9, 10]. In [11],
the authors propose an approach that learns a reward function to model the behavior of the uncon-
trolled agent and then plans for the autonomous agent, leveraging this reward function to model
the influence of the autonomous agent on the uncontrolled agent. Here the authors incorporate the
environments behavior into the planning phase, while in contrast, we leverage the controlled agent’s
policy and the desired safety specification for the system to characterize the environment’s behavior.
[12] demonstrates the benefits of learning the intent of the uncontrolled agent prior to the physical
event, and leveraging this for seamless collaboration. In our work, we aim at learning a set of pos-
sible environment behaviors that changes with the state, which enables worst-case analysis and is
subsequently used for verification of the system. To summarize, our main contributions are:

• A framework for characterizing the behavior of the environment for which the given con-
troller can be certified safe with high probability: given data characterizing the behavior of
the environment, the safety-specification and the controller for the system.

• When the controller is inherently unsafe, a feedback mechanism for the controller.

• Experiments demonstrating the efficiency of the proposed approach on a toy multi-agent
task, and verifying a controller for an autonomous vehicle performing a lane change while
interacting with a human-driven vehicle characterized by real-world data.

The paper is structured as follows. First, we provide a brief introduction to Signal Temporal Logic
(STL) and Random Convex Programs (RCP). Then, we provide an overview of the proposed ap-
proach, followed by a theoretical analysis. Lastly, we describe our results from two empirical case
studies on problems from diverse domains and then conclude.

2 Preliminaries

Consider a dynamical system Σ described by differential or difference equations:

x+ = f(x, u, d), (1)

where x ∈ X is the state, u ∈ U is the control input, d ∈ D is environment input, and X , U , D
incorporates the physical limits of the variables. A run of Σ is an indexed family σ consisting of
3-tuples of the form σt = (x(t), u(t), d(t)), satisfying the dynamics equation. If σ is a run of Σ, we
will also write σ |= Σ. A run can be infinite or finite with horizon T .

2.1 Signal Temporal Logic

To express desired properties for the system, we use the formalism of Signal Temporal Logic (STL)
[13], an extension of Linear Temporal Logic to vector-valued signals. For any a, b ∈ R, we will
denote by [a, b] the closed interval {x ∈ R | a ≤ x ≤ b}. STL formulae can be built recursively as:

ϕ , True | p | ¬ϕ | ϕ ∧ ψ | ϕU[a,b]ψ,

where p is an atomic predicate of the form: p , f(σ(t)) > 0 for some f : Rm → R. We write
(σ, t) |= ϕ to indicate that ϕ holds for σ(t). The satisfaction of a signal σ at time t for any of

2



the building block formulae in (2.1) is defined in the obvious way, except perhaps the one with the
“until” operator U, which is given as:

(σ, t) |= ϕU[a,b]ψ ⇔ ∃τ ∈ [t+ a, t+ b].(σ, τ) |= ψ ∧ ∀τ ′ ∈ [t, τ ].(σ, τ ′) |= ϕ.

For convenience, we can define the “eventually” ♦ and “always” � operators as ♦[a,b]ϕ ,
TrueU[a,b]ϕ and �[a,b]ϕ , ¬(♦[a,b]¬ϕ) such that (σ, t) |= ♦[a,b]ϕ if and only if ϕ is satisfied
at least once within a time window of length b − a, a time units from t while (σ, t) |= �[a,b]ϕ
requires that ϕ should always be satisfied within that time window.

2.2 Random Convex Program

The reliability of the proposed approach is based on the theory of random convex programs (RCP).
Let P [K] denote a (minimization) optimization problem with a known objective function and con-
straint set K, and let Obj[K] denote the optimal objective value of P [K]. A constraint k is a
supporting constraint if Obj[K\{k}] < Obj[K]. The setup for an RCP is the following:

min J(α)

s.t.α ∈ Q(δi),∀δ1, ..., δN i.i.d samples of δ,

where α ∈ Rn, Q(δi) ⊆ Rn is a convex set determined by δi, and J(α) is convex. δ ∈ ∆ is
a random variable in the space ∆ and {δi} are independently identically distributed samples of δ.
Each δi would pose a convex constraint on α. If we randomly draw N samples of δ, and denote it
as ω .

= δ1:N ∈ ∆N , then let Q(ω)
.
=
⋂N
i=1Q(δi), define

V ∗(ω) = P {δ ∈ ∆ : Obj([Q(ω), Q(δ)]) > Obj[Q(ω)]} , (2)

which is the probability that an additional sample added on top of ω would change the objective
value of the original optimization with constraints determined by ω. [14] gives upper bound on
P(V ∗(ω) ≥ ε) given 1 ≥ ε > 0 for a randomly drawn sequence of samples ω. First, we recall the
following relevant lemma from [14]:
Lemma 1. When N ≥ ζ, P

{
ω ∈ ∆N : V ∗(ω) > ε

}
≤ Φ(ε, ζ − 1, N) ≤ Φ(ε, n,N), where ζ is

the Helly’s dimension denoting the maximum number of supporting constraints, which is bounded
by n+ 1.

Φ(ε, k,N) =

k∑
j=0

(
N

j

)
εj(1− ε)N−j

is the cumulative distribution of a binomial random variable, that is, the probability of getting no
more than k successes in N Bernoulli experiments with success probability ε.

This is Theorem 3.3 in [14], which shows that the result of the RCP is likely to be true for unseen δ
drawn from the same distribution under large N and small n. We will revisit this lemma in Section
3.1 to prove probabilistic correctness of the proposed method.

3 Approach

Given a dynamical system Σ, a specification about the initial condition ϕ0, a controller ϕc and a
performance specification ϕp, the goal is to verify that ϕp is satisfied by all the runs of the system,
with high probability, when the control input and initial condition satisfy ϕ0 and ϕc. However,
since the system is interacting with the environment, ϕc and ϕ0 alone typically do not imply ϕp,
i.e., the verification fails trivially assuming that the environment can choose arbitrary behaviors.
Therefore, we look for an assumption of the environment ϕe that is correct (or at least correct with
high probability) such that Σ ∧ ϕ0 ∧ ϕe ∧ ϕc ⇒ ϕp, where the implication is understood as

∀(x(t), u(t), d(t)), ((x(t), u(t), d(t)) |= Σ ∧ ϕ0 ∧ ϕc ∧ ϕe)⇒ ((x(t), u(t), d(t)) |= ϕp) .

We propose a framework that learns ϕe by using a falsification procedure in the loop, in
addition to data of interaction between the system and the environment. Figure 1 depicts
an overview of the framework being proposed. The falsification module takes a fixed con-
troller, the reactive bound of the environment, and the specification ϕp as inputs, and ei-
ther returns traces of the system evolution and the environment behavior that falsify ϕp un-
der the given controller, or returns a flag saying that no falsifying trace could be found.
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Figure 1: Verification with reactive modelling of the
environment

In particular, we use the tool S-Taliro as
an oracle falsifier, which uses stochastic
sampling and can handle STL formulae,
see [15] for details. When the falsification
returns no trace, the procedure terminates
and the verification is successful. When
falsifying traces are found, they are fed
into the reactive modelling module where
the positive traces collected from the ac-
tual interaction with the environment and
the negative traces from the falsification
module go through a classification process
and the output is a reactive bound that maps the agent’s state x to a set of possible behaviors d for
the environment, denoted as Sd(x). To obtain a bound on the influence of x on the environment
response d, we want to find a function h : X × D → R such that h(x, d) ≥ 0 indicates that d
is possible under x, and h(x, d) < 0 indicates that d is not possible under x. The set of possible
behaviors for the environment given by the reactive bound can be represented as

Sd(x) = {d | h(x, d) ≥ 0} . (3)

Remark 1. Not every snapshot from the falsifying trace is included in the negative data. We use an
ad-hoc selection scheme to pick out ‘important’ snapshots based on criterion such as the distance
between the robots (Section 4.1), and lateral position for the AV (Section 4.2).
Remark 2. Since the data is in the format of snapshots, ϕe is limited to the form �ϕ where ϕ has
no dependence on time. One could use a parameterized form for ϕe and project the traces to the
parameter space, such as in [8], but this limits ϕe to having only monotonic atoms.

3.1 L1 piecewise SVM for reactive modelling

Given the positive and negative traces, we need to learn an indicator function h, which then gives
rise to the reactive bound. This can be solved as a classification problem. There are numerous
classification tools in the literature, such as neural networks and logistic regression. For the reactive
modelling problem, in addition to good classification accuracy, the following two requirements are
critical: 1) the probability of false negative should be low, even for the unseen data, and 2) the
classification result h should have an analytic form for its classification boundary. For the first
requirement, note that h(x, d) < 0 indicates that d will not happen under x, and the verification
process will ignore such environment input under x. Therefore, the probability of false negative
should be very low to guarantee the correctness of the reactive bound and consequently guaranteeing
safety. The reliability analysis of the proposed approach is based on the theory of random convex
program (RCP), which we discuss in detail in Section 3.2. For the bound in Lemma 1, we would like
the number of parameters for the classifier to be small – this prevents overfitting, and enables us to
provide better probabilistic guarantees. The second requirement comes from the fact that the reactive
bound will be used explicitly during verification and control synthesis. Therefore, its explicit form
should be known.

Due to the two requirements, we choose Support Vector Machines (SVMs) with explicit features as
the classification method. SVMs fit into the setup of Lemma 1 if the positive data is sampled from
an i.i.d. distribution. In particular, we propose an novel expressive L1 piecewise SVM, which is
based on the work on L1 SVM in [16]. [16] showed that with a proper cost function, the following
optimization solves the L1 SVM:

min
v,d,M

kᵀM

s.t. ‖v‖ ≤ 1, yi = 1⇒Mi ≥ 0,

∀i = 1, ..., N, vᵀφ(zi)−Mi + c = 0,

(4)

where zi ∈ Rm is the i-th data point and φ : Rm → Rp maps the data to the feature space, the flag
yi = 1 for positive data points and yi = −1 for negative data points. v ∈ Rp is the support vector
and c is the offset, therefore the Helly dimension is p+ 2. M ∈ RN is the slack vector and k is the
cost vector with ki > 0 for all i. See section 6.1 for more detail. It is required that all the positive
data points are correctly classified (no false negatives), which is needed for the reliability proof.
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However, the L1 SVM suffers from the lack of expressibility, especially for high dimensional d.
We propose two improvements on the SVM: 1) Algorithm 1, which generates multiple separating
hyperplanes and represents the positive data region as a polytope. 2) Based on Algorithm 1, we
introduce Algorithm 2, which allows a piecewise structure for the SVM where a different polytope
represents the positive data in each region, and automatically synthesises the piecewise regions.

The original SVM generates one separating hyperplane in the feature space, which results in a
reactive bound with a smooth boundary in X × D. In order to make the reactive bound more
expressive, we propose a piecewise L1 SVM with multiple separating hyperplanes. SVM with
multiple separating hyperplanes is achieved with the following greedy algorithm:

Algorithm 1 L1 SVM with multiple separating hyperplanes
Input: positive data φp, negative data φn
φactiven ← φn
for i=1:Nh do

Perform L1 SVM with φp and φactiven , get vi, ci, slacks Mp, Mn

φactiven =
{
φactiven (j)|Mn(j) ≥ ε

}
end for

Nh is the number of separating hyperplanes, φactiven is the set of negative data points that are close
to the farthest separating hyperplane, ε is the threshold for picking φactiven and Mp and Mn are the
slacks for positive and negative data. Each SVM computation generates one hyperplane with vi
and ci and the indicator function is h(z) = min

i=1,.,Nh

{
(vi)ᵀz + ci

}
. We can further improve the

expressibility by introducing a piecewise structure , which is particularly helpful when the problem
itself has a piecewise structure, as demonstrated in Section 4.1. Moreover, we develop an auto-
tuning piecewise SVM that adjusts the dividing point automatically based on the data by the use of
membership functions.

For clarity, we present the piecewise SVM with 2 regions, but note that it can be easily extended to
cases with more than 2 regions. Let g : Rn → R be a scalar function and κ be a scalar variable. We
will divide the state space by the threshold g(z) = κ. First, define the membership functions using
the sigmoid:

m1(z, κ) =
1

1 + exp(γ(g(z)− κ))
, m2(z, κ) =

exp(γ(g(z)− κ))

1 + exp(γ(g(z)− κ))
,

where γ is a tuning parameter that controls the steepness of the sigmoid. Note that m1(z, κ) +
m2(z, κ) = 1. When there are d > 2 regions, one simply construct d membership functions
that are nonnegative and add up to 1. With 2 regions, the original feature is extended to φ̄(z) =
[m1(z, κ) · φ(z);m2(z, κ) · φ(z)]. We then perform L1 SVM with this new feature vector.

Once the SVM is trained, notice that by (4),Mi = vᵀφ̄(zi)yi+dyi, taking derivative of the objective
function over κ, we have:

d(kᵀM)

dκ
=
∑

i
kiyi

d(vᵀφ̄(zi))

dκ
=
∑

i
kiyi

(
v1:p

ᵀφ(zi)
∂m1

∂κ
+ vp+1:2p

ᵀφ(zi)
∂m2

∂κ

)
,

∂m1

∂κ

∣∣∣∣
z

= − ∂m2

∂κ

∣∣∣∣
z

=
γm1(z, κ)

1 + exp(γ(g(z)− κ))
,

so we obtain the analytic form of the gradient of the objective function over κ. The overall algorithm
alternates between the L1 SVM and optimizing over κ by gradient descent, as in Algorithm 2.
Remark 3. The setup for L1 SVM allows for piecewise cost function of M by spliting M = M+ +
M− with M+ ≥ 0,M− ≤ 0, see [16] for detail. In the gradient descent step, we maintain the
constraint by assigning a large penalty on M−.
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Algorithm 2 Auto-tuning piecewise L1 SVM
Initialize κ
for iter=1:T do

Compute membership functions m1, m2

Perform Algorithm 1 with φ̄(z) = [m1(z) · φ(z);m2(z) · φ(z)]
Perform gradient descent to optimize κ

end for

3.2 Reliability analysis with RCP

Next, we provide reliability analysis for the reactive bound. For the ordinary L1 SVM, we have:
Theorem 1. Given a positive data set with N points drawn i.i.d. from a fixed (not necessarily
known) distribution, and a negative data set, let p be the dimension of the feature vector φ(z),
p + 2 < N , the L1 SVM in (4) is always feasible. Denote the solution as [v, c], which satisfies
vᵀφ(zi) + d ≥ 0, i = 1, 2, ..., N . Then for an unseen data point zN+1 from the same distribution,
for 0 < ε < 1, we have:

P {P {¬(vᵀφ(zN+1) + c > 0)} > ε} ≤
∑p+2

j=0
εj(1− ε)N−j . (5)

See Appendix 6.3 for proof. Theorem 1 gives an upper bound for the probability of the probability
of misclassification for unseen data to be higher than a threshold, which decreases with the size
of the dataset N and increases with the feature dimension p. For SVM with Nh hyperplanes, we
provide the following corollary.
Corollary 1. Given the condition in Theorem 1, the L1 SVM with Nh separating hyperplanes is
always feasible and for 0 < ε < 1,

P

{
P

{
¬

(
Nh∧
i=1

(vi)ᵀφ(zN+1) + ci > 0

)}
> ε

}
≤
∑p+2

j=0

(
ε

Nh

)j(
1− ε

Nh

)N−j

See Appendix 6.4 for proof.
Remark 4. The auto-tuning piecewise SVM in Algorithm 2 changes the optimization problem every
time it updates κ, which does not allow us to directly apply Theorem 1. To overcome this, a simple
solution is to separate the positive data points into two batches, using the first batch to find a good
separation of the state space, i.e., find a good κ, and the second batch to obtain the reactive bound
while fixing κ. The size of the second batch determines the probability of misclassification.

4 Case Study
4.1 Multi-robot navigation

As a toy example, we consider a multi-robot navigation problem consisting of two robots as shown
in Fig. 2. We denote the positions of the two robots by p1, p2 ∈ [−l, l]2 ⊂ R2. The robots are
characterized by the integrator dynamics ṗi = vi, where i ∈ {1, 2} and vi satisfies ‖vi‖2 ≤ vmax

. The specification for the system is to always maintain distance i.e., it has to satisfy the speficia-
tion �[0,T ]connected, where T is the time horizon for the STL specification and connected is a
predicate defined by: connected , ‖p1 − p2‖ ≤ rmax. Here rmax can be thought of as the maxi-
mum communication range. The red robot R1 is the controlled robot and it simultaneously pursues
two objects, a moving target T1 (with bounded velocity), and the blue robot R2. It follows a given
controller, which in simulation is set to be:

v1 = satvmax(k1(pT − p1) + k2(p2 − p1)), (6)
with gains k1 and k2, where pT denotes the position of the target and sata(x) = x if ‖x‖ ≤ a and
a x
‖x‖ otherwise. The motion of the blue robot R2 follows a “black box” controller, and we would

like to learn an over-approximation of its possible behavior as a function of the state. In particular,
we pick a controller with a piecewise structure depending on the location R2:

v2 = satvmax

([
−0.4 −β
β −0.4

]
(p2 − p1) + ∆v2

)
, (7)
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where ∆v2 is a bounded random noise and β = 1 if p2,1(t) ≤ 0 and −1 otherwise (p2,1 denote the
X coordinate of R2). The above controller roughly makes R2 spiral counter-clockwise towards R1

on the left half plane, and spiral clockwise on the right.

To initiate the process, we first collect data with simulation by enforcing (6) and (7) on R1 and
R2 and let T1 move randomly in the state space. The positive data collected consists of tuples of
[p1, p2, v2], which contains information about how R2 moves under different states. Recall (3), in
the two robot case, the state x is [p1, p2], and the environment input d is [v2, vT ], where vT = ṗT
is the velocity of the target, but we do not explicitly learn a reactive model of vT and the only
constraint for which is the norm bound. In the falsification process, the falsifier can choose v2
and vT while v1 follows (6). When no reactive bound is in place, the only constraint for v2 is
the norm bound vmax, and the falsifier can easily find falsifying traces. The falsifying traces then
generate negative data points with the same structure as the positive data, which is then fed to the
reactive modelling module. The reactive modelling module utilizes the auto-tuning piecewise L1

SVM algorithm introduced in 3.1 with 3 separating hyperplanes and g(x) = p2,1 to construct a
reactive bound. We choose features that are linear in v2 so that the resulting reactive bound is a
polytope Sv2([p1, p2]) ∈ R2, given [p1, p2]. The reactive bound is then fed to the falsifier, which
would project the raw input of v2 to Sv2([p1, p2]). Since we construct the features for the SVM such
that Sv2 is a polytope, the projection is easily solved with quadratic programming.

After 5 iterations of updating the reactive bound, the falsifier cannot find a falsifying trace, which
means that the controller is verified under the learned reactive bound. Moreover, it turns out that the
threshold κ converges to 3× 10−3, which is very close to the actual threshold at κ = 0.

Figure 2: Two robot scenario and Reactive bounds.
Fig. 2 shows two robot positions with corresponding reactive bounds. When R2 is on the right, the
reactive bound allows it to spiral clockwise, while the direction of spiralling flips on the left side.
But importantly, the worst-case v2, which is to move away from R1 with vmax is not allowed in
both cases. For this example, we use 40000 snapshots with 45 features for the SVM. For ε = 0.01,
P(P(misclassification) ≥ ε) < 0.007 by Corollary 1.

4.2 Lane Change
A practical application of the proposed method is verification of the lane change con-
trol for autonomous driving. We would like to guarantee with high probability that
a given controller can safely finish a lane change within a given horizon. We con-
sider a scenario as depicted in Fig. 3, where the autonomous vehicle (AV) at-
tempts to make a lane change with the human driven vehicle (HV) on the back.

Figure 3: Lane Change Scenario

The state of the system is x = [∆X ∆Y ∆v ψ]
ᵀ, where

∆X and ∆Y are the longitudinal and lateral coordinate differ-
ences between the two vehicles, ∆v is the velocity difference
and ψ is the heading angle of the AV. The input of AV are the
acceration a1 and yaw rate r1, and the input of the HV is the
acceleration a2. The dynamics is given by:

ẋ = [∆v v1sin(ψ) a1 − a2 r1]
ᵀ
. (8)

The specification for the problem is to always not collide and keep within the lane, and eventually
finish the lane change within horizon T . Formally, the specification is expressed in STL:

�[0,T ](¬COL ∧ LK) ∧ ♦[0,T ]LC, (9)

where COL stands for collision, LC stands for lane change and LK stands for lane keeping, which
all can be represented as subsets of the state space:

COL⇔ |∆Y | ≤ a ∧ |∆Y | ≤ b
LC⇔ |∆Y | ≤ ε
LK⇔ 0.5w − 0.5b ≥ ∆Y ≥ −1.5w − 0.5b,

, (10)
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where a, b are the length and width of a typical car, w is the width of a lane and ε ∈ R+ is a
small constant. As an example, we consider a model predictive control scheme with mixed integer
programming as the controller for the AV. As shown in Fig. 3, the AV should stay within the union of
the two colored regions within the prediction horizon T , which is enforced by the “big M” procedure
as a mixed integer linear constraint. The MPC controller takes the current value of a2 and assumes
an exponential decay within the prediction horizon a2(t) = a2(0)e−t/τ , which of course is not
accurate, but only a prediction of the future. The lane keeping constraint is also enforced as a linear
constraint and the objective function penalizes ∆Y , driving the vehicle to finish the lane change.

The lane change problem was studied in [16], and we use the same source for positive data, which is
from the safety pilot model deployment (SPMD) database with more than 50 million miles of natu-
ralistic driving data [17]. The feature structure is also inherited from [16]. Following the procedure
shown in Fig. 1, the falsification tool starts with simply the physical limit of a2 and tries to falsify
the specification in (9), the falsifying traces are then broken into snapshots and treated as negative
data. The SVM procedure then generates the reactive bound for a2. In the lane change case, it is not
difficult to see that the the safety specification is monotonic w.r.t. a2, i.e., it is always safer for the
HV to decelerate. Therefore, the reactive bound for a2 is in the form of an upper bound a?max(x)
that changes with the state x.

(a) Falsify by blocking (b) Falsify by collision (c) Success run

Figure 4: Verification of lane change

The result of verification for the MPC controller is shown in Fig. 4. Without the reactive bound,
the falsification procedure is able to falsify the specification by accelerating and blocking the AV
from finishing a lane change, as shown in Fig. 4a, and the verification procedure terminates after
a maximum iteration number. After 4 iterations, the SVM presented in Section 3.1 generates a
reactive bound that makes the falsification infeasible, i.e., verifies that the MPC controller satisfies
the specification and a success run is shown in Fig. 4c. However, when we remove the collision
avoidance constraint in the MPC controller, the falsification tool finds a falsifying trace by causing
a collision with the AV ( Fig. 4b), thereby providing feedback for the controller design process.

Check https://github.com/chenyx09/Reactive-modelling for the code implementing the proposed
method with the two examples.
Run-time considerations The mean run times over 5 runs are 4977s and 29.6s for the robot problem
and for the lane change problem respectively.

5 Conclusion

This paper presents a framework that combines falsification and specification learning to learn an
over-approximation of the reactive behavior of the environment from real data. There are two key
parts of the algorithm, the falsifier and the reactive modelling module. The falsifier can handle spec-
ifications written in temporal logic and generate falsifying traces, which is then used by the reactive
modelling module together with the positive data to generate the reactive bound. The reliability
of the reactive bound is guaranteed by the theory of RCP, which can give probabilistic guarantees
determined by the amount of data available. We showed the capability of the proposed framework
to handle environment behavior with a piecewise structure as well as demonstrating the result on
a practical problem in autonomous driving with real-world human-driving data. The framework
presented here provides a general approach for the diagnosis of autonomous agents interacting with
complex environments, such as in the case of human-robot interaction.
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6 Appendix

6.1 A simple derivation for L1 SVM

Given a data set of features together with their labels (φ(zi), yi)
N
i=1. Let’s say we want to find a

hyperplaneH characterized by a normal vector w and an offset c to classify them such that

1. all positive data points lie on one side ofH
2. all positive data points lie as close to the hyperplane as possible

3. negative data points lie as far into or close to the other side ofH as possible

For each i ∈ {1, 2, . . . , N}, the distance of φ(zi) to the hyperplane H is equal to |Mi| where Mi is
the (unique) solution to the equation

wT
(
φ(zi)−Mi

w

‖w‖

)
+ c = 0

Then, requiring that all positive data points must all lie on one side of the hyperplane like in require-
ment 1 is equivalent to adding the constraint

yi = 1⇒Mi ≥ 0 (11)

Actually (11) says that all positive data points should lie on the positive side of the hyperplane, but
by symmetry this is not a loss of generality. Consider a linear objective (penalty) function of the
form kᵀM where M ∈ RN has Mi as its i-th component. Then requirements 1, 2, and 3 translate to
a problem of minimizing kᵀM with the weight k satisfying k � 0 (element-wise positive) subject
to (11).

• For each i such that yi = 1 (and hence Mi ≥ 0 by requirement 1 and (11)), ki is required
to be strictly positive to penalizeH being far away from φ(zi) (requirement 2).

• For each i such that yi = −1 (negative data points), having ki > 0 will “force” Mi to
be small (i.e., closer to −∞ on the real axis) to minimize the penalty function and in the
process, satisfying requirement 3.

A convex relaxation of the above optimization problem is

min
v,d,M

kᵀM

s.t. ‖v‖ ≤ 1

vᵀφ(zi)−Mi + d = 0

yi = 1⇒Mi ≥ 0

(12)

The two optimization problems are equivalent if the optimal solution is negative. Optionally, if we
want to weigh correctly or wrongly classified negative data points differently, we can modify the
optimization problem to.

min
v,d,M

kᵀpMp + kᵀncMnc + kᵀnwMnw

s.t. ‖v‖ ≤ 1

vᵀφ(zi)−Mi + d = 0

yi = 1⇒Mi ≥ 0

yi = −1⇒Mi = Mnw
i +Mnc

i ∧Mnw
i ≥ 0 ∧Mnc

i ≤ 0

(13)

where kp, knw, knc � 0 and knc � knw.

6.2 Helly’s dimension for a variation of RCP

The following theorem is used in the proof of Theorem 1.
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Theorem 2. For the following RCP:

min
α,β

J (α, β)

s.t.f (α, δi) ≤ 0,∀δ1, ..., δN i.i.d.

g (α, β) ≤ 0.

, (14)

where α ∈ Rn1 , β ∈ Rn2 , f , g and J convex, the Helly’s dimension ζ ≤ n1 + 1.

Proof. Since J is convex, define

J̄ (α) =

{
min
β

J (α, β) s.t. g (α, β) ≤ 0, if ∃β, g (α, β) ≤ 0

∞, otherwise
(15)

Then the RCP in (14) is equivalent to

min
α

J̄ (α)

s.t.f (α, δi) ≤ 0,∀δ1, ..., δN i.i.d.
(16)

When J̄ 6=∞, the number of supporting constraint is at most n1 + 1; when J̄ =∞, the number of
supporting constraint is zero. This proves that ζ ≤ n1 + 1.

6.3 Proof of Theorem 1

Proof. Feasibility can be seen by noticing that the problem is convex and [w, c] = 0 is a solution.
Then note that [w, c] is the optimization variable, and by Theorem 2, Helly’s dimension is upper
bounded by p+2, the upper bound on the probability of misclassification for unseen data is obtained
by directly using theorem 3.3 in [14], see the proof therein.

6.4 Proof of Corollary 1

Proof. The multi-hyperplane SVM can be viewed as the conjunction of Nh SVMs, therefore we
have

P(

Nh∨
i=1

((wi)ᵀφ(zN+1) + ci < 0)) ≤
Nh∑
i=1

P((wi)ᵀφ(zN+1) + ci < 0), (17)

where for each probability on the right, pick ε′ = ε
Nh

and apply Theorem 1. Then sum up the upper
bounds to reach the conclusion.
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