
Appendix

A Missing Proofs

A.1 Proof for Theorem 4.1

To understand how the ordering matters, we consider a toy example of estimating EX,Y [f(X,Y)]
of some function f of two random variables X and Y . We prove a basic lemma.
Lemma A.1. If X and Y are independent, then

VarXEY [f(X,Y)] ≤ EYVarX [f(X,Y)] (14)

Proof. This can be proved by Jensen’s inequality.

VarXEY [f] = EX (EY [f −EX [f]])
2 ≤ EXEY

[
(f −EX,Y [f])

2
]

= EYVarX [f(X,Y)]

Suppose we want to reduce the variance of estimating EX,Y [f(X,Y)] with some CV φ(X,Y) but
only knowing the distribution P (X), not P (Y). Lemma A.1 tells us that in decomposing the total
variance of f(X,Y) to design this CV (cf. Section 2.3) we should take the decomposition

VarYEX [f(X,Y)] + EYVarX [f(X,Y)] (15)

instead of the decomposition

VarXEY [f(X,Y)] + EXVarY [f(X,Y)] (16)

In other words, we should take the ordering Y → X , instead of X → Y , when invoking the
law of total variance. The reason is that after choosing the optimal CV for each case to reduce the
variance due toX (the information that we have access to), we are left with VarYEX [f(X,Y)] and
EXVarY [f(X,Y)], respectively, for Y → X and X → Y . By Lemma A.1, we see the Y → X
has a smaller residue in variance. In other words, when we only have partial information about the
distribution, we should arrange the random variables whose distribution we know to the latter stage
of the ordering, so that the CV we design can leverage the sampled observations to compensate for
the lack of prior.

We use this idea to prove the natural ordering (10) in optimal. In analogy of X and Y , we have
the action randomness whose distribution is known (i.e. the policy) and the dynamics randomness,
whose distribution is unknown.

The potential orderings we consider come from first reparameterizing the policy and then ordering
the independent random variables Rt (cf. Section 4.3). The Bayes networks of the MDP with
and without policy reparameterization are depicted in Fig. 5, based on which we draw conditional
independent relations later in the proof. We note that the CV is determined by the ordering, not due
to reparameterization. For the natural ordering,

St → At → St+1 → At+1 → · · · → Sh → Ah, (10)

it gives the same control variate of the ordering below based on reparameterization

St → Rt → St+1 → Rt+1 → · · · → Sh → Rh. (17)

Suppose that given an ordering, we can compute its optimal CV. We define the variance left after
applying that optimal CV associated with the ordering, the residue of that ordering. We will show
that the residue is minimized at the natural ordering.

The proof consists of two steps.

1. We show that when dynamics is the MDP is unknown, an ordering is feasible to implement,
if and only if,Rk appears before Sk+1..h for all t ≤ k < h. That is, a feasible ordering must
be causal at least in actions: the action randomness that causes a state must be arranged
before that state in the ordering. We prove this by contradiction. Assume otherwise Su is

11

Sk

Ak

∼ πSk

Sk−1

Ak−1

Sk

Ak

k ∈ {t, …, h}

∼ Sk−1,Ak−1

(a) before policy reparameterization

∼ Sk−1,Ak−1

Rk

Sk

Ak

= ω(Sk, Rk)

Sk−1

Ak−1

Sk

Ak

∼ pR k ∈ {t, …, h}

(b) after policy reparameterization

Figure 5: Bayes networks for the random variables in Gt (2), before and after reparameterization.
After policy is reparameterized, action Ak is decided by state Sk and action randomness Rk.

the first state before Rk satisfying u > k. We see that Rk and Su are dependent, if none
of the variables in Sk+1..u is given. This observation can been inferred from the Bayes
network that connect these random variables (Fig. 5b), i.e. the path from Rt to Su is not
blocked unless any of Sk+1..u is observed [43]. Therefore, if we have an ordering that
is violates the causality property defined above, the expectation over Rk required to define
the difference estimator becomes intractable to compute, because the dynamics is unknown.
This creates a contradiction.

2. We show that any feasible ordering can be transformed into the natural ordering in (10)
using operations that do not increase the variance residue. We consider the following two
operations

(a) Suppose, in an ordering, there is Sv → Su, v > u, then we can exchange them without
affecting variance residue.

(b) Suppose, in a feasible ordering, there is Sv → Rk → Su with v > u and k 6= u, v.
Because this is a feasible ordering, we have k + 1 ≤ u < v. This means that we can
also move Rk after Su. This change would not increase variance residue, because of
the discussion after Lemma A.1. Then we change exchange the order of Sv and Su
too using the first operation.

By using these two operations repeatedly, we can make all the states ordered by their sub-
scripts, without increasing the residue. Finally, we can move Rk to just right after Sk
without increasing residue using Lemma A.1 again. Thus, we arrive at the natural ordering
in (17), which is the same as (10). In other words, the natural ordering is the optimal one
among all feasible CVs that we can implement, which concludes the proof.

A.2 Proof of Theorem 3.1

Let dA denote the dimension of A. Suppose dA is finite. To bound these variance terms, we derive
some intermediate bounds. First, by the Gaussian assumption,

πSt(At) = (2πσ)−
dA
2 exp

(−1

2σ
‖At − µθ(St)‖2

)
we see that

Nt := ∇ lnπ(At|St) =

[
∇θ lnπ(At|St)
∇σ lnπ(At|St)

]
=

[−1
σ ∇µθ(St)(At − µθ(St))
1

2σ2 ‖At − µθ(St)‖2 − dA
2σ

]
Therefore, for σ small enough, ‖Nt‖ = O(poly(At)

σ2).

Second, by the assumption on boundedness of C, we have Ct:h = O(h) and Qt := qπ(St, At) =
O(h). We use these equalities to bound E|St [NtCt:h]. We observe that the identity that

E|St [NtCt:h] = ∇EAt|St [qπ(St, At)]

Under the assumption that qπ is analytic, qπ can be written in terms of an infinite sum of poly-
nomials, i.e. qπ(St, At) = polySt(At), where the subscript remarks that these coefficients in the
polynomial depends on St.

12

Now we are ready to bound VSt , VAt|St , and V|St,At . We recall that the expectation of polynomials
over a Gaussian distribution depends only polynomially on the Gaussian’s variance σ, with an order
no less than 1. Therefore, for σ small enough, we have

∥∥∇EAt|St [qπ(St, At)]
∥∥ = O(h) independent

of σ, which implies that

VSt = Tr
(
VarSt

[
E|St [NtCt:h]

])
= o(h2)

We can apply the same observation on the Gaussian expectation of polynomials and derive, for σ
small enough,

VAt|St = Tr
(
ESt

[
VarAt|St

[
Nt
(
E|St,At [Ct:h]

)]])
= Tr

(
ESt

[
VarAt|St [Ntq

π(St, At)]
])

= O

(
h2

σ4

)
Similarly we can show

V|St,At = Tr
(
ESt,At [Var|St,At [NtCt:h]]

)
= O

(
h2

σ4

)
This concludes the proof.

A.3 Bound for Variance of Policy Gradient

The variance of the policy gradient Var[G] can be bounded by the variance of policy gradient
components {Var[Gt]}nt=1. Appealing to the formula for the variance of the sum of two random
variables

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y],

linearity of covariance

Cov[X,Y + Z] = Cov[X,Y] + Cov[X,Z]

and Cauchy -Schwartz inequality

Cov[X,Y] ≤ Var[X] + Var[Y],

we can derive the following:

Var[G] = Var [G1:h]

= Var [G1] + Var [G2:h] + Cov[G1, G2:h]

= Var[G1] +

h∑
t=2

Cov[G1, Gt] + Var [G2:h]

=
h∑
t=1

Var[Gt] +

h∑
u=1

h∑
v=u+1

Cov[Gu, Gv]

≤
h∑
t=1

Var[Gt] +

h∑
u=1

h∑
v=u+1

(Var[Gu] + Var[Gv])

= h

h∑
t=1

Var[Gt]

B Algorithm Example

Algorithm 1 specifies an instance of TrajCV, where Monte Carlo samples from a cheaper model
simulator is used to approximate EAt|St [Q̂t] (Line 8) and EAt|St [NtQ̂t] (Line 9). We discuss some
other ways for approximation Appendix C.

In practice, the policy that’s used for data collection may be different from the policy with respect to
which the policy gradient is computed, e.g., when a whitening normalizer of the inputs to policy is

13

Algorithm 1: Policy gradient estimate with TrajCV

Input: policy π, single trajectory by running π: {st, at, ct}ht=1, value function estimate v̂,
deterministic dynamics estimate d̂, number of action samples I

Output: policy gradient estimate
1 for t← 1 to h do // collect statistics

2 q̂t ← v̂(d̂(st, at)) + c(st, at)
3 nt ← ∇ log πst(at)
4 for i← 1 to I do // Monte Carlo samples
5 Sample a′i ∼ πst
6 q̂′i ← v̂(d̂(st, a

′
i)) + c(st, a

′
i)

7 n′i ← ∇ log πst(a
′
i)

8 Ẽ[Q̂t]← 1
I

∑I
i=1 q̂

′
i

9 Ẽ[NtQ̂t]← 1
I

∑I
i=1 n

′
iq̂
′
i

10 for t← 1 to h do // compute difference estimators

11 G̃Traj
t ← ntct:h −

(
ntq̂t − Ẽ[NtQ̂t]

)
− nt

∑h
k=t

(
q̂k − Ẽ[Q̂t]

)
(11)

12 G̃Traj ← G̃Traj
1:h

13 return G̃Traj

updated after data collection or when off-policy samples are utilized. Here we derive a TrajCV that
takes this into account. Let πd be the data collection policy and Wt :=

πSt (At)

πdSt
(At)

be the importance

weights, and define Wa→b :=
∏b
k=aWk for b ≥ a and Wa→b = 1 for b < a, akin to : representing

summation. Then we can write

Eρπ [Gt] = Eρ
πd

[GtWt→h] = Eρ
πd

[
GtWt→h −

h∑
k=t

Wt→(k−1)

(
WkNtQ̂k −EAk∼πSk [NtQ̂k]

)]
Note that this TrajCV is unbiased, and when q̂ = qπ , variance due to actions vanishes.

C Experiment Details

C.1 Setup

In CartPole, the reward function is the indicator function that equals to one when the pole is close
to being upright and zero otherwise. This is a delayed reward problem in that the effective reward
signal is revealed only when the task terminates prematurely before reaching the horizon, i.e. when
the pole deviates from being upright. The start state is perturbed from being vertical and still by
an offset uniformly sampled from [−0.01, 0.01]dS , and the dynamics is deterministic.10 The action
space is continuous and Gaussian policies are considered in the experiments. The policy’s mean
function is a neural network with one hidden layers of 32 units and tanh activation, and a linear
output layer. To be robust to outliers in data collection, the policy is optimized by natural gradient
descent [3] with a KL-divergence safe guard on the policy change, such that a policy would change
no more than 0.1 in the KL divergence averaged over the empirical state distribution on the data
collected in each iteration.

C.2 Construction of Q-function Approximators

To facilitate a fair comparison across different CV techniques, we build all the CVs based on a an
on-policy value function approximator v̂, which is a neural network with two hidden layers of 64
units each and tanh activation, and a linear output layer. In each iteration, we sample abundant
data (50, 000 state-action pairs) from a biased dynamics simulator (which is obtained by perturbing

10Symbol dS denotes the dimension of S.

14

0 10 20 30 40

1000

2000

3000

4000

(a) h = 4000 (diff)

0 10 20 30 40

�0.04

�0.02

0.00

0.02

0.04 upper bound
Monte Carlo
state CV
state-action CV (diff)
TrajCV (diff)
state-action CV (diff-GN)
TrajCV (diff-GN)

0 10 20 30 40

1000

2000

3000

4000

(b) h = 4000 (next)

0 10 20 30 40

�0.04

�0.02

0.00

0.02

0.04 upper bound
Monte Carlo
state CV
state-action CV (next)
TrajCV (next)
state-action CV (next-GN)
TrajCV (next-GN)

Figure 6: The exact same settings as Fig. 4 except that the state-action CV and TrajCV are given by
q̂(diff) and q̂(diff-GN) (Fig. 6a), and q̂(next) and q̂(next-GN) (Fig. 6b).

each underlying physical parameter relatively by 10%), and then fit v̂ to these biased Monte-Carlo
estimates with a quadratic loss using ADAM (stepsize 0.001; β1 = 0.9 and β2 = 0.999) for 1, 024
batches with batchsize 128. The reason for using a biased dynamics simulator in lieu of the on-policy
data from the real environment is that we only sample 5 trajectories per iteration, which amount to
around 100 data points in the early iterations and can be too scarce to build a reasonable function
approximator.

As mentioned, all the CVs are built using the above policy evaluation technique. (Different methods
learn its own value function approximator on-the-fly along the progress of policy optimization.) For
the state-dependent CV, the usage of v̂ is straightforward. For state-action CV and TrajCV, we use v̂
to further construct the needed Q-function approximator q̂. This is done as follows: First, we further
train a deterministic function d̂ that maps the current state and action to next state using the same data
collected from the true environment that are used for computing the policy gradient estimates. As
policy optimization progresses, we aggregate the data from the past rounds to iteratively build this
dynamics model (which is another neural network with two hidden layers of 64 units each and tanh
activation and a linear output layer). This is done by updating it after the policy gradient step in each
iteration to remove undesirable correlations. Next, we use the above value function approximator v̂
and the dynamics approximator d̂ to define a natural Q-function approximator q̂(dyn)(s, a) = c(s, a)+

v̂(d̂(s, a)). Based on this basic q̂(dyn), we explore several options of Q-function approximator for
defining the state-action CV and TrajCV:

1. Monte Carlo (MC) : q̂(dyn)(s, a). We use many samples of actions (1, 000 in the experi-
ments) to approximate EAt|St

[
q̂(dyn)(St, At)

]
. To reduce variance, we use the same action

randomness for different steps, i.e. using the same 1, 000 i.i.d. samples from pR (defined
in Section 4.3) in the evaluation for EAt|St with different t.

2. We also consider various Q-function approximators that are quadratic in action, so that
EAt|St can be evaluated in closed-form. They are derived by different linearizations of the
Q-function approximator q̂ as shown below.

(a) q̂(next)(s, a) = c(s, a) + v̂(ŝ′) + (a−m)>∇md̂(s,m)∇v̂(ŝ′),

(b) q̂(next-GN)(s, a) = q̂(next)(s, a)+ 1
2 (a−m)>∇md̂(s,m)∇2v̂(ŝ′)∇md̂(s,m)>(a−m),

(c) q̂(diff)(s, a) = v̂(s)+(a−m)>∇m(c(s,m)+ v̂(ŝ′))+ 1
2 (a−m)>∇2

mc(s,m)(a−m),

(d) q̂(diff-GN)(s, a) = q̂(diff)(s, a) + 1
2 (a−m)>∇md̂(s,m)∇2v̂(ŝ′)∇md̂(s,m)>(a−m),

where m = µθ(s) is the mean of the Gaussian policy, ŝ′ = d̂(s,m), and “GN” stands for
Gauss-Newton. We assume c(s, a) is quadratic in a for q̂(next) and q̂(next-GN).

Note to Practitioners We emphasize that constructing a Q-function approximator indirectly
through a dynamics model and a value function approximator is not ideal for practical purposes.
This approach would combine errors from two sources and can have worse performance than directly
estimating a Q-function, e.g., through (simulated) Monte Carlo samples. However, we adopted this
formulation to make the results of different CVs more comparable, removing the bias due to differ-
ent value function approximators and evaluation techniques. While this construct is sufficient for
the purpose of comparing theoretical properties here, we do remind that this scheme does not scale
well to general high-dimensional problems.

15

C.3 Extra Experimental Results

The performance of different CVs using MC for approximating EAt|St is reported in Fig. 4. We
provide the experimental results of these quadratic Q-function approximators in Fig. 6, where the
setup is the same those in Fig. 4.

Finally, we note that because the recent technical report [24] essentially proposed the same equa-
tion (11) that TrajCV uses. We invite the readers to refer to their encouraging empirical results on
simulated LQG tasks too.

16

	Missing Proofs
	Proof for Theorem 4.1
	Proof of th:variance size
	Bound for Variance of Policy Gradient

	Algorithm Example
	Experiment Details
	Setup
	Construction of Q-function Approximators
	Extra Experimental Results

