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1 Self-Supervised and Supervised Losses Trade-Off

Our proposed semi-supervised loss (Eq. 1, main text) is composed of three individual terms: Lphoto,
representing the self-supervised photometric loss, Lsmooth, representing a self-supervised smooth-
ness depth regularizer, and Lrep, representing the proposed supervised reprojected distance loss.
Determining the correct balance between these terms is an important part of the training protocol,
and in this section we discuss the effects that λrep, or the ratio between the self-supervised and
supervised components of the loss, has in our overall results.

Interestingly, we did not notice any meaningful changes in numerical results when λrep varies, even
if this variation is by a few orders of magnitude. However, there was a significant difference in
how the resulting depth maps are visually represented, as depicted in Fig. 1. In particular, larger
values for λrep promote a worse reconstruction of areas not observed by the LiDAR sensor. We
suspect that this behavior is due to the supervised term of the loss overwhelming the self-supervised
terms, which hinders the learning of denser, smoother depth maps via the photometric loss. This is
supported by the fact that this is a typical behavior of purely supervised depth learning algorithms,
where the loss is never calculated in areas where there are no valid depth values. When further
lowering λrep, we started to see degradation in numerical results, indicating that the photometric
loss was being over-represented in the loss and scale was not being learned properly, which led us
to elect λrep = 104 as the optimal value for our proposed semi-supervised loss.

(a) λrep = 104 (b) λrep = 105

(c) λrep = 106 (d) λrep = 107

Figure 1: Effects of varying the coefficient λrep that weights the supervised loss term, for the
KITTI dataset. Most noticeably, lower values of λrep produce a better reconstruction of areas not
observed by the LiDAR sensor.
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2 Degradation in the Number of Supervised Frames

In this section, we provide analysis of our model robustness to another type of degradation in su-
pervision: the number of depth labels available. This is particularly useful as a way to combine
large unlabeled datasets, produced without any sort of supervision, with a small amount of labeled
images, obtained separately under more controlled circumstances. Our training schedule, on the
KITTI dataset, consists of producing two separate splits:

• Unlabeled (U): All available images (39810, following the pre-processing steps of [1]) are
maintained, discarding all depth information.

• Supervised (S): N images are randomly selected from the entire dataset and maintained,
alongside their corresponding Annotated depth information.

Afterwards, training is performed as instructed, however at each step half the batch size is sampled
from U and half from S, with the former not contributing for the proposed reprojected distance loss
Lrep during loss calculation. Note that S is sampled with replacement, so the same labeled images
can be processed multiple times in the same epoch, that is considered finished when all images from
U are processed once. This is done to avoid data imbalance, as the number of training frames from
S decrease relatively to U .

Results obtained using this training schedule are shown in Table 1, indicating that our proposed
method statistically did not degrade when observing only 10000 images, roughly 25% of the total of
annotated depth maps. Additionally, when observing only 1000 images, or 2.5% the total number
of annotated depth maps, our proposed methods achieved performance comparable to Amiri et al.
[2] and Luo et al. [3], considered the current state-of-the-art for semi-supervised monocular depth
estimation. As we further decrease the number of supervised frames, performance starts to degrade
more steeply, however these are mostly due to the model’s inability to learn proper scale with such
sparse (and possibly biased) information.

# Sup. Frames Abs.Rel Sq.Rel RMSE RMSElog δ < 1.25

39810 (all) 0.073 ± 0.001 0.344 ± 0.004 3.273 ± 0.008 0.117 ± 0.001 0.932 ± 0.002
10000 0.074 ± 0.002 0.346 ± 0.006 3.298 ± 0.021 0.118 ± 0.002 0.934 ± 0.002
1000 0.080 ± 0.003 0.388 ± 0.010 3.550 ± 0.038 0.125 ± 0.005 0.923 ± 0.004
100 0.101 ± 0.007 0.532 ± 0.023 4.230 ± 0.078 0.155 ± 0.018 0.886 ± 0.013
10 0.249 ± 0.031 2.832 ± 0.081 10.412 ± 0.380 0.439 ± 0.059 0.561 ± 0.047

Table 1: Quantitative results showing how our proposed semi-supervised methodology behaves
with a decreasing number of supervised frames at training time, for the KITTI dataset. For each
row, statistical intervals were calculated based on 10 independent models trained using different
random subsets from S. For all, the entire S was used in all 10 sessions, with the statistical intervals
being indicative of the noise inherent to stochastic training and random data augmentation.

3 Effects of Beam Selection for Sparse Depth Labels

In this section we explore how sensitive our semi-supervised depth estimates are to the selection of
beams at training time, particularly as depth labels become sparser. In other words, we would like
to investigate how the distribution of valid depth pixels throughout annotated labels impact overall
results. In our original experiments, beam sparsification was achieved by keeping only those at
equally spaced intervals, and by increasing these intervals the number of beams decreases. Naturally,
when all 64 beams are used there is no interval, when 32 are used every second beam is kept, when
16 are used every fourth beam is kept, and so forth. It is important to note that not all beams are
necessarily used by the reprojected depth map, since their point of contact might not be visible by
the camera. In fact, we noticed that most of the information contained in beams below the 45th is
discarded, which makes the task of sparse semi-supervision even more challenging.

In order to vary the position of depth information in the resulting sparse labels, while maintaining
a proper distribution similar to what a real LiDAR sensor would provide, we opted for introducing
an offset, determining where the top beam is located. Starting from 0, this offset increases until it
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Figure 2: Effects of beam selection in monocular depth estimation performance, for different beam
distributions. The error bars indicate the variation in depth estimates when different offset values for
the top beam are considered. For 64 beams, since there is no variation, the error bars are indicative
of the noise inherent to stochastic training and random data augmentation.

coincides with another beam that was selected when no offset is considered. Following this strategy,
when 32 beams are considered there are 2 variations, when 16 beams are considered there are 4, and
so forth. The results when using this strategy are depicted in Fig. 2, where we can see that sparser
depth labels are more sensitive to the distribution of valid pixels, and there are indeed some config-
urations that lead to better results, however there was no configuration that resulted in catastrophic
failures. Interestingly, as we further increased sparsity, considering only 2 or even 1 beam, some
configurations failed to converge, showing that there is a limit to how much sparsity can be properly
leveraged in our proposed semi-supervised learning framework, however a more thorough analysis
is left for future work.

4 Additional Qualitative Results

Here we provide some more qualitative results of our proposed semi-supervised monocular depth
estimation methodology, using the reprojected distance loss, on the KITTI dataset. Fig. 4 shows
corresponding input RGB images and output depth maps, while Fig. 3 depicts reconstructed point-
clouds from models trained using different numbers of LiDAR beams. More qualitative results can
be found on the supplementary video attached.

(a) Annotated depth maps (b) 64 beams (c) 32 beams

(d) 16 beams (e) 8 beams (f) 4 beams

Figure 3: Reconstructed point-clouds from our proposed semi-supervised depth estimation
methodology, with models trained using different numbers of LiDAR beams.
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Figure 4: Qualitative results of our proposed semi-supervised monocular depth estimation method-
ology, showing input RGB images and output depth maps.
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