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Abstract: Meta-Reinforcement learning approaches aim to develop learning pro-
cedures that can adapt quickly to a distribution of tasks with the help of a few
examples. Developing efficient exploration strategies capable of finding the most
useful samples becomes critical in such settings. Existing approaches towards find-
ing efficient exploration strategies add auxiliary objectives to promote exploration
by the pre-update policy, however, this makes the adaptation using a few gradient
steps difficult as the pre-update (exploration) and post-update (exploitation) poli-
cies are often quite different. Instead, we propose to explicitly model a separate
exploration policy for the task distribution. Having two different policies gives
more flexibility in training the exploration policy and also makes adaptation to
any specific task easier. We show that using self-supervised or supervised learning
objectives for adaptation allows for more efficient inner-loop updates and also
demonstrate the superior performance of our model compared to prior works in
this domain.
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1 Introduction
Reinforcement learning (RL) approaches have seen many successes in recent years, from mastering
the complex game of Go [1] to even discovering molecules [2]. However, a common limitation of
these methods is their propensity to overfitting on a single task and inability to adapt to even slightly
perturbed configuration [3]. On the other hand, humans have this astonishing ability to learn new
tasks in a matter of minutes by using their prior knowledge and understanding of the underlying task
mechanics. Drawing inspiration from human behaviors, researchers have proposed to incorporate
multiple inductive biases and heuristics to help the models learn quickly and generalize to unseen
scenarios. However, despite a lot of effort it has been difficult to approach human levels of data
efficiency and generalization.

Meta reinforcement learning addresses these shortcomings by learning how to learn these inductive
biases and heuristics from the data itself. It strives to learn an algorithm that allows an agent to
succeed in a previously unseen task or environment when only limited experience is available. These
inductive biases or heuristics can be induced in the model in various ways like optimization algorithm,
policy, hyperparameters, network architecture, loss function, exploration strategies [4], etc. Recently,
a class of parameter initialization based meta-learning approaches have gained attention like Model
Agnostic Meta-Learning (MAML) [5]. MAML finds a good initialization for a model or a policy that
can be adapted to a new task by fine-tuning with policy gradient updates from a few samples of that
task.

Since the objective of meta-RL algorithms is to adapt to a new task from a few examples, efficient
exploration strategies are crucial for quickly finding the optimal policy in a new environment. Some
recent works have tried to address this problem by improving the credit assignment of the meta
learning objective to the pre-update trajectory distribution [6, 7]. However, that requires transitioning
the base policy from exploration behavior to exploitation behavior using one or few policy gradient
updates. This limits the applicability of these methods to cases where the post-update (exploitation)
policy is similar to the pre-update (exploration) policy and can be obtained with only a few updates.
Additionally, for cases where pre- and post-update policies are expected to exhibit different behaviors,
large gradient updates may result in training instabilities and poor performance at convergence.
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To address this problem, we propose to explicitly model a separate exploration policy for the task
distribution. The exploration policy is trained to find trajectories that can lead to fast adaptation of the
exploitation policy on the given task. This formulation provides much more flexibility in training the
exploration policy. We’ll also show that separating the exploration and exploitation policy helps us
improve/match the performance of the baseline approaches on meta-RL benchmark tasks. We further
show that, in order to perform stable and fast adaptation to the new task, it is often more useful to
use self-supervised or supervised learning approaches to perform the inner loop/meta updates, where
possible. This also helps obtain more stable gradient update steps while training exploitation policy
with the trajectories collected from a different exploration policy.

2 Related work
Meta-learning algorithms proposed in the RL community include approaches based on recurrent
models [8, 9], metric learning [10, 11], and learning optimizers [12]. Recently, Finn et al. [5]
proposed Model Agnostic Meta-Learning (MAML) which aims to learn a policy that can generalize
to a distribution of tasks. Specifically, it aims to find a good initialization for a policy that can be
adapted to any task sampled from the distribution by fine-tuning with policy gradient updates from a
few samples of that task.

Efficient exploration strategies are crucial for finding trajectories that can lead to quick adaptation
of the policy in a new environment. Recent works [13, 14] have proposed structured exploration
strategies using latent variables to perform efficient exploration across successive episodes, however,
they did not explicitly incentivize exploration in pre-update episodes. E-MAML [6] made the first
attempt at assigning credit for the final expected returns to the pre-update distribution in order to
incentivize exploration in each of the pre-update episodes. Rothfuss et al. [7] proposed Proximal
Meta-Policy search (ProMP) where they incorporated the causal structure for more efficient credit
assignment and proposed a low variance curvature surrogate objective to control the variance of the
corresponding policy gradient update. However, these methods make use of a single base policy for
both exploration and exploitation while relying on one or few gradient updates to transition from
the exploration behavior to exploitation behavior. Over the next few sections, we illustrate that this
approach is problematic and insufficient when the exploration and exploitation behaviors are quite
different from each other.

A number of prior works have tried to utilize self-supervised objectives [15, 16, 17, 18, 19] to
ease learning especially when the reward signal itself is insufficient to provide the required level of
feedback. Drawing inspiration from these approaches, we modify the inner loop update/adaptation
step in MAML using a self-supervised objective to allow more stable and faster updates. Concurrent
to our work, Yang et al. [20] also decoupled exploration and adaptation policies where the latter is
initialized as a learnable offset to the exploration policy.

3 Background
3.1 Meta-Reinforcement Learning

Unlike RL which tries to find an optimal policy for a single task, meta-RL aims to find a policy that
can generalize to a distribution of tasks. Each task T sampled from the distribution ρ(T ) corresponds
to a different Markov Decision Process (MDP) defined by the tuple (S,A,P , r, γ,H) with state
space S, action space A, transition dynamics P , reward function r, discount factor γ, and time
horizon H . These MDPs are assumed to have similar state and action space but might differ in the
reward function r or the environment dynamics P . The goal of meta RL is to quickly adapt the policy
to any task T ∼ ρ(T ) with the help of few examples from that task.

3.2 Credit Assignment in Meta-RL

MAML is a gradient-based meta-RL algorithm that tries to find a good initialization for a policy
which can be adapted to any task T ∼ ρ(T ) by fine-tuning with one or more gradient updates using
the sampled trajectories of that task. MAML maximizes the following objective function:

J(θ) = ET ∼ρ(T )

[
Eτ ′∼PT (τ ′|θ′) [R(τ ′)]

]
with θ′ := U(θ, T ) = θ + α∇θEτ∼PT (τ |θ) [R(τ )] (1)

where U is the update function that performs one policy gradient ascent step to maximize the expected
reward R(τ ) obtained on the trajectories τ sampled from task T .
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Rothfuss et al. [7] showed that the gradient of the objective function J(θ) in Eq. 1 can be written as:

∇θJ(θ) = ET ∼ρ(T )

[
Eτ∼PT (τ |θ)τ ′∼PT (τ ′|θ′)

[
∇θJpost(τ , τ

′) +∇θJpre (τ , τ ′)

]]
where,

∇θJpost(τ , τ
′) = ∇θ′ log πθ(τ

′)R(τ ′)︸ ︷︷ ︸
∇θ′Jouter

(
I + αR(τ )∇2

θ log πθ(τ )
)︸ ︷︷ ︸

transformation from θ′ to θ

(2)

∇θJpre(τ , τ
′) = α∇θ log πθ(τ )

(
(∇θ log πθ(τ )R(τ ))>︸ ︷︷ ︸

∇θJ inner

(∇θ′ log πθ′(τ
′)R(τ ′))︸ ︷︷ ︸

∇θ′Jouter

)
(3)

The first term ∇θJpost(τ , τ
′) corresponds to a policy gradient step on the post-update policy πθ′

w.r.t.. the post-update parameters θ′ which is then followed by a linear transformation from θ′ to
θ (pre-update parameters). Note that ∇θJpost(τ , τ

′) optimizes θ to increase the likelihood of the
trajectories τ ′ that lead to higher returns given some trajectories τ . However, this term does not
optimize θ to yield trajectories τ that lead to good adaptation steps. That is, infact, done by the second
term ∇θJpre(τ , τ

′). It optimizes for the pre-update trajectory distribution, PT (τ |θ), i.e, increases
the likelihood of trajectories τ that lead to good adaptation steps.

During optimization, MAML only considers Jpost(τ , τ
′) and ignores Jpre(τ , τ

′). Thus MAML finds
a policy that adapts quickly to a task given relevant experiences, however, the policy is not optimized
to gather useful experiences from the environment that can lead to fast adaptation.

Rothfuss et al. [7] proposed ProMP where they analyze this issue with MAML and incorporate
∇θJpre(τ , τ

′) term in the update as well. They used The Infinitely Differentiable Monte-Carlo
Estimator (DICE) [21] to allow causal credit assignment on the pre-update trajectory distribution,
however, the gradients computed by DICE still have high variance. To remedy this, they proposed a
low variance (and slightly biased) approximation of the DICE based loss that leads to stable updates.

4 Method
The pre-update and post-update policies are often expected to exhibit very different behaviors, i.e,
exploration and exploitation behaviors respectively. For instance, consider a 2D environment where a
task corresponds to reaching a goal location sampled randomly from a semi-circular region (example
shown in appendix). The agent receives a reward only if it lies in some vicinity of the goal location.
The optimal pre-update or exploration policy is to move around in the semi-circular region whereas
the ideal post-update or exploitation policy will be to reach the goal state as fast as possible once
the goal region is discovered. Clearly, the two policies are expected to behave very differently. In
such cases, transitioning a single policy from pure exploration phase to pure exploitation phase via
policy gradient updates will require multiple steps. Unfortunately, this significantly increases the
computational and memory complexities of the algorithm. Furthermore, it may not even be possible
to achieve this transition via few gradient updates. This raises an important question: DO WE REALLY
NEED TO USE THE PRE-UPDATE POLICY FOR EXPLORATION AS WELL? CAN WE USE A SEPARATE
POLICY FOR EXPLORATION?

Using separate policies for pre-update and post-update sampling: The straightforward solution
to the above problem is to use a separate exploration policy µφ responsible for collecting trajectories
for the inner loop updates to get θ′. Following that, the post-update policy πθ′ can be used to collect
trajectories for performing the outer loop updates. Unfortunately, this is not as simple as it sounds.
To understand this, let’s look at the inner loop updates:

U(θ, T ) = θ + α∇θEτ∼PT (τ |θ) [R(τ )]

When the exploration policy is used for sampling trajectories, we need to perform importance
sampling. The update would thus become:

U(θ, T ) = θ + α∇θEτ∼QT (τ |φ)

[
PT (τ |θ)
QT (τ |φ)

R(τ )

]
where PT (τ |θ) and QT (τ |φ) represent the trajectory distribution sampled by πθ and µφ respectively.
Note that the above update is an off-policy update which results in high variance estimates when the
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two trajectory distributions are quite different from each other. This makes it infeasible to use the
importance sampling update in the current form. In fact, this is a more general problem that arises
even in the on-policy regime. The policy gradient updates in the inner loop results in both ∇θJpre
and ∇θJpost terms being high variance. This stems from the mis-alignment of the outer gradients
(∇θ′Jouter) and the inner gradient, hessian

(
∇θJ inner,∇2

θ log πθ(τ )
)

terms appearing in Eq. 2 and 3.
This motivates our second question: DO WE REALLY NEED THE PRE-UPDATE GRADIENTS TO BE
POLICY GRADIENTS? CAN WE USE A DIFFERENT OBJECTIVE IN THE INNER LOOP TO GET MORE
STABLE UPDATES?

Using a self-supervised/supervised objective for the inner loop update step: The instability in
the inner loop updates arises due to the high variance nature of the policy gradient update. Note
that the objective of inner loop update is to provide some task specific information to the agent with
the help of which it can adapt its behavior in the new environment. We believe that this could be
achieved using some form of self-supervised or supervised learning objective in place of policy
gradient in the inner loop to ensure that the updates are more stable. We propose to use a network
for predicting some task (or MDP) specific property like reward function, expected return or value.
During the inner loop update, the network updates its parameters by minimizing its prediction error
on the given task. Unlike prior meta-RL works where the task adaptation in the inner loop is done
by policy gradient updates, here, we update some parameters shared with the exploitation policy
using a supervised loss objective function which leads to stable updates during the adaptation phase.
However, note that the variance and usefulness of the update depends heavily on the choice of the
self-supervision/supervision objective. We delve into this in more detail in Section 4.1.1.

4.1 Model

Figure 1: Model Flowchart: Black structures are those consis-
tent with E-MAML/ProMP. Red structures are the key differences
with E-MAML/ProMP (The thin-dotted arrow means the param-
eters related to that node.). Specifically, the pre-update trajecto-
ries τ are now collected using a separate exploration policy µφ.
The corresponding adaptation update is performed using a self-
supervised/supervised objective,

(
Mβ,z(s, a)−M(s, a)

)2
, on z

to give z′ and the policy πθ,z′ is parameterized using the task spe-
cific parameters z′ and the task agnostic parameters θ

Our proposed model comprises of
three modules, the exploration pol-
icy µφ(s), the exploitation policy
πθ,z(s), and the self-supervision net-
work Mβ,z(s, a). Note that Mβ,z and
πθ,z share a set of parameters z while
containing their own set of parame-
ters β and θ respectively. We describe
our proposed model in Fig. 1. Our
model differs from E-MAML/ProMP
because of the separate exploration
policy, the separation of task-specific
parameters z and task agnostic param-
eters θ, and the self-supervised update
as shown in Fig. 1.

The agent first collects a set of tra-
jectories τ using its exploration pol-
icy µφ for each task T ∼ ρ(T ). It
then updates the shared parameter
z by minimizing the regression loss(
Mβ,z(s, a)−M(s, a)

)2
on the sampled trajectories τ :

z′ = U(z, T ) = z − α∇zEτ∼QT (τ |φ)

[
H−1∑
t=0

(
Mβ,z(st, at)−M(st, at)

)2]
(4)

where, M(s, a) is the target, which can be any task specific quantity like reward, return, value, next
state etc. After obtaining the updated parameters z′ for each task T , the agent samples the (validation)
trajectories τ ′ using its updated exploitation policy πθ,z′ . Effectively, z′ encodes the necessary
information regarding the task that helps an agent in adapting its behavior to maximize its expected
return whereas θ remain task agnostic. A similar approach was proposed by Zintgraf et al. [22] to
learn task-specific behavior using context variable with MAML.

The collected trajectories are then used to perform a policy gradient update to all parameters z, θ, φ
and β using the following objective:

J(z′, θ) = ET ∼ρ(T )

[
EτT

π ∼PT (τT
π |θ,z′)

[
R(τTπ )

] ]
(5)
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In order to allow multiple outer-loop updates, we use the PPO [23] objective instead of the vanilla
policy gradient objective to maximize Eq. 5. Furthermore, we don’t perform any outer loop updates
on z and treat it as a shared latent variable with fixed initial values of 0 as proposed in [22]. The
reason being, that the bias term in the layers connecting z to the respective networks would learn to
compensate for the initialization. We only update z to z′ in the inner loop to obtain a task specific
latent variable.

Note that in all the prior meta reinforcement learning algorithms, both the inner-loop update and the
outer-loop update are policy gradient updates. In contrast, in this work, the inner-loop update is a
supervised learning gradient descent update whereas the outer-loop update remains a policy gradient
update.

The outer loop gradients w.r.t. φ,∇φJ(z′, θ) can be simplified by multiplying the DICE [21] operator
inside the expectation in Eq. 4 as proposed by Rothfuss et al. [7]. This allows the gradients w.r.t. φ to
be computed in a straightforward manner with back-propagation. This also eliminates the need to
apply the policy gradient trick to expand Eq. 4 for gradient computation. The inner loop update then
becomes:

z′ = U(z, T ) = z − α∇zEτ∼QT (τ |φ)

[
H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥(µφ(at′ |st′))

)(
Mβ,z(st, at)−M(st, at)

)2]
where ⊥ is the stop gradient operator as introduced in [21].

The pseudo-code of our algorithm is shown in appendix (see algorithm 7.1). However, we found that
implementing algorithm 7.1 as it is, using DICE leads to high variance gradients for φ, resulting in
instability during training and poor performance of the learned model. To understand this, let’s look
at the vanilla DICE gradients for the exploration parameters φ, which can be written as follows:

∇φJ(z′, θ) = ET ∼ρ(T )

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)

[H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)

(
∇z
(
Mβ,z(st, at)−M(st, at)

)2)]]

The above expression can be viewed as a policy gradient update:

∇φJ(z′, θ) = ET ∼ρ(T )

[
Eτ∼QT (τ |φ)

H−1∑
t=0

α∇φ logµφ(st)R
µ
t

]
(6)

with returns

Rµt =

[
H−1∑
t′=t

(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)(
∇z
(
Mβ,z(st, at)−M(st, at)

)2)]
(7)

Note that the variance depends on the policy gradient terms computed in the outer-loop and the choice
of self-supervision. We’ll explain the latter in Sec 4.1.1. However, irrespective of the choice, we can
use value function based variance reduction ([24]) by substituting the above computed returns with
advantages, i.e, we replace the return Rµt in Eq. 7 with an advantage estimate Aµt and use a PPO
([23]) objective to allow multiple outer loop updates: :

∇φĴ(z′, θ) = ET ∼ρ(T )

[
Eτ∼QT (τ |φo)

[
H−1∑
t=0

α∇φ min

(
µφ(st)

µφo(st)
Aµt , clip1+ε1−ε

(
µφ(st)

µφo(st)

)
Aµt

)]
where,

Aµt = rµt + V µt+1 − V
µ
t (8)

where V µt is computed using a neural network or a linear feature baseline [25] fitted on the returns
Rµt . where rµt is given by:

rµt =
(
Eτ ′∼PT (τ ′|θ,z′) (∇z′ log πθ,z′(τ

′)R(τ ′))
>
)(
∇z
(
Mβ,z(st, at)−M(st, at)

)2)
(9)
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4.1.1 Self-Supervised/Supervised Objective

It is important to note that the self-supervised/supervised learning objective not only guides the adapta-
tion step but also influences the exploration policy update as seen in Eq. 6 and 7. We mentioned above
that the self-supervised/supervised learning objective could be as simple as a value/reward/return/next
state prediction for each state (state-action pair). However, the exact choice of the objective can be
critical to the final performance and stability. From the perspective of the adaptation step, the only
criterion is that the self-supervised objective should contain enough task specific information to allow
a useful adaptation step. For example, it would not be a good idea to use the rewards self-supervision
in sparse/noisy reward scenarios or the next state predictions as self-supervision when the dynamics
model does not change much over tasks since the self-supervision updates in such cases will not
carry enough task specific information. From the perspective of the exploration policy updates,
an additional requirement would be to ensure that the returns computed in Eq. 7 are low variance
and unbiased, which further translates to saying∇z

(
Mβ,z(st, at)−M(st, at)

)2
should ideally be

low variance and unbiased. For example, using the cumulative future returns as self-supervision
might lead to a very high variance update in certain environments. Thus, finding a generalizable
self-supervision/supervision objective which satisfies both properties mentioned above across all
scenarios is a challenging task.

In our experiments, we found that, using N -step return prediction for supervision works reasonably
well across all the environments. This acts as a trade-off between predicting the full return (which
was high variance but also more task-specific info) and the reward (which was lower variance but
lower task-specific info). Hence, M(st, at) becomes M(st, at, st+1, at+1, .....st+N−1, at+N−1) =∑t+N−1
t′=t r(s′t, a

′
t). However, using Mβ,z to directly predict M would still lead to high variance

in ∇z
(
Mβ,z(st, at)−M

)2
. Thus, we use the truncated N -step successor representations [26]

(similar to N-step returns) mβ(st, at) and a linear layer on top of that to compute Mβ,z(st, at) =
wTβmβ(st, at). Using the successor representations can effectively be seen as using a more accu-
rate/powerful baseline than directly predicting the N-step returns using the (st, at) pair.

5 Experiments
We evaluate our proposed model on a set of 6 benchmark continuous control environments,
Ant-Fwd-Bwd, Half-Cheetah-Fwd-Bwd, Half-Cheetah-Vel, Walker2D-Fwd-Bwd,
Walker2D-Rand-Params and Hopper-Rand-Params used in [7]. We also compare our
method with 3 baseline approaches: MAML, EMAML and ProMP. Furthermore, we also perform
ablation experiments to analyze different components and design choices of our model on a toy 2D
point environment proposed by [7].

The details of the network architecture and the hyperparameters used for learning have been mentioned
in the appendix. We would like to state that we have not performed much hyperparameter tuning due
to computational constraints and we expect the results of our method to show further improvements
with further tuning. Also, we restrict ourselves to a single adaptation step in all environments for the
baselines as well as our method, but it can be easily extended to multiple gradient steps as well by
conditioning the exploration policy on the latent parameters z.

The results of the baselines for the benchmark environments have been borrowed directly from the the
official ProMP website 2. For the point environments, we have used their official implementation3.
5.1 Meta RL Benchmark Continuous Control Tasks.
The continuous control tasks require adaptation either across reward functions (Ant-Fwd-Bwd,
Half-Cheetah-Fwd-Bwd, Half-Cheetah-Vel, Walker2D-Fwd-Bwd) or across dynam-
ics (Walker2D-Rand-Params and Hopper-Rand-Params). We set the horizon length to
be 100 in Ant-Fwd-Bwd and Half-Cheetah-Fwd-Bwd environments and 200 in others in
accordance with the practice in [7]. The performance plots for all the 4 algorithms are shown in Fig.
2. In all the environments, our proposed method outperforms or achieves similar performance to
other method in terms of asymptotic performance.

Our algorithm performs particularly well in Half-Cheetah-Fwd-Bwd, Half-Cheetah-Vel,
Walker2D-Fwd-Bwd and Ant-Fwd-Bwd environments where the N -step returns are informa-

2https://sites.google.com/view/pro-mp/experiments
3https://github.com/jonasrothfuss/ProMP
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(a) Half-Cheetah-Fwd-Bwd (b) Half-Cheetah-Vel (c) Walker2D-Fwd-Bwd

(d) Hopper-Rand-Params (e) Walker2D-Rand-Params (f) Ant-Fwd-Bwd

Figure 2: Comparison of our method with 3 baseline methods on the Meta-RL Benchmark tasks.

tive. In Ant-Fwd-Bwd and Half-Cheetah-Fwd-Bwd environments, although we reach sim-
ilar asymptotic performance as ProMP, the convergence is slower in the initial stages of training.
This is because training multiple networks together can make training slower especially in the
initial stages of training especially when the training signal isn’t strong enough. Note that in
Walker2D-Rand-Params and Hopper-Rand-Params environments, although our method
converges as well as the baselines, it doesn’t do much better in terms of peak performance. This
could be attributed to the selection of the self-supervision signal. A more appropriate self-supervision
signal for these environments would be the next state or successor state prediction since the task
distribution in these environments corresponds to the variation in model dynamics and not just reward
function. This shows that the choice of the self-supervision signal plays an important role in the
model’s performance. To further understand these design choices we perform some ablations on a toy
environment in section 5.2.1.

5.2 2D Point Navigation.

Figure 3: 2D Point Navigation

We show the performance plots for ProMP, MAML-TRPO,
MAML-VPG and our algorithm in the sparse reward
2DPointEnvCorner environment (proposed in [7]) in Fig.
2. Each task in this environment corresponds to reaching a
randomly sampled goal location (one of the four corners) in
a 2D environment. This is a sparse reward task where the
agent receives a reward only if it is sufficiently close to the
goal location. In this environment, the agent needs to perform
efficient exploration and use the sparse reward trajectories to
perform stable updates, both of which are salient aspects of
our algorithm. Our method is able to achieve this and reaches peak performance while showing stable
behavior. ProMP, on the other hand, also reaches the peak performance but shows more unstable
behavior than in the dense reward scenarios, although it manages to reach similar peak performance to
our method. The other baselines struggle to do much in this environment since they do not explicitly
incentivize exploration for the pre-update policy.

5.2.1 Ablation Study

Figure 4: Ablation results

We perform several ablation experiments to analyze the im-
pact of different components of our algorithm on 2D point
navigation task. Fig. 4 shows the performance plots for the
following 5 different variants of our algorithm:

VPG-Inner loop: The semi-supervised/supervised loss in
the inner loop is replaced with the vanilla policy gradient loss
as in MAML while using the exploration policy to sample
the pre-update trajectories. This variant illustrates our claim
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of unstable inner loop updates when naively using an exploration policy. As expected, this model
performs poorly due to the high variance off-policy updates in the inner loop.

Reward Self-Supervision : A reward based self-supervised objective is used instead of return based
self-supervision, i.e, the self-supervision network M now predicts the reward instead of the N -step
return at each time step. This variant is stable but struggles to reach peak performance since the task
is sparse reward. This shows that the choice of self-supervision objective is also important and needs
to be chosen carefully.

Vanilla DiCE: In this variant, we directly use the DICE gradients to perform updates on φ instead
of using the low variance gradient estimator. The leads to higher variance updates and unstable
training as can be seen from the plots. This shows that the low variance gradient estimate has a major
contribution to the stability during training.

E-MAML Based : Here, we used an E-MAML [6] type objective to compute the gradients w.r.t.
φ instead of using DICE, i.e, directly used policy gradient updates on µφ but instead with returns
computed on post-update trajectories. This variant ignores the causal credit assignment from output
to inputs. Thus, the updates are of higher variance, leading to more unstable updates, although it
manages to reach good performance.

Ours : The low variance estimate of the DICE gradients is used to compute updates for φ along with
N -step return based self-supervision for inner loop updates. Our model reaches peak performance
and exhibits stable training due to low variance updates.

6 Discussions and Conclusion

Unlike conventional meta-RL approaches, we proposed to explicitly model a separate exploration
policy for the task distribution. Having two different policies gives more flexibility in training the
exploration policy and also makes adaptation to any specific task easier. The above experiments
illustrate that our approach provides more stable updates and better asymptotic performance as
compared to ProMP when the pre-update and post-update policies are very different. Even when that
is not the case, our approach matches or surpasses the baselines in terms of asymptotic performance.
More importantly, this shows that in most of these tasks, separating the exploration and exploitation
policies can yield better performance if properly done. From our ablation studies, we show that
the self-supervised objective plays a huge role in improving stability of the updates and the choice
of the self-supervised objective can be critical in some cases (e.g, predicting reward v/s return).
Further, we also show through the above experiments that the variance reduction techniques used in
the objective of exploration policy is important for achieving stable behavior. However, we would
like to emphasize that the idea of using a separate exploration and exploitation policy is much more
general and doesn’t need to be restricted to MAML. Given the requirements of sample efficiency of
the adaptation steps in the meta-learning setting, exploration is a very crucial ingredient and has been
vastly under explored. Thus, we would like to explore the following extensions as future work:

• Explore other techniques of self-supervision that can be more generally used across environ-
ments and tasks.

• Decoupling the exploration and exploitation policies allows us to perform off-policy updates.
Thus, we plan to test it as a natural extension of our approach.
• Explore the use of having separate exploration and exploitation policies in other meta-

learning approaches.
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7 Appendix

7.1 Algorithm
1: Require: Task distribution ρ(T ), step sizes α, η
2: while not converge do
3: Sample a batch of tasks Ti ∼ ρ(T )
4: for all sampled tasks Ti do
5: Collect pre-update trajectories τTiµ using µφ(s)

6: Update z by minimizing
(
Mβ,z(s, a)−M(s, a)

)2
:

z′ = U(z, T ) = z − α∇zEτ
Ti
µ ∼QTi (τ |φ)

[
H−1∑
t=0

(
t∏

t′=0

µφ(at′ |st′)
⊥ (µφ(at′ |st′))

)(
Mβ,z(s, a)−M(s, a)

)2]
7: where

(∏t
t′=0

µφ(at′ |st′ )
⊥(µφ(at′ |st′ ))

)
is the DiCE operator

8: Collect post-update trajectory τTiπ using πθ,z′(s)
9: Policy gradient update w.r.t. post-update trajectory τTiπ to optimize all parameters z, θ, φ, β,

with the objective
J(z′, θ) = ET ∼ρ(T )

[
EτT

π ∼PT (τT
π |θ,z′)

[
R(τTπ )

] ]
7.2 Additional experiments

7.2.1 SemiCircleEnvironment

We perform some additional experiments on another toy environment to illustrate the exploration
behavior shown by our model and demonstrate the benefits of using different exploration and
exploitation policies. Fig 5 shows an environment where the agent is initialized at the center of
the semi-circle. Each task in this environment corresponds to reaching a goal location (red dot)
randomly sampled from the semi circle (green dots). This is also a sparse reward task where the agent
receives a reward only if it is sufficiently close to the goal location. However, unlike the previous
environments, we only allow the agent to sample 2 pre-update trajectories per task in order to identify
the goal location. Thus the agent has to explore efficiently at each exploration step in order to perform
reasonably at the task. Fig 5 shows the trajectories taken by our exploration agent (orange and blue)
and the exploitation/trained agent (green). Clearly, our agent has learnt to explore the environment.
However, we know that a policy going around the periphery of the semi-circle would be a more
useful exploration policy. In this environment we know that this exploration behavior can be reached
by simply maximizing the environment rewards collected by the exploration policy. Fig. 7 shows
this experiment where the exploration policy is trained using environment reward maximization
while everything else is kept unchanged. We call this variant Ours-EnvReward. We also show the
trajectories traversed by promp in Fig 6. It is clear that it struggles to learn different exploration and
exploitation behaviors. Fig. 8 shows the performance of our two variants along with the baselines.
This experiment shows that decoupling the exploration and exploitation policies also allows us, the
designers more flexibility at training them, i.e, it allows us to add any domain knowledge we might
have regarding the exploration or the exploitation policies to further improve the performance.

7.2.2 Varying number of adaptation trajectories collected

We additionally wanted to test the sensitivity of the algorithms to the number of trajectories collected
in the inner loop. This is crucial because at test time, the algorithms would only be collecting
trajectories for the inner loop update, i.e, for adaptation. We test this on the HalfCheetah-Vel
Environment with varying numbers of inner loop adaptation trajectories namely, 2, 5, 10 and 20.
However to keep the updates stable, we increase the meta batch size (number of tasks sampled
for each update) proportionally to 400, 160, 80 and 40 respectively. Figure 11 shows the plots
for these variants for ProMP and our model. We notice that the performance of our model stays
roughly constant across varying values of the number of adaptation trajectories whereas ProMP
shows degradation in performance as the number of adaptation trajectories decrease. This shows that
each of the trajectories we sample performs efficient exploration. Note that the last pair with (20,40)
correspond to the standard settings of hyper-parameters which we (and other papers before us) have
used for the above experiments.
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Figure 5: Ours Figure 6: ProMP

Figure 7: Ours-EnvReward : µφ maximizes its environ-
ment rewards

Figure 8: Comparison with baselines

Figure 9: ProMP Figure 10: Ours

Figure 11: Comparison with varying numbers of adaptation trajectories. In the legend "x_y" corresponds to a
run with x adaptation trajectories and y tasks sampled for each updated.
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7.3 Hyper-parameters and Details

For all the experiments, we treat the shared parameter z as a latent embedding with a fixed initial
value of 0̄. The exploitation policy πθ,z(s) and the self-supervision network Mβ,z(s, a) concatenates
z with their respective inputs. All the three networks (π, µ,M ) have the same architecture (except
inputs and output sizes) as that of the policy network in [7] for all experiments. We also stick to the
same values of hyper-parameters such as inner loop learning rate, gamma, tau and number of outer
loop updates. We keep a constant embedding size of 32 and a constant N=15 (for computing the
N-step returns) across all experiments and runs. We use the Adam [27] optimizer with a learning rate
of 7e−4 for all parameters. Also, we restrict ourselves to a single adaptation step in all environments,
but it can be easily extended to multiple gradient steps as well by conditioning the exploration policy
on the latent parameters z.
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