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Abstract: In this paper, we introduce an actor-critic algorithm called Deep Value
Model Predictive Control (DMPC), which combines model-based trajectory opti-
mization with value function estimation. The DMPC actor is a Model Predictive
Control (MPC) optimizer with an objective function defined in terms of a value
function estimated by the critic. We show that our MPC actor is an importance
sampler, which minimizes an upper bound of the cross-entropy to the state distri-
bution of the optimal sampling policy. In our experiments with a Ballbot system,
we show that our algorithm can work with sparse and binary reward signals to
efficiently solve obstacle avoidance and target reaching tasks. Compared to pre-
vious work, we show that including the value function in the running cost of the
trajectory optimizer speeds up the convergence. We also discuss the necessary
strategies to robustify the algorithm in practice.

Keywords: Reinforcement Learning, Value Function Learning, Trajectory Opti-
mization, Model Predictive Control

1 Introduction

Learning in environments with sparse reward/cost functions remains a challenging problem for Rein-
forcement Learning (RL). As the exploration strategy employed plays a vital role in such scenarios,
the agent has to find and leverage small sets of informative samples maximally. Often, an agent can
be provided with prior knowledge about the environment in the form of an incomplete model, such
as the agent’s dynamics. The sparsity of the reward and potential non-differentiability rule out the
possibility of using Trajectory Optimization (TO). Furthermore, the sparsity of the cost function can
be problematic even for RL methods that do not use structured and directed exploration policies,
e.g., ε-greedy techniques. Thus, the goal of this work is to combine model-based and sample-based
approaches in order to exploit the knowledge of the system dynamics while effectively exploring the
environment.

Model Predictive Control (MPC) as a TO technique has proven to be a powerful tool in many robotic
tasks [1, 2, 3]. While this model-based approach truncates the time horizon of the task, it continually
shifts the shortened horizon forward and optimizes the state-input trajectory based on new state
measurements. The main disadvantage of the MPC approach is its relatively high computational
cost. As a consequence, the optimization time horizon is often kept short (e.g., in the order of
seconds), which in turn prevents MPC from finding temporally global solutions. Furthermore, MPC
heavily relies on the differentiability of the formulation and has a hard time dealing with sparse and
non-continuous reward/cost signals.

On the other hand, RL solves the same problem by exploring and collecting information about the
environment and making decisions based on samples. The RL agent has to learn about its envi-
ronment, including its dynamics from scratch via trial and error. Nevertheless, deep reinforcement
learning has displayed remarkable performance in long-horizon tasks with sparse rewards [4], even
in the continuous domain [5, 6]. The main drawbacks of RL are that it still requires enormous
amounts of data and suffers from the exploration-exploitation dilemma [7].
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In this work, we derive an actor-critic approach where the critic is a value function learner and the
actor an MPC strategy. Leveraging the generality of value functions, we propose to extend past
work such as [8], resulting in an algorithm called Deep Value Model Predictive Control (DMPC).
The DMPC algorithm uses an MPC policy to interact with the environment and collect informative
samples to update its approximation of the value function. The running cost and the heuristic func-
tion (also known as the terminal cost) of MPC are defined in terms of the value function estimated
by the critic.

We also provide an in-depth analysis of the bilateral effect of this actor-critic scheme. We show that
the MPC actor is an importance sampler that minimizes an upper bound of the cross-entropy to the
state trajectory distribution of the optimal sampling policy. Using the value function to define the
MPC cost enables us to transform an initially stochastic task into a deterministic optimal control
problem. We further empirically validate that defining a running cost in addition to the heuristic
function accelerates the convergence of the value function, which makes the DMPC algorithm suit-
able for tasks with sparse reward function.

2 Problem Formulation

In this section, we provide more details on the control problem we solve. We consider the problem
of sequential decision making in which an agent interacts with an environment to minimize the
cumulative cost from the current time and onwards. We formulate this problem as a discounted
Markov Decision Processes (MDP) [7] with a stochastic termination time.

The agent interacts with an environment with state s(t) ∈ S and performs actions uπ(t) ∈ A ac-
cording to a time and state-dependent control policy π(t, s). For the sake of brevity, the dependency
of s and u on t is dropped when clear from the context. We consider stochastic dynamical systems
where the state evolves according to

ds =
(
f(t, s) + g(t, s)uπ

)
dt+ g(t, s)dB(t), s(t0) = s0 (1)

uπ = π(t, s) (2)

where B(t) is a Brownian motion with Var[dB(t)] = Σdt and s0 is the initial state at time t0.

The agent selects actions according to a policy π to minimize the discounted expected return for a
set of initial states s0 ∈ S0. The discounted expected return is defined as

V π(t0, s0) = Eπ
[
Cπ(t0, s0)

]
, (3)

Cπ(t0, s0) = γT−t0qf (s(T )) +

∫ T

t0

(
γt−t0q(t, s)dt+

1

2
u>πR uπdt+ u>πRdB

)
, (4)

where T ∈ [0,+∞) is the termination time of the problem, γ ∈ [0, 1) the discount factor,
q(t, s) : R+ × S → R the running cost, qf (s) : S → R the termination cost, R = R> a posi-
tive definite matrix regularizing the control inputs. Cπ(t0, s0) is a stochastic variable called path
cost. V π(t0, s0) is computed by averaging over path costs generated from rollouts of the stochastic
process in Equation (1) given a policy π.

3 Preliminaries

Path Integral Optimal Control The optimal policy π∗(t, s) and the value function V ∗(t, s) it
induces can be computed according to

π∗(t, s) = arg min
π
V π(t, s), (5)

V ∗(t, s) = min
π
V π(t, s). (6)

The optimal value function, V ∗, satisfies the stochastic Hamilton-Jacobi-Bellman (HJB) equation.
The derivation of the HJB equation is based on the principles of dynamic programming. This for-
mulation is quite general, but unfortunately, computing an analytical solution is only possible for
some special cases such as LQ regulators. The original work of Kappen [9, 10] studies one of these

2



cases in which the non-linear HJB equation can be transformed into a linear equation by enforcing
a constraint on the input regularization matrix and the covariance of the noise: Σ R = λI where
λ ∈ R+. As a result of this linearity, the backward computation of the HJB equation can be re-
placed by a forward diffusion process that can be computed by stochastic integration. Therefore, the
stochastic optimal control solution can be estimated with a Monte Carlo sampling method, resulting
in the path integral control formulation

V ∗(t, s) = −λ log Ψ∗(t, s) (7)

p∗(ρ) =
1

Ψ∗(t, s)
pπ(ρ)e−

1
λC

π(t,s) (8)

Ψ∗(t, s) = Eπ[e−
1
λC

π(t,s)], (9)
where ρ is a state trajectory in the time interval [t, T ], pπ(ρ) its corresponding probability distribution
under policy π, and Ψ∗(t, s) is called the desirability function for the optimal policy.

Equations (7) and (8) give an explicit expression for the optimal value function and the optimal
distribution of state trajectories in terms of the expectation of the cumulative cost over trajectories.
The quality of this estimation depends on how well we can estimate the desirability function. In
general, for problems with sparse cost functions, using the path integral approach is challenging and
requires the use of more advanced approaches to extract samples.

Cross Entropy Efficient estimation of the solution to the path integral control problem critically
depends on the quality of the collected samples. As shown by [11], the best sampling strategy for
estimating the optimal solution is, ironically, the optimal policy itself∗. Based on this observation,
open-loop approaches such as [12, 13] use the latest estimate of the optimal policy to generate
trajectory samples. However, they do not provide a systematic approach to control the variance
of the sampling policy, which could lead to an inefficient sampling method, in particular, if the
underlying system is unstable.

Using a policy that also controls the variance of the sampled state trajectories is required to have a
state-dependent feedback [10]. However, finding such a feedback policy is equivalent to estimating
the optimal sampling policy over the entire state space for each time. The challenge of this approach
lies in the design and the update scheme of such a policy.

A common approach to tackle this issue is the cross-entropy method, which is an adaptive impor-
tance sampling scheme to estimate the probability of rare events. In this approach, the optimal
sampler is estimated by a sequence of more tractable distributions, which are iteratively improved
based on the collected samples. For that matter, the cross-entropy between the state probability dis-
tributions of the optimal (p∗) and the current sampler (p) is minimized, where the cross-entropy is
defined as

H(p∗, p) = H(p∗) + KL(p∗‖p).
It follows that minimizing the cross-entropy with respect to p, is equivalent to minimizing the KL
divergence between p∗ and p. This method has been proven to be useful for path-integral based prob-
lems. For example, Kappen and Ruiz [10] have employed a parameterized distribution to estimate
the optimal sampler. Similarly, we here use a cross-entropy approach to estimate the optimal sam-
pler. However, instead of a parameterized distribution family, we use an MPC strategy to estimate
the optimal sampler implicitly.

Model Predictive Control The MPC strategy replaces the infinite-horizon optimization problem
by a sequence of finite-horizon optimal control problems with prediction horizon H , which are
numerically more tractable. At each control step, MPC solves the following optimal control problem
from the current state and time. Then, only the first segment of the optimized sequence is used until
the controller receives a new state and repeats the procedure.

minimize
π

γHφ(x(t+H)) +

∫ t+H

t

(
γτ−tl(τ,x) +

1

2
uπ(τ)>R uπ(τ)

)
dτ

subject to dx(τ) =
(
f(τ,x) + g(τ,x)uπ(τ)

)
dτ, x(t) = s

uπ(τ) = π(τ,x(τ)).

(10)

∗Thijssen and Kappen [11] show that the variance of the desirability function estimation approaches to zero
when the optimal policy is used as the sampling distribution (π = π∗)
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Algorithm 1 Deep Value MPC

1: given An initial estimate V̂ of V ∗
2: repeat
3: Sample an initial state x
4: t := 0
5: while t < T do
6: Compute uπ̂(t) according to Eq. (18)
7: Execute uπ̂(t), obtain a cost c(t)
8: Add the transition tuple to a buffer
9: t = t+ δt

10: end while
11: Using the buffer, update V̂ (Eq. (12))

Figure 1: The DMPC pipeline. The actor
is a trajectory optimizer that depends on the
value learned by the critic.

Here, l(τ,x) : R+×S → R is the running cost, φ(x) : S → R the heuristic function which accounts
for the truncated-time accumulated cost. We denote the state by x to clearly distinguish between the
actor’s computation and the state of the MDP (indicated by s). Note that the system dynamics are
deterministic, and therefore the optimal control problem is formulated deterministically.

4 Deep Value Model Predictive Control

Our DMPC algorithm is an actor-critic approach where a value function is used to provide a measure
of how well an MPC actor performs. We assume that a model of the robot dynamics is available
to an agent, and this internal nominal model is accurate. In the following, we briefly discuss the
structure of the critic and the actor.

DMPC Critic The goal of the critic is to asses the performance of the actor by means of the
value function. When the actor interacts with the environment (i.e. rolls out the policy), it collects
transition tuples [7]. Using these samples, the critic is able to compute the empirical value along each
trajectory and thus refine its estimate of the actual value function. The value function is represented
by a function approximator parametrized by θ. Computing the one step Bellman target for a sample
taken at time t, i.e.,

y(t) = c(t) + γV̂ (t+ δt, s(t+ δt)|θ)), (11)

where δt is the timestep and c(t) a cost reflecting the performance on a given task, the critic can
refine the value function estimate V̂ by solving

minimize
θ

E
[(
y(t)− V̂ (t, s(t)|θ)

)2]
. (12)

Similar to [5], while the target y depends on θ, we neglect this dependency during the optimization.

DMPC Actor The DMPC actor is a trajectory optimizer as defined in equation (10), where the
heuristic function and the running cost are defined as

φ(x(t+H)) = V̂ (t+H,x(t+H)), (13)

l(τ,x) = −∂tV̂ (τ,x)− f(τ,x)>∂xV̂ (τ,x) +
1

2
∂xV̂ (τ,x)>Ξ(τ,x) ∂xV̂ (τ,x), (14)

with Ξ(τ,x) = g(τ,x)R−1 g(τ,x)>.

This MPC formulation replaces the original T -horizon problem by a sequence of finite-horizon
optimal control sub-problems with prediction horizon H (H < T ). The dynamic programming
principle ensures that if the sub-problems are formulated with the exact value function as a heuristic
function, then the MPC method solves the problem globally. However, in practice, the actor only
has an approximation of the optimal value function. While the approximation error degrades the
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performance of greedy policies, the MPC benefits from the look-ahead mechanism. It can be shown
that if the horizon of the actor is long enough, the effect of the value function error is mitigated
[8]. Therefore, MPC strategies using an approximate value function for the heuristic function, in
general, outperform methods that are based on the instantaneous minimization of the value function
estimate.

Another significant advantage of using such an approach is that we can compute a temporally global
optimal sequence of actions using the temporally local solution of the MPC. This further allows
us to tune the MPC time horizon based on the available computational resource and use the value
function to account for the truncated accumulated cost.

Actor-Critic Interaction The procedure for the DMPC algorithm directly follows: From an esti-
mate V̂ of V ∗ given by the critic, the MPC actor computes the policy π by solving Equation (10).
The critic improves the estimate V̂ based on the collected samples using Equation (12). This re-
sults in an off-policy actor-critic method since instead of assessing the value of the current policy,
the actor directly estimates the optimal value function. The main steps of DMPC are outlined in
Algorithm 1.

The MPC policy is an importance sampler for the value function learner. To motivate this, consider
a problem with a sparse cost. Since the MPC actor predicts the state evolution, it can foresee less
costly areas of the state space and propagate this information back to the current time. As a result,
it can coordinate the action sequence to steer the agent towards future rewarding regions. In the
next section, we provide more formal insights and show that MPC minimizes an upper bound of the
cross-entropy between the state trajectory distribution of the optimal policy and the current policy.

By repeating the actor-critic interactions, the estimation of the value function gets closer to the opti-
mal one, which, in turn, improves the MPC performance by enhancing the estimate of the truncated
cumulative cost.

5 DMPC Properties

In this section, we analyze the properties of the DMPC algorithm. We start with a setup where
the MPC actor uses the learned value function only for the heuristic function. There, we study the
effect of this actor-critic setup on the convergence of the value function learning. Next, we propose
a setting where a running cost is defined based on the value function. We discuss that such a cost
extends the application of the actor-critic method to problems with a sparse and non-differentiable
cost. Moreover, it allows us to use a deterministic MPC solver instead of a stochastic one.

5.1 Role of the Heuristic Function

As a first step, we focus on the case where we only use the learned value function as the heuristic
function of the MPC actor. This setup is similar to the approach proposed by [8]. We here build upon
their result and provide a more in-depth analysis of the impact of the MPC actor on the acceleration
of the value function convergence.

As discussed, the convergence of the value function critically depends on the sampling distribution
and, the optimal sampler for the stochastic optimal control problem defined in (1)-(4) is the optimal
control policy π∗ [11]. However, we cannot compute the optimal distribution during the learning
process, and instead, we wish to find the near-optimal control policy π such that pπ is close to p∗.
As discussed in the introduction of the cross-entropy method, we wish to minimize

KL(p∗‖pπ) = −Ep∗
[
log

(
pπ

p∗

)]
. (15)

Theorem 1. Assuming that from a state s(t) the policy remains in the vicinity of the optimal policy
up to time T , i.e.,

∫ T
t

1
2‖u∗(τ) − uπ(τ)‖2Rdτ ≤ E , an upper bound for the forward KL divergence

between the state trajectory distributions of the optimal policy and policy π is given by

KL(p∗‖pπ) ≤ KL(pπ‖p∗) +
(
E KL(pπ‖p∗)Var

[e− 1
λC

π(t,s)

Ψ(t, s)

]) 1
2

. (16)
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Proof. The proof is provided in Appendix A.2.

This shows that KL(p∗‖pπ) has an upper bound defined by the reverse KL divergence KL(pπ‖p∗)
and the variance of the normalized desirability function using the policy π for sampling. Next,
we show that the MPC actor minimizes this reverse KL divergence and that its performance is
bounded by the approximation error of the value function. Moreover, we show that the quality of
the estimation improves as the MPC horizon H increases.

Theorem 2. Suppose that V̂ is an approximation of the optimal value function with infinity norm
L := maxt,s |V̂ (t, s)− V ∗(t, s)|. The policy π is the solution to the problem (10) with terminal cost
φ(xf ) = V̂ (tf ,xf ). Then for all MPDs, the reverse KL divergence KL(pπ‖p∗) can be bounded as

KL(pπ‖p∗) ≤ 2LγH

λ(1− γH)
(17)

Proof. The proof is provided in Appendix A.3.

Note that if H1 < H2 then γH2

(1−γH2 )
< γH1

(1−γH1 )
. Therefore, as the horizon increases the MPC is less

susceptible to the value function approximation error.

5.2 Role of the Running Cost

In this section, we motivate the choice of the DMPC running cost. However, we do not provide
any formal proof. The goal is to see how we can extend the idea of using the value function in the
heuristic function to the running cost. We show that, at least for the case where we have the optimal
value function, this is indeed possible. Thus, for the following analysis, we assume that the exact
optimal value function is provided. However, later in the result section, we will empirically show
that for the scenarios with sparse costs, the running cost based on the approximate value function
also accelerates the convergence of the critic.
Proposition 1. The control policy π(t, s) that minimizes the reverse KL divergence KL(pπ‖p∗) of
the problem defined in Equations (1)-(4) is also the solution to the deterministic problem

π(t, s) = arg min
π

{
φd(x(t+H)) +

∫ t+H

t

(
ld(τ,x) +

1

2
u>π (τ)R uπ(τ)

)
dτ

}
(18)

where ld(τ,x), the running cost, and φd(x(t+H)), the heuristic function are defined as

ld(τ,x) = −∂tV ∗(τ,x)− f(τ,x)>∂xV
∗(τ,x) +

1

2
∂xV

∗(τ,x)>Ξ(τ,x) ∂xV
∗(τ,x), (19)

φd(x(t+H)) = V ∗(t+H,x(t+H)), (20)

with V ∗(τ,x) is the optimal value function of the stochastic problem defined in (6) and the state
trajectory evolves based on the following deterministic dynamics

ẋ = f(τ,x) + g(τ,x)uπ, x(t) = s (21)

Proof. The proof is provided in Appendix A.4.
Proposition 1 has an important implication; the primary stochastic optimization problem is trans-
formed into a deterministic one. Therefore, a deterministic MPC solver such as the one defined in
Equation (10) can be used. This ultimately means that in order to find the optimal sampling policy,
we only need to solve a deterministic MPC problem. This further allows us to employ more sophis-
ticated tools from deterministic optimal control, e.g., Differential Dynamic Programming (DDP)
[14].

6 Results

In this section, we describe the implementation details of the DMPC pipeline. We describe how
the different components are designed and highlight the techniques used to make the interaction
between the actor and the critic more robust. We then present the experiment results.
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Figure 2: (a) Top down view of the trajectories of the Ballbot’s center of mass for different starting
positions. (b) Performance on the target reaching task for different time horizons and cost functions.

Critic Implementation During the rollout of the policy, the critic stores the transition tuples in
a replay buffer. Regularly, it samples K mini-batches of size N to update the value function. The
value function is represented by a multilayer perceptron (in our experiments, 3 layers with 12 units
each and tanh activations). Following an approach similar to [15] and [16], we condition the value
function on a goal and a time to reach the goal. It can be interpreted as the value of being in
a particular state if a specific target has to be reached within a given amount of time. Since the
derivatives of the network are computed on the actor side, particular attention has to be given to the
architecture and the training procedure. The choice of a differentiable activation function, such as
tanh, is necessary to guarantee the differentiability of the whole network. Moreover, we noticed that
decaying the weights results in smoother behavior. Finally, the critic uses a target network [5] so
that the actor only receives a Polyak averaged version of the value function.

Actor Implementation The MPC actor uses a DDP-based algorithm known as SLQ [17, 2]. The
Jacobian and the Hessian of the value function network, which are necessary to compute the deriva-
tives of the cost function, are computed using an automatic differentiation library.

6.1 Experimental Results

With the following experiments in simulation, we would like to confirm the theory and intuition
derived above. More specifically, we would like to show that the algorithm is capable of handling a
sparse binary reward set-up, that using the running cost (19) yields better convergence, and highlight
the importance of the MPC time horizon during learning.

Our experiments are based on the Ballbot robot (see Appendix B for more details). In order to
answer the questions above, we design a task where the agent has to reach a target in 3 seconds
from any initial position. Additionally, we add walls to the environment so that most of the time, it
cannot reach the target via the shortest path, see Figure 2a. While the target reaching cost is simply
encoded as the euclidean distance from the current position to the goal, the walls are encoded by a
termination of the episode with a fixed penalty. First, we analyze the system for different MPC time
horizons. Then, we assess the performance when the running cost (19) is left out (i.e., we only use
the value function as the heuristic function), which corresponds to the vanilla case [8]. Trajectories
of the Ballbot’s center of mass for different starting positions are shown in Figure 2a.

Influence of the Running Cost As shown in Figure 2b, the running cost plays a vital role in
solving the task. While the actors devoid of the running cost solve the reaching task well (it is a
smooth and straightforward cost after all), they often collide with the walls. When the horizon is too
long for them, the optimization is prone to overlooking the wall. This is because the value is only
used at the end of the trajectory. Also, the exploration provided by the value function is not sufficient
enough, and the Ballbot often collides with the wall. When using the running cost, the task is solved
successfully upon convergence. The impact of that term is shown in Figure 3. The information
encoded in the value function is able to produce regions of low cost and guide the solution to avoid

∗Supplementary video: https://youtu.be/9p4qHBUZDMA
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Figure 3: Evolution of the running cost (19) along two trajectories (first three and last three images).
The position of the Ballbot is denoted by the white dot and the target by the white cross. The heat-
map represents the magnitude of the running cost at a given time for different x and y coordinates.
Red corresponds to high cost and violet to low cost regions.

the obstacles along the path. When the robot starts on the left side of the field, a region of low cost on
the bottom right side is created, encouraging the robot to move forward and avoid the obstacle. The
opposite happens when the robot starts on the right. Moreover, at the beginning of the trajectories,
regions of high cost at the top of the field encourage the robot to move towards the goal.

Influence of the Horizon on the Convergence of the Value Function As described in the pre-
vious section, the time horizon of the MPC plays a vital role. Indeed, with a longer time horizon,
the actor can look further into the future during the trajectory optimization step. It accelerates the
convergence of the value function and improves exploration. As can be seen in Figure 2b, during
training, the actor with the longer time horizon outperforms the one with a shorter one. The actor
with a longer time horizon is able to see beyond the wall faster in order to reach the target. The
actor with the shorter horizon tends to focus more on the wall and needs more time to get past it. On
the other hand, increasing the time horizon results in a higher computational cost for the trajectory
optimizer so that a trade-off has to be made.

7 Related Work

The use of learning in conjunction with planning has been studied extensively in the past. Promi-
nently, in the discrete domain, learning evaluation functions has been employed with tree search
methods resulting in systems capable of planning over long time horizons [4, 18]. In inverse rein-
forcement learning/optimal control [19, 20, 21], the planner is taught to match the behavior of an
expert by inferring a cost function. These methods, however, are bounded by the performance of the
expert, which is assumed to showcase optimal behavior. In our problem setting, the cost function is
inferred indirectly via the value function that is learned from the environment-issued rewards/costs.
The performance is only bounded by the capacity to learn the optimal value function.

The use of trajectory optimization with value function learning has been studied most recently in the
Plan Online Learn Offline framework [8]. By using the value function as the terminal cost of their
trajectory optimizer, they show improved performance of the policy beyond the optimizer’s time
horizon. Here, we further extend their idea to handle stochastic systems explicitly and formulate the
optimizer’s running cost such that it results in an importance sampler of the optimal value function.

When combining planning and learning, exploration plays a key role because it is difficult to cover
the task-relevant state space in high-dimensional problems efficiently. To this end, methods such
as path integral optimal control employ importance sample schemes [10]. In RL, methods such
as Guided Policy Search [22] use a planner to direct the policy learning stage and sample more
efficiently from high reward regions.

8 Conclusion and Future Work

In this paper, we presented an off-policy actor-critic algorithm called DMPC that extends previous
work on the combination of trajectory optimization and global value function learning. We first show
that using a value function in the heuristic function leads to a temporally global optimal solution.
Next, we show that using the running cost (19) results not only in an importance sampling scheme
that improves the convergence of the value function estimation but is also capable of taking system
uncertainties into account. In future work, we like to extend the value function to encode more
information. For example, we could condition it on a local robot-centric map that would allow it to
make decisions in dynamic environments to avoid obstacles.
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A Proof of Theorems

A.1 Girsanov Theorem

For the stochastic process defined in Equation (1), it is possible to relate the state trajectory
distribution p of two policies π1 and π2 via the Girsanov theorem. Here, we briefly outline
the steps of an informal derivation by discretizing the state trajectory with infinitesimal time
dt. The distribution of x(t + dt) conditioned on x(t) is a Gaussian distribution with mean
µπ(t) = x(t) + f(t,x(t))dt+ g(t,x(t))uπ(t)dt and variance Ξ(t) = g(t,x)R−1 g(t,x)>. As a
result, for the state trajectory distribution under policy π1 we have

pπ1(ρ) = lim
dt→0

T−dt∏
s=0

N (µπ1
(s),Ξ(s)dt)

∝ lim
dt→0

T−dt∏
s=0

exp

(
−1

2

∥∥x(s+ dt)− µπ1
(s)
∥∥2

Ξ−1 dt
−1
)

∝ lim
dt→0

T−dt∏
s=0

exp

(
−1

2

∥∥(x(s+ dt)− µπ2
(s))− (µπ1

(s)− µπ2
(s))

∥∥2
Ξ−1 dt

−1
)
.

After further simplifications,

pπ1(ρ) = lim
dt→0

T−dt∏
s=0

N (µπ2
(s),Ξ(s)dt) exp

(
−1

2

∥∥µπ1
(s)− µπ2

(s)
∥∥2

Ξ−1 dt
−1
)

exp
(

(x(s+ dt)− µπ2
(s))>Ξ(s)−1(µπ1

(s)− µπ2
(s))dt−1

)
=pπ2(τ) exp

(
− 1

2

∫ T

0

‖u1(t)− u2(t)‖2R dt
)

exp
(∫ T

0

(u1(t)− u2(t))>R dB(t))
)
.

Thus we have

pπ1(ρ)

pπ2(τ)
= exp

(
− 1

2

∫ T

0

‖u1(t)− u2(t)‖2R dt
)

exp
(∫ T

0

(u1(t)− u2(t))>R dB(t))
)

(22)

Using the Girsanov theorem, it can be readily shown that the KL divergence between pπ1 and pπ2

takes the following form

KL(pπ2‖pπ1) =− Epπ2
[
log

(
pπ1(ρ)

pπ2(ρ)

)]
= Epπ2

[∫ T

0

1

2
‖u1(t)− u2(t)‖2R dt

]
(23)

A.2 Proof of Theorem 1

Proof. Based on the Girsanov theorem and Equation (23), the KL-divergence between the optimal
and the current state trajectory distribution starting from an initial time t and an initial state x(t) = s,
can be written as

KL(p∗‖pπ) =Ep∗
[∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2R dτ

]
= Epπ

[
p∗

pπ

∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

]
Equation (8) defines the relationship in between the state trajectory probability distribution of the
optimal policy, π∗, and the sampling policy, π as

KL(p∗‖pπ) =Epπ
[
e−

1
λC

π(t,s)

Ψ∗(t, s)

∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

]

= KL(pπ‖p∗) + Epπ
[
e−

1
λC

π(t,s) −Ψ∗(t, s)

Ψ∗(t, s)

∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

]
= KL(pπ‖p∗) + ∆

11



where we have replaced the second term by ∆. The second line naturally follows by using Equa-
tion (23) for KL(pπ‖p∗). Now we further examine the term ∆.

∆2 ≤Epπ
[(e− 1

λC
π(t,s) −Ψ∗(t, s)

Ψ∗(t, s)

)2]
Epπ

[(∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

)2]

=Var
[e− 1

λC
π(t,s)

Ψ∗(t, s)

]
Epπ

[(∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

)2]

≤Var
[e− 1

λC
π(t,s)

Ψ∗(t, s)

](
E Epπ

[∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

])
In the first line, we used the Cauchy-Schwarz inequality. Then, in the second line we have used
the definition of the desirability function in Equation (9). Finally, in the third line, we used the
Bhatia-Davis inequality which provides an upper bound on the variance of a bounded probability
distribution. For the above we have

0 ≤
∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ ≤ E

Thus, based on the Bhatia-Davis inequality we can write

Epπ
[(∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

)2]
−
(

KL(pπ‖p∗)
)2
≤
(
E −KL(pπ‖p∗)

)
KL(pπ‖p∗)

Epπ
[(∫ T

t

1

2
‖u∗(τ)− uπ(τ)‖2Rdτ

)2]
≤E KL(pπ‖p∗)

Thus, we will have the following upper bound on ∆

∆ ≤ |∆| ≤
(
E KL(pπ‖p∗)Var

[e− 1
λC

π(t,s)

Ψ∗(t, s)

]) 1
2

A.3 Proof of Theorem 2

Proof. By using the relationship between the state trajectory probability distribution of the optimal
policy, π∗, and the sampling policy, π, defined in Equation (8), we get

KL(pπ‖p∗) =− Epπ
[
log

(
p∗

pπ

)]
=− Epπ

[
log

(
e−

1
λC

π(t,s)

Ψ∗(t, s)

)]

=
1

λ
Epπ [Cπ(t, s) + λ log Ψ∗(t, s)]

=
1

λ
Epπ [C(t, s)]− 1

λ
Ep∗ [C(t, s)] (24)

where we used Equation (7) and then λ log Ψ∗(t, s) = −V ∗(t, s) = −Ep∗ [C(t, s)].

The rest of this proof follows similar to the result presented in [8]. The difference is that our formu-
lation is continuous-time while the formulation in [8] is discrete-time. For the sake of brevity, we
will use l(τ,x,u) := γτ−tq(τ,x) + 1

2u>R u during this proof.

Ep∗ [C(t, s)] = Ep∗
[
γT−tqf (x(T )) +

∫ T

t

l(τ,x,u)dτ

]

= Ep∗
[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
(25)
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where tf = t + H and xf := x(t + H). We here truncate the horizon of optimization to the time
horizon of MPC. To compensate for the truncated cost, we use the optimal value function as the
termination cost.

When the actor uses an MPC strategy, it only has access to the approximated value function.

Epπ [C(t, s)] = Epπ
[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
(26)

We can then write the KL divergence as

KL(pπ‖p∗) =
1

λ
Epπ

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
− 1

λ
Ep∗
[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
Adding and subtracting 1

λEpπ
[
γHV ∗(tf ,xf ) +

∫ tf
t
l(τ,x)dτ

]
KL(pπ‖p∗) =

γH

λ
Epπ

[
V̂ (tf ,xf )− V ∗(tf ,xf )

]
+

1

λ
Epπ

[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
− 1

λ
Ep∗

[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
(27)

Using our assumption maxt,s |V̂ (t, s)− V ∗(t, s)| = L,

Epπ
[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
≤ Epπ

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
+ γHL

Ep∗
[
γHV ∗(tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
≥ Ep∗

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
− γHL

using these bounds in Equation (27), we get

KL(pπ‖p∗) ≤γ
H

λ
Epπ

[
V̂ (tf ,xf )− V ∗(tf ,xf )

]
+

1

λ
Epπ

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
− 1

λ
Ep∗

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
+ 2

γHL
λ

(28)

Since pπ is generated to minimize Epπ
[
γH V̂ (tf ,xf ) +

∫ tf
t
l(τ,x,u)dτ

]
, therefore

Epπ
[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
≤ Ep∗

[
γH V̂ (tf ,xf ) +

∫ tf

t

l(τ,x,u)dτ

]
We then have

KL(pπ‖p∗) ≤γ
H

λ
Epπ

[
V̂ (tf ,xf )− V ∗(tf ,xf )

]
+ 2

γHL
λ

≤γH
[
KL(pπf ‖p∗f )

]
+ 2

γHL
λ

(29)

Recursively applying the KL bound to KL(pπf ‖p∗f ), we get

KL(pπ‖p∗) ≤2LγH

λ

(
1 + γH + γ2H + · · ·

)
≤ 2LγH

λ(1− γH)
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A.4 Proof of Proposition 1

First, we note that HJB equation for the problem defined in Equations (1)-(4) with Σ R = λI has
the form

−∂tV ∗(t,x) =l(t,x) + ∂xV
∗(t,x)>f(t,x)− 1

2
∂xV

∗(t,x)>Ξ(t,x) ∂xV
∗(t,x)

+
λ

2
Tr[∂2xV

∗(t,x) Ξ(t,x)], (30)

with V ∗(T,x) = φ(x(T )) and Ξ(t,x) = g(t,x)R−1 g(t,x)> = λg(t,x)Σ g(t,x)>. For sake of
brevity, we define l(t,x) := γt−t0q(t,x) and φ(x) := γT−t0qf (x).

The optimal control policy can be derived as

π∗(t,x) = −R−1g(t,x)>∂xV
∗(t,x). (31)

Lemma 1. The optimal control policy of the stochastic problem in equations (1)-(4) is the optimal
solution to a deterministic problem with following cost functional

Cπd (t0, s0) =γT−t0qf (s(T )) +

∫ T

t0

(
γt−t0q(t, s) +

λ

2
Tr[Ξ(t, s)∂2sV (t, s)] +

1

2
u>R u

)
dt (32)

Where the state evolution is based on the mean of the system dynamics defined in (1), i.e.,
ṡ = f(t, s) + g(t, s)u, s(t0) = s0 (33)
u = π(t, s). (34)

Proof. The proof easily follows using the definition of the HJB equation for the stochastic and
deterministic optimal control problems.

We finally provide the proof of Proposition 1.

Proof. Start from the Girsanov theorem and Equation (23), we get

KL(pπ‖p∗) =Epπ
[∫ T

t

1

2
‖uπ(τ)− u∗(τ)‖2Rdτ

]

=Epπ
[∫ T

t

(1

2
‖uπ(τ)‖2R + ∂xV

∗(s,x)>g(τ,x)uπ(τ))

+
1

2
∂xV

∗(τ,x)>Ξ(τ,x) ∂xV
∗(τ,x))

)
dτ

]
(35)

=Epπ
[
V ∗(T,x(T )) +

∫ T

t

(1

2
‖uπ(τ)‖2R − ∂tV ∗(τ,x)

− ∂xV
∗(τ,x)>f(τ,x)− 1

2
Tr
[
Ξ(τ,x))∂2xV

∗(τ,x))
]

+
1

2
∂xV

∗(τ,x)>Ξ(τ,x) ∂xV
∗(τ,x)

)
dτ

]
− V ∗(t,x) (36)

=Epπ
[
V ∗(T,x(T )) +

∫ T

t

(
Le(τ,x) +

1

2
‖uπ(τ)‖2R

− 1

2
Tr
[
Ξ(τ,x)∂2xV

∗(τ,x))
])
dτ

]
− V ∗(t,x) (37)

In Equation (35) we have replaced u∗ using Equation (31); in Equation (36) we have used Itô’s
Lemma for the process V∗(t) = V ∗(t,x)

dV∗(t) =∂tV
∗(t,x)dt+ ∂xV

∗(t,x)>
(
f(t,x) + g(t,x)uπ(t,x)

)
dt

+
λ

2
Tr
[
Ξ(t,x)∂2xV

∗(t,x)
]
dt+ ∂xV

∗(t,x)>g(t,x)dB(t). (38)
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Figure 4: Image of the Ballbot used in the experiments. Ballbot is a torque-controlled, omnidirec-
tional robot which balances on a ball through three omni-wheels.

After reordering the terms in Equation (38), taking the time integral over the interval [t, T ], and
taking the expectation with respect to pπ , we get

Epπ
[∫ T

t

∂xV
∗(τ,x)>g(τ,x)uπ(τ)dτ

]
= Epπ

[
V ∗(T,x)−

∫ T

t

(
∂tV

∗(τ,x)

+ ∂xV
∗(τ,x)>f(t,x) +

λ

2
Tr
[
Ξ(τ,x)∂2xV

∗(τ,x)
])
dτ

]
− V ∗(t,x) (39)

where the term involving dB(t) cancels out.
As a result, the policy π which minimizes the reverse KL-divergence can be derived as

π∗(t, s) = arg min
π

Epπ
{
V ∗(T,x(T )) +

∫ T

t

(
ld(τ,x) +

1

2
u>πR uπ

− λ

2
Tr
[
Ξ(τ,x)∂2xV

∗(τ,x)
])
dτ

}
(40)

This expectation is based on the probability distribution generated by the stochastic system in (1).
According to Lemma 1, we can transform this optimization problem to an equivalent deterministic
problem in Equation (18).

B Experimental Details

Platform The Ballbot robot depicted in Figure 4 is a 3D inverted pendulum capable of balancing
on a ball with the help of three actuators. The mathematical formulation of system dynamics can
be found in [23]. Since it balances on a single ball, it has dynamic stability, is omnidirectional,
and is capable of carrying out agile movements. Due to its inherent instability and highly nonlinear
dynamics, this robot can also be used as a testing platform to validate general control algorithms,
which may be applied to other types of mobile platforms.

Experiments An advantage of using an MPC strategy is that a nominal controller can be used to
stabilize the system. In these experiments, we use an additional cost term in the trajectory optimizer
that stabilizes the system in an upright position. As a result, the system will stand from the beginning
resulting in much faster convergence to the desired behaviour. This is not a limitation of the pipeline,
since the value function could also be trained to encode the upright stabilization.

In Figure 2b, we tuned the hyper-parameters to achieve the best performance for each scenario.
The performance at each learning iteration is computed by taking the average performance over 8
trajectories sampled from different starting positions.
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