
Adversarial Active Exploration for
Inverse Dynamics Model Learning

Zhang-Wei Hong Tsu-Jui Fu Tzu-Yun Shann Yi-Hsiang Chang
Chun-Yi Lee

{williamd4112, rayfu1996ozig, arielshann, shawn420, cylee}@gapp.nthu.edu.tw
Elsa Lab, Department of Computer Science

National Tsing Hua University, Hsinchu, Taiwan

Abstract: We present an adversarial active exploration for inverse dynamics model
learning, a simple yet effective learning scheme that incentivizes exploration in an
environment without any human intervention. Our framework consists of a deep
reinforcement learning (DRL) agent and an inverse dynamics model contesting with
each other. The former collects training samples for the latter, with an objective to
maximize the error of the latter. The latter is trained with samples collected by the
former, and generates rewards for the former when it fails to predict the actual action
taken by the former. In such a competitive setting, the DRL agent learns to generate
samples that the inverse dynamics model fails to predict correctly, while the inverse
dynamics model learns to adapt to the challenging samples. We further propose
a reward structure that ensures the DRL agent to collect only moderately hard
samples but not overly hard ones that prevent the inverse model from predicting
effectively. We evaluate the effectiveness of our method on several robotic arm
and hand manipulation tasks against multiple baseline models. Experimental
results show that our method is comparable to those directly trained with expert
demonstrations, and superior to the other baselines even without any human priors.

1 Introduction
Over the past decade, inverse dynamics models have shown considerable successes in robotic
control [1, 2, 3, 4] and even in humanoid robots [5]. The main objective of an inverse dynamics
model is to predict the control action (e.g., torque) between two states. With such a model, it becomes
practically feasible to carry out complex control behaviors through inferring a series of control actions
given a pre-defined trajectory of states. An inverse dynamics model is usually trained from streaming
of data (i.e., states and actions) collected at online execution time, as it is extremely difficult to
analytically specify the inverse dynamics model for a complicated robot. Traditionally, a branch of
research directions attempt to employ gaussian process (GP) to approximate the inverse dynamics
model. However, the computational complexity of such methods is intractable in high-dimensional
state space, thus prohibiting their further usage from more sophisticated robotic control applications.

In the light of the above constraint, researchers in recent years turn into developing inverse dynamics
models based on deep neural networks (DNNs) in the hope to effectively cope with high-dimensional
state space. Rueckert et al. [3] trains an inverse dynamics model using recurrent neural networks
(RNNs), and demonstrates better prediction accuracy and computational efficiency than GP-based
methods. Pathak et al. [6], Nair et al. [7], and Agrawal et al. [8] further show that DNNs are able to
learn an image-based inverse dynamics model for robotic arm manipulation tasks. In spite of their
promising results on challenging tasks, however, this line of works demand tremendous amount of
data for training DNNs, posing a considerable challenge on data-efficiency.

As data efficiency is crucial for robot learning in practical applications, an efficient data acquisition
methodology is critically essential for inverse dynamics model learning. Training data for an inverse
dynamics model typically come from interactions with an environment. Previous approaches, however,
usually perform such interactions with the environments in inefficient manners. For instance, Agrawal
et al. [8] and Nair et al. [7] employ an agent to take random actions in an environment to collect
training data for their inverse dynamics models. Random actions, nevertheless, are less likely to
result in effective exploration behaviors, and may thus lead to a lack of comprehensiveness in the
data samples collected by the agent. Nair et al. [7] attempts to deal with the above problem by adding
human bias in its data sampling process, which is specifically tailored to certain pre-defined robot
configurations. Despite their promising results, tailored sampling ranges require significant amount
3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

of human effort. A more general exploration strategy called curiosity-driven exploration was later
proposed in [9]. While this approach is effective in exploring novel states in an environment, their
exploration behavior is solely driven by the prediction errors of the forward dynamics models. Thus,
the approach is unsuitable and not specifically tailored for inverse dynamics model learning.

In order to deal with the above issues, in this paper we propose a straightforward and efficient active
data acquisition method, called adversarial active exploration, which motivates exploration of an
environment in a self-supervised manner (i.e., without human intervention). Inspired by Pinto et al.
[10], Shioya et al. [11], Sukhbaatar et al. [12], we implement the proposed method by jointly training
a deep reinforcement learning (DRL) agent and an inverse dynamics model competing with each
other. The former explores the environment to collect training data for the latter, and receives rewards
from the latter if the data samples are considered difficult. The latter is trained with the data collected
by the former, and only generates rewards when it fails to predict the true actions performed by the
former. In such an adversarial setting, the DRL agent is rewarded only for the failure of the inverse
dynamics model. Therefore, the DRL agent learns to sample hard examples to maximize the chances
to fail the inverse dynamics model. On the other hand, the inverse dynamics model learns to be
robust to the hard examples collected by the DRL agent by minimizing the probability of failures.
As a result, as the inverse dynamics model becomes stronger, the DRL agent is also incentivized to
search for harder examples to obtain rewards. Overly hard examples, however, may lead to biased
exploration and cause instability of the learning process. In order to stabilize the learning curve
of the inverse dynamics model, we further propose a reward structure such that the DRL agent are
encouraged to explore moderately hard examples for the inverse dynamics model, but refraining from
too difficult ones for the latter to learn. The self-regulating feedback structure between the DRL agent
and the inverse dynamics model enables them to automatically construct a curriculum for exploration.

We perform extensive experiments to validate our method on multiple robotic arm and hand ma-
nipulation task environments simulated by the MuJoCo physics engine [13]. These environments
are intentionally selected by us for evaluating the performance of inverse dynamics model, as each
of them allows only a very limited set of chained actions to transition the robotic arms and hands
to target states. We examine the effectiveness of our method by comparing it against a number
of data collection schemes. The experimental results show that our method is more effective and
data-efficient than the other schemes, as well as in environments with high-dimensional action spaces.
We also demonstrate that in most of the cases the performance of the inverse dynamics model trained
by our method is comparable to that directly trained with expert trajectories. The above observations
suggest that our method is superior to the other data collection schemes even in the absence of human
priors. To justify each of our design decisions, we provide a comprehensive set of ablative analysis
and discuss their implications. The contributions of this work are summarized as the following:

• We introduce an adversarial active exploration method, which leverages a DRL agent to
actively collect informative data samples for training an inverse dynamics model effectively.

• We employ a competitive scheme for the DRL agent and the inverse dynamics model,
enabling them to automatically construct a curriculum for efficient data acquisition.

• We introduce a reward structure for the proposed scheme to stabilize the training process.
• We demonstrate the effectiveness of the proposed method and compare it with a number of

baseline data acquisition approaches for multiple robotic arm and hand manipulation tasks.
• We validate that our method is generalizable to tasks with high-dimensional action spaces.

The remainder of this paper is organized as follows. Section 2 discusses the related works. Section 3
introduces background material necessary for understanding the contents of this paper. Section 4
describes the proposed adversarial active exploration method in detail. Section 5 reports the experi-
mental results, and provides an in-depth ablative analysis of our method. Section 6 concludes.

2 Related Works

This section reviews the related works of the areas: (i) active learning and (ii) exploration in DRL.

Active learning [14] is an efficient way to query human for ground truth data labels when a large
amount of unlabeled data are accessible while human labelling is expensive. Traditional works search
for samples most uncertain for the model [15, 16] or data that has the highest disagreement among
an ensemble of models [17] to query. A recent work [18] further trains an DRL [19] agent to select
informative training samples for a model, where unlabeled data are sequentially presented to the

2

agent. The method proposed in this paper differs from the above techniques in that it actively searches
and collects data samples from an environment, rather than discriminate samples from a static dataset.

Exploration in DRL refers to the process of searching for a better control policy to solve tasks via
interactions with the environment. Apart from the naive random exploration approaches [20, 21], a
plethora of advanced exploration techniques [9, 22, 23, 24, 25, 26] has been proposed in the past
few years to enhance the performance of DRL policies. The purpose of these works differs from
ours in that our method aims to collect beneficial samples for learning an inverse dynamics model
rather than f a policy. In addition, some of these approaches are unable to be applied to our problem
setting due to the absence of the goal space (i.e., representation of the task objectives) assumption in
inverse dynamics model learning [24, 25, 26]. A curiosity-driven DRL exploration technique which
maximizes the prediction errors of the forward dynamics model [9] has recently been adapted to
inverse dynamics model learning [6]. This approach encourages a DRL agent to visit novel states
that a forward dynamics model is unable to accurately predict. However, novel states for a forward
model do not necessarily reflect the novel states required for training an inverse dynamics model. A
comparison of our method and a data acquisition approach based on [9] is presented in Section 5.

3 Background
3.1 Deep Reinforcement Learning
DRL methods train an agent to interact with an environment E . At each timestep t, the agent
receives an state xt ∈ X , where X is the state space of E . It then takes an action at from the
action space A based on its current policy π, receives a reward rt = r(xt, at) (where r is a reward
function encoded with specific task objectives), and transitions to the next state x′. The policy
π : X ×A 7→ [0, 1] is a conditional probability distribution parameterized by a deep neural network
with parameters θ. The goal of the agent is to learn a π that maximizes the discounted sum of rewards
Gt =

∑T
τ=t γ

τ−tr(xτ , aτ), where t is the current timestep, γ ∈ (0, 1] the discount factor, and T
the horizon. Policy gradient methods [20, 27] are a class of DRL techniques that directly optimize
θ in the direction of ∇θEat∼π

[
logπ(at|xt, θ)Gt

]
. In this paper, we employ a more recent family

of policy gradient methods, called proximal policy optimization (PPO) [28]. PPO is superior to the
vanilla policy gradient methods [27] in terms of performance and sample efficiency.

3.2 Inverse Dynamics Model for Robotic Control
An inverse dynamics model I takes as input a pair of states (x, x′), and predicts the action â required
to reach the next state x′ from the current state x. In this paper, we focus on parametric inverse
dynamics models which can be formally express as: â = I(x, x′|θI), where (x, x′) can come from
sensor measurements or a robot’s states in the configuration space, and θI represents the trainable
parameters of I . During the training phase, θI is iteratively updated to minimize the loss function
LI . The optimal θI is represented as: θI∗ = arg minθI LI(a, â|θI) ∀x, x

′ ∈ X , a ∈ A, where
a is the ground truth action. Once a sufficiently acceptable θI∗ is obtained, it can then be used
to derive the control action sequence {â0, â1, · · · , âT−1} in a closed-loop manner, and therefore
realize an arbitrarily given trajectory {x̂1, · · · , x̂T }. The derivation procedure is formulated as:
ât = I(xt, x̂t+1|θI) ∀t, where xt and x̂t denote the actual and the desired states, respectively.

4 Methodology
In this section, we first describe the proposed adversarial active exploration. Then, we explain the
training methodology in detail. Finally, we discuss a technique for stabilizing the training process.

4.1 Adversarial Active Exploration
Fig. 1 shows a framework that illustrates the proposed adversarial active exploration, which includes
a DRL agent P and an inverse dynamics model I . Assume that Φπ : {x0, a0, x1, a1 · · · , xT } is the
sequence of states and actions generated by P as it explores E using a policy π. At each timestep t, P
collects a 3-tuple training sample (xt, at, xt+1) for I , while I predicts an action ât and generates a
reward rt for P . I is modified to recurrently encode the information of its past states by including an
additional hidden vector ht, as suggested in [3, 6]. The inverse dynamics model I is thus given by:

ât = I(xt, xt+1|ht, θI)
ht = f(ht−1, xt),

(1)

3

Figure 1: Framework of adversarial active exploration.

where f(·) denotes the recurrent function. Similar to [3, 6], in this work we approximate θI in an
offline batch training manner. θI is iteratively updated to minimize LI , formulated as the following:

minimize
θI

E(xt,at,xt+1)∼U(ZI)

[
LI(at, ât|θI)

]
, (2)

where U(ZI) is an uniform distribution over the buffer ZI storing the 3-tuple data samples collected
by P . We employ β||at − ât||2 (where β is a scaling factor) as the loss function LI , since we
only consider continuous control domains in this paper. The loss function can be replaced with a
cross-entropy loss for discrete control tasks. We directly use the loss function LI as the reward rt for
P , where rt can be expressed as the following:

rt = r(xt, at, xt+1, ht) = LI(at, ât|θI) = β||at − I(xt, xt+1|ht, θI)||2. (3)

Our method targets at improving both the quality and efficiency of the data collection process
performed by P as well as the performance of I via collecting difficult and non-trivial training
samples. Therefore, the goal of the proposed framework is twofold. First, P has to learn an adversarial
policy πadv such that its accumulated discounted rewards Gt|πadv

=
∑T
τ=t γ

τ−tr(xτ , aτ , xτ+1, ht)
is maximized. Second, I requires to learn an optimal θI such that Eq. (3) is minimized. Minimizing
LI (i.e., rt) leads to a decreased Gt|πadv

, forcing P to enhance πadv to explore more difficult samples
to increase Gt|πadv

. This implies that P is motivated to concentrate on discovering I’s weak points
in the state space, instead of randomly or even repeatedly collecting ineffective training samples for
I . Training I with hard samples not only accelerates its learning progress, but also helps to boost its
performance. First of all, hard samples that provide higher prediction errors in Eq. (3) are unfamiliar
to I , offering a direction for P to explore in the environment. Such a directed exploration scheme
enables our adversarial active exploration to discover unfamiliar data more rapidly than random
exploration. Moreover, those hard samples that require more gradient steps to learn tend to result
in larger errors of I than samples which can be learned in just a few steps, which in turn help to
expedite the learning progress of I . Data samples causing negligible errors of I do not provide the
same benefits, as they are already familiar to I . Our method is able to discover those hard samples in
an environment and focus on learning them, which is similar to what boosting algorithms [29] do.

Comparing to active learning and curiosity-driven exploration, our adversarial active exploration
demonstrates several strengths on inverse dynamics model learning. First of all, active learning [14]
does not have a control policy to acquire the informative data in an environment, while our method
casts the data acquisition process for inverse dynamics models as a decision process and solves it using
DRL. Second, the curiosity-driven exploration approach [6] collects samples not directly tailored
for I‘s learning, while our method gathers samples that directly influence I‘s learning progress.
Moreover, the incentives for exploration in curiosity-based approaches disappear rapidly when the
forward dynamics model quickly learns to perform correct predictions, which may further undermine
the training progress of their inverse dynamics models. On the contrary, our method continuously
explores the environment until I converges. A more detailed comparison is presented in Section 5.2.

4.2 Training Methodology
We describe the training methodology of our adversarial active exploration method by a pseudocode
presented in Algorithm 1. Assume that P ’s policy πadv is parameterized by a set of trainable
parameters θP , and is represented as πadv(at|xt, θP). We create two buffers ZP and ZI for storing
the training samples of P and I , respectively. In the beginning, ZP , ZI , E , θP , θI , πadv , as well as a
timestep cumulative counter c are initialized. A number of hyperparameters are set to appropriate
values, including the number of iterations Niter, the number of episodes Nepisode, the horizon T ,
as well as the update period TP of θP . At each timestep t, P perceives the current state xt from E ,
takes an action at according to πadv(at|xt, θP), and receives the next state xt+1 and a termination
indicator ξ (lines 9-11). ξ is set to 1 only when t equals T , otherwise it is set to 0. We then store

4

Algorithm 1 Adversarial Active Exploration
1: Initialize ZP , ZI , E , and model parameters θP & θI
2: Initialize πadv(at|xt, θP)
3: Initialize the timestep cumulative counter c = 0
4: SetNiter ,Nepisode, T , and TP
5: for iteration i = 1 toNiter do
6: for episode e = 1 toNepisode do
7: for timestep t = 0 to T do
8: P perceives xt from E , and predicts an action at according to πadv(at|xt, θP)
9: xt+1 = E(xt, at)
10: ξ = 1[t == T]
11: Store (xt, at, xt+1, ξ) in ZP

12: Store (xt, at, xt+1) in ZI

13: if (c mod TP) == 0 then
14: Initialize an empty batchB
15: Initialize a recurrent state ht

16: for (xt, at, xt+1, ξ) in ZP do
17: Evaluate ât = I(xt, xt+1|ht, θI) (calculated from Eq. (1))
18: Evaluate r(xt, at, xt+1, ht) = LI(at, ât|θI) (calculated from Eq. (3))
19: Store (xt, at, xt+1, rt) inB
20: Update θP with the gradient calculated from the samples ofB
21: Reset ZP

22: c = c+ 1

23: Update θI with the gradient calculated from the samples of ZI (according to Eq. (2))
24: end

(xt, at, xt+1, ξ) and (xt, at, xt+1) in ZP and ZI , respectively. We update θP every TP timesteps
using the samples stored in ZP , as shown in (lines 13-21). At the end of each episode, we update θI
with samples drawn from ZI according to the loss function LI defined in Eqs. (2) and (3) (line 23).

4.3 Stabilization Technique
Although adversarial active exploration is effective in collecting hard samples, it requires additional
adjustments if P becomes too strong such that the collected samples are too difficult for I to learn.
Overly difficult samples lead to a large magnitudes in gradients derived from LI , which in turn cause
a performance drop in I and instability in its learning process. We analyze this phenomenon in greater
detail in Section 5.4. To tackle the issue, we propose a training technique that reshapes rt as follows:

rt := −|rt − δ|, (4)

where δ is a pre-defined threshold value. This technique poses a restriction on the range of rt, driving
P to gather moderate samples instead of overly hard ones. Note that the value of δ affects the learning
speed and the final performance. We plot the impact of δ on the learning curve of I in Section 5.4. We
further provide an example in our supplementary material to visualize the effect of this technique.

5 Experimental Results
In this section, we present experimental results for a series of robotic control tasks, and validate that
(i) our method is effective for common robotic arm control and in-hand manipulation tasks; (ii) our
method is effective in environments with high-dimensional action spaces; (iii) our method is more
data efficient than the baseline methods. We first introduce our experimental setup. Then, we report
our experimental results on a number of robotic arm and hand manipulation tasks. Finally, we present
a comprehensive set of ablative analysis to validate the effectiveness for each of our design decisions.

5.1 Experimental Setup
We first describe the environments and tasks. Next, we explain the evaluation procedure and the
method for collecting expert demonstrations. We then walk through the baseline approaches used in
our comparisons. Please note that for all of our experiments, we train our DRL agent using PPO [28].

5.1.1 Environments and Tasks
We evaluate our method on a number of robotic arm and hand manipulation tasks via OpenAI
gym [30] environments simulated by the MuJoCo [13] physics engine. We use the Fetch and Shadow
Dexterous Hand [31] for the arm and hand manipulation tasks, respectively. For the arm manipulation
tasks, which include FetchReach, FetchPush, FetchPickAndPlace, and FetchSlide, I takes as inputs
the positions and velocities of a gripper and a target object. It then infers the gripper’s action in 3-
dimensional space to manipulate it. For the hand manipulation task HandReach, the inverse dynamics
model takes as inputs the positions and velocities of the fingers of a robotic hand, and determines the

5

velocities of the joints to achieve the goal. The detailed description of the above tasks is specified
in [31]. For the detailed configurations of these tasks, please refer to our supplementary material.

5.1.2 Evaluation Procedure
The primary objective of our experiments is to demonstrate the efficiency of the proposed adversarial
active exploration in collecting training data (in a self-supervised manner) for inverse dynamics
models. We compare our method against a number of data collection methods (referred to as
”baselines” or ”baseline methods”) described in Section 5.1.4. As different baseline methods employ
different data collection strategies, the learning curves of their inverse dynamics models also vary
for different cases. For a fair comparison, the model architecture of the inverse dynamics model and
the amount of training data are fixed for all cases. All of the experimental results are evaluated and
averaged over 20 trials, corresponding to 20 different random initial seeds. In each trial, we train
an inverse dynamics model by the training data collected by a single data collection method. We
periodically evaluate the inverse dynamics model when every 10K training samples are collected. At
the beginning of each episode of evaluation, the inverse dynamics model receives a sequence of states
{x̂1, x̂2, · · · , x̂T } from a successful expert demonstration. At each timestep t, the inverse dynamics
model infers an action ât from an expert state x̂t+1 and its current state xt by Eq. (1). The evaluation
is performed by averaging the success rates of reaching x̂T over 500 episodes. The configuration of
the inverse dynamics model and the hyperparameters are summarized in the supplementary material.

5.1.3 Expert Demonstrations for Evaluation
For each task mentioned in Section 5.1.1, we first randomly configure task-relevant settings (e.g., goal
position, initial state, etc.). The configuration details of these tasks are specified in the codebase of
OpenAI gym1. We then collect demonstrations from non-trivial and successful episodes performed by
a pre-trained expert agent [32]. Please note that the collected demonstrations only contain sequences
of states. The implementation details of the expert agent and the methodology for filtering out trivial
episodes are presented and discussed in detail in our supplementary material.

5.1.4 Baseline Data Collection Methods
We compare our proposed methodology with the following four baseline methods in our experiments.

• Random: This method collects training samples by random action sampling. We consider it
to be an important baseline method because of its simplicity and prevalence in a number of
research works on inverse dynamics models learning [6, 7, 8].

• Demo: This method trains the inverse dynamics model directly with expert demonstrations.
Since expert demonstrations comprise only successful trajectories, this method serves as a
baseline with human priors similar to [7].

• Curiosity: This method incentivizes a DRL agent to collect samples that lead to large errors
of its forward dynamics model [6, 9]. Unlike the original implementation, we replace its
DRL algorithm with PPO. This is also an important baseline due to its effectiveness in [6].

• Noise [33]: In this method, noise is injected to the parameter space of a DRL agent to
encourage exploration [33]. We include this baseline as a reference to validate if a standard
DRL exploration strategy can provide positive impact on inverse dynamics model learning.

5.2 Performance Comparison in Robotic Arm Manipulation Tasks
We compare the performance of the proposed method and the baselines on the robotic arm manipula-
tion tasks described in Section 5.1.1. We discuss the experimental results and plot them in Fig. 2. All
of the results are obtained by following the procedure described in Section 5.1.2. The shaded regions
in Fig. 2 represent the confidence intervals. Fig. 2 plots the learning curves for all of the methods. In
all of the tasks, our method yields superior or comparable performance to the baselines except for
Demo, which is trained directly with expert demonstrations (i.e. human priors). In FetchReach, it
can be seen that every method achieves a success rate of 1.0. This implies that it does not require
a sophisticated exploration strategy to learn an inverse dynamics model in an environment where
the dynamics is relatively simple. It should be noted that although all methods reach the same final
success rate, ours learns significantly faster than Demo. In contrast, in FetchPush, our method is
comparable to Demo, and demonstrates superior performance to the other baselines. Our method
also learns drastically faster than all the other baselines, which confirms that the proposed strategy
does improve the performance and efficiency of inverse dynamics model learning. Our method is

1https://github.com/openai/gym

6

Figure 2: Performance comparison of robotic arm and hand tasks.

Figure 3: PDFs of LI for the first 2K training batches.

particularly effective in tasks that require complex control. In FetchPickAndPlace, for example,
our method surpasses all the other baselines. However, all methods including Demo fail to learn a
successful inverse dynamics model in FetchSlide, which suggests that it is difficult to train an inverse
dynamics model when the outcome of an action is partially affected by the unobservable factors of
an environment. In FetchSlide, the movement of the object on the slippery surface is affected by
both friction and the force exerted by the gripper. It is worth noting that Curiosity loses to Random
in FetchPush and FetchSlide, and Noise performs even worse than these two methods in all of the
tasks. We therefore conclude that Curiosity and the parameter space noise strategy cannot be directly
applied to inverse dynamics model learning. Moreover, Fig. 2 shows that the performance of Curiosity
saturates rapidly, indicating that Curiosity is unable to continuously explore the environment until I
converges. In addition to the quantitative results presented above, we further discuss the empirical
results qualitatively. Please refer our supplementary material for a detailed description of the results.

5.3 Performance Comparison in Robotic Hand Manipulation Task

Fig. 2 plots the learning curves for each of the methods considered. Please note that Curiosity, Noise
and our method are pre-trained with 30K samples collected by random exploration, as we observe
that these methods on their own suffer from large errors in an early stage during training, which
prevents them from learning at all. After the first 30K samples, they are trained with data collected by
their exploration strategy instead. From the results in Fig. 2, it can be seen that Demo easily stands
out from the other methods as the best-performing model, surpassing them all by a considerable
extent. Although our method is not as impressive as Demo, it significantly outperforms all of the
other baseline methods, achieving a success rate of 0.4 while the others are still stuck at around 0.2.

The reason that the inverse dynamics models trained by the autonomous data-collection strategies
discussed in this paper (including ours and the other baselines) are not comparable to the Demo
baseline in the HandReach task is primarily due to the high-dimensional action space. It is observed
that the data collected by the autonomous data-collection strategies only cover a very limited range of
the state space in the HandReach environment. Therefore, the inverse dynamics models trained with
these data only learn to predict trivial poses, leading to the poor success rates presented in Fig. 2.

5.4 Ablative Analysis

In this section, we provide a set of ablative analysis. We examine the effectiveness of our method by
an investigation of the training loss distribution, the stabilization technique, and the influence of δ.
Please note that the value of δ is set to 1.5 by default, as described in our supplementary material.

Training loss distribution. Fig. 3 plots the probability density function (PDF) of LI (derived from
Eq. (2)) by kernel density estimation (KDE) for the first 2K training batches during the training phase.
The vertical axis corresponds to the probability density, while the horizontal axis represents the scale
of LI . The curves Ours (w stab) and Ours (w/o stab) represent the cases where the stabilization
technique described in Section 4.3 is employed or not, respectively. We additionally plot the curve
Random in Fig. 3 to highlight the effectiveness of our method. It can be observed that both Ours (w
stab) and Ours (w/o stab) concentrate on notably higher loss values than Random. This observation
implies that adversarial active exploration does explore hard samples for inverse dynamics model.

7

Figure 4: Learning curves w/ and w/o the stabilization technique.

Figure 5: Performance comparison for different values of δ.

Validation of the stabilization technique. We validate the proposed stabilization technique in terms
of the PDF of LI and the learning curve of the inverse dynamics model, and plot the results in Figs. 3
and 4, respectively. From Fig. 3, it can be observed that the modes of Ours (w stab) are lower than
those of Ours (w/o stab) in most cases, implying that the stabilization technique indeed motivates
the DRL agents to favor those moderately hard samples. We also observe that for each of the five
cases, the mode of Ours (w stab) is close to the value of δ (plotted in a dotted line), indicating that
our reward structure presented in Eq. (4) does help to regulate LI (and thus rt) to be around δ. To
further demonstrate the effectiveness of the stabilization technique, we compare the learning curves
of Ours (w stab) and Ours (w/o stab) in Fig. 4. It is observed that for the initial 10K samples of the
five cases, the success rates of Ours (w/o stab) are comparable to those of Ours (w stab). However,
their performance degrade drastically during the rest of the training phase. This observation confirms
that the stabilization technique does contribute significantly to our adversarial active exploration.

Although most of the DRL works suggest that the rewards should be re-scaled or clipped within a
range (e.g., from -1 to 1), the unbounded rewards do not introduce any issues during the training
process of our experiments. The empirical rationale is that the rewards received by the DRL agent
are regulated by Eq. (7) to be around δ, as described in Section 5.4 and depicted in Fig. 3. Without
the stabilization technique, however, the learning curves of the inverse dynamics model degrade
drastically (as illustrated in Fig. 2).

Influence of δ. Fig. 5 compares the learning curves of the inverse dynamics model for different
values of δ. For instance, Ours(0.1) corresponds to δ = 0.1. It is observed that for most of the tasks,
the success rates drop when δ is set to an overly high or low value (e.g., 100.0 or 0.0), suggesting
that a moderate value of δ is necessary for the stabilization technique. The value of δ can be adjusted
dynamically by the adaptive scaling technique presented in [33], which is left as our future direction.

6 Conclusion
In this paper, we presented an adversarial active exploration, which consists of a DRL agent and
an inverse dynamics model competing with each other for efficient data collection. The former is
encouraged to actively collect difficult training data for the latter, such that the training efficiency of
the latter is significantly enhanced. Experimental results demonstrated that our method substantially
improved the data collection efficiency in multiple robotic arm and hand manipulation tasks, and
boosted the performance of the inverse dynamics models. The comparisons with the forward dynamics
errors driven approach [6] validated that our method is more effective for training inverse dynamics
models. We further showed that our method is generalizable to environments with high-dimensional
action spaces. Finally, we provided a set of ablative analysis to justify each of our design decisions.

Acknowledgment
This work was supported by the Ministry of Science and Technology (MOST) in Taiwan under grant
nos. MOST 108-2636-E-007-010 (Young Scholar Fellowship Program) and MOST 108-2634-F-
007-002. Z.-W. Hong and C.-Y. Lee acknowledge the financial support from MediaTek Inc., Taiwan.
The authors would also like to acknowledge the donation of the Titan XP GPUs from NVIDIA
Corporation and the Titan V GPUs from NVIDIA AI Technology Center used in this research work.

8

References
[1] D. Nguyen-Tuong and J. Peters. Using model knowledge for learning inverse dynamics. In

Proc. Int. Conf. Robotics and Automation (ICRA), pages 2677–2682, May 2010.

[2] F. Meier, D. Kappler, N. Ratliff, and S. Schaal. Towards robust online inverse dynamics learning.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 4034–4039, Oct.
2016.

[3] E. Rueckert, M. Nakatenus, S. Tosatto, and J. Peters. Learning inverse dynamics models in o
(n) time with lstm networks. In Proc. IEEE-RAS Int. Conf. Humanoid Robotics (Humanoids),
pages 811–816, Nov. 2017.

[4] D. Nguyen-Tuong and J. Peters. Model learning for robot control: A survey. Cognitive
processing, 12(4):319–340, Nov. 2011.

[5] O. Kanoun, J.-P. Laumond, and E. Yoshida. Planning foot placements for a humanoid robot: A
problem of inverse kinematics. The Int. J. Robotics Research, 30(4):476–485, Jun. 2011.

[6] D. Pathak, P. Mahmoudieh, M. Luo, P. Agrawal, D. Chen, F. Shentu, E. Shelhamer, J. Ma-
lik, A. A. Efros, and T. Darrell. Zero-shot visual imitation. In Proc. Int. Conf. Learning
Representations (ICLR), Apr.-May 2018.

[7] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-
supervised learning and imitation for vision-based rope manipulation. In Proc. Int. Conf.
Robotics and Automation (ICRA), pages pp. 2146-2153, May-Jun. 2017.

[8] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential
learning of intuitive physics. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), pages pp. 5074-5082, Dec. 2016.

[9] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proc. Int. Conf. Machine Learning (ICML), Aug. 2017.

[10] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
In Proc. Int. Conf. Machine Learning (ICML), Aug. 2017.

[11] H. Shioya, Y. Iwasawa, and Y. Matsuo. Extending robust adversarial reinforcement learning
considering adaptation and diversity. In Proc. Int. Conf. Learning Representations (ICLR)
Workshop, Apr.-May 2018.

[12] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation
and automatic curricula via asymmetric self-play. In Proc. Int. Conf. Learning Representations
(ICLR), Apr.-May 2018.

[13] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control view. In
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pages 5026-5033, Oct. 2012.

[14] B. Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

[15] D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proc. ACM
Int. Conf. Research and Development in Information Retrieval (SIGIR), pages 3–12. Springer,
Jul. 1994.

[16] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann. Multi-class active learning by
uncertainty sampling with diversity maximization. Int. J. of Computer Vision, 113(2):113–127,
Jun. 2015.

[17] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proc. Annual Wksp.
Computational Learning Theory, pages 287–294, Jul. 1992.

[18] M. Fang, Y. Li, and T. Cohn. Learning how to active learn: A deep reinforcement learning
approach. arXiv:1708.02383, Aug. 2017.

9

[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[20] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), pages pp. 1057-1063, Dec. 2000.

[21] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, May 1992.

[22] G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos. Count-based exploration with neural
density models. In Proc. Int. Conf. Machine Learning (ICML), pages 2721–2730, Aug. 2017.

[23] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv:1507.00814, Nov. 2015.

[24] A. Laversanne-Finot, A. Péré, and P.-Y. Oudeyer. Curiosity driven exploration of learned
disentangled goal spaces. arXiv:1807.01521, Nov. 2018.

[25] C. Colas, P.-Y. Oudeyer, O. Sigaud, P. Fournier, and M. Chetouani. CURIOUS: Intrinsically
motivated modular multi-goal reinforcement learning. In Int. Conf. Machine Learning (ICML),
pages 1331–1340, Jun. 2019.

[26] A. Baranes and P.-Y. Oudeyer. Active learning of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

[27] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. In Reinforcement Learning, pages pp. 5-32. Springer, May 1992.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, Aug. 2017.

[29] R. E. Schapire. A brief introduction to boosting. In Proc. Int. Joint Conf. Artificial intelligence
(IJCAI), volume 99, pages 1401–1406, Aug. 1999.

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv:1606.01540, Jun. 2016.

[31] M. Plappert et al. Multi-goal reinforcement learning: Challenging robotics environments and
request for research. arXiv:1802.09464, Mar. 2018.

[32] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pages pp. 5048-5058, Dec. 2017.

[33] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel,
and M. Andrychowicz. Parameter space noise for exploration. In Proc. Int. Conf. Learning
Representations (ICLR), Apr.-May 2018.

[34] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proc. Int. Conf.
Machine Learning (ICML), pages 41-48, 2009.

[35] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
Nov. 1997. ISSN 0899-7667. doi:10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/
10.1162/neco.1997.9.8.1735.

Supplementary Material
A Qualitative Analysis of Robotic Arm Manipulation Tasks
In addition to the quantitative results presented above, we further discuss the empirical results
qualitatively. Through visualizing the training progress, we observe that our method initially acts

10

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

like Random, but later focuses on interacting with the object in FetchPush, FetchSlide, and Fetch-
PickAndPlace. This phenomenon indicates that adversarial active exploration naturally gives rise to a
curriculum that improves the learning efficiency, which resembles curriculum learning [34]. Another
benefit that comes with the phenomenon is that data collection is biased towards interactions with
the object. Therefore, the DRL agent concentrates on collecting interesting samples that has greater
significance, rather than trivial ones. For instance, the agent prefers pushing the object to swinging
the robotic arm. On the other hand, although Curiosity explores the environment very thoroughly in
the beginning by stretching the arm into numerous different poses, it quickly overfits to one specific
pose. This causes its forward dynamics model to keep maintaining a low error, making it less curious
about the surroundings. Finally, we observe that the exploratory behavior of Noise does not change
as frequently as ours, Random, and Curiosity. We believe that the method’s success in the original
paper [33] is largely due to extrinsic rewards. In the absence of extrinsic rewards, however, the
method becomes less effective and unsuitable for data collection, especially in inverse dynamics
model learning.

B Proximal Policy Optimization (PPO)
We employ PPO [28] as the RL agent responsible for collecting training samples because of its ease
of use and good performance. PPO computes an update at every timestep that minimizes the cost
function while ensuring the deviation from the previous policy is relatively small. One of the two
main variants of PPO is a clipped surrogate objective expressed as:

LCLIP (θ) = E
[
πθ(a|s)
πθold(a|s)

Â, clip(
πθ(a|s)
πθold(a|s)

, 1− ε, 1 + ε)Â)

]
,

where Â is the advantage estimate, and ε a hyperparameter. The clipped probability ratio is used to
prevent large changes to the policy between updates. The other variant employs an adaptive penalty
on KL divergence, given by:

LKLPEN (θ) = E
[
πθ(a|s)
πθold(a|s)

Â− βKL [πθold(·|s), πθ(·|s)]
]
,

where β is an adaptive coefficient adjusted according to the observed change in the KL divergence.
In this work, we employ the former objective due to its better empirical performance.

C Implementation Details of Inverse Dynamics Model
In the experiments, the inverse dynamics model I(xt, xt+1|ht, θI) of all methods employs the same
network architecture. We use 3 Fully-Connected (FC) layers with 256 hidden units followed by tanh
activation units. We then feed the extracted features from the FC layers to Long-Short Term Memory
(LSTM) [35].

D Implementation Details of Adversarial Active Exploration
We use the architecture proposed in Schulman et al. [28]. During training, we periodically update the
DRL agent with a batch of transitions as described in Algorithm. 1. We split the batch into several
mini-batches, and update the RL agent with these mini-batches iteratively. The best hyperparameters
are listed in Table. 1 (our method).

E Implementation details of Curiosity
Our baseline Curiosity is implemented based on the work [6]. The authors in Pathak et al. [6]
propose to employ a curiosity-driven RL agent [9] to improve the efficiency of data collection. The
curiosity-driven RL agent takes curiosity as intrinsic reward signal, where curiosity is formulated as
the error in an agent’s ability to predict the consequence of its own actions. This can be defined as a
forward dynamics model:

φ̂(x′) = f(φ(x), a; θF), (5)

where φ̂(x′) is the predicted feature encoding at the next timestep, φ(x) the feature vector at the
current timestep, a the action executed at the current timestep, and θF the parameters of the forward
model f . The network parameters θF is optimized by minimizing the loss function LF :

LF
(
φ(x), φ̂(x′)

)
=

1

2
||φ̂(x′)− φ(xt+1)||22. (6)

11

Hyperparameter Value

Common
Batch size for inverse dynamic model update 64
Learning rate of inverse dynamic model 1e-3
Timestep per episode 50

Optimizer for inverse dynamic model Adam

Our method
Number of batch for update inverse dynamic model 25
Batch size for RL agent 2050
Mini-batch size for RL agent 50
Number of training iteration (Niter) 200
Number of training episode per iteration (Nepisode) 10
Horizon (T) of RL agent 50
Update period of RL agent 2050
Learning rate of RL agent 1e-3
Optimizer for RL agent Adam
δ of stabilization 1.5

Curiosity
Number of batch for update inverse dynamic model 500
Batch size for RL agent 2050
Mini-batch size for RL agent 50
Number of training iteration (Niter) 10
Number of training episode per iteration (Nepisode) 200
Horizon (T) of RL agent 50
Update period of RL agent 2050
Learning rate of RL agent 1e-3
Optimizer for RL agent Adam

Noise
Number of batch for update inverse dynamic model 500
The other hyperparameters Same as Plappert et al. [33]

Table 1: Hyperparameters settings.

We use the architecture proposed in Schulman et al. [28]. The implementation of φ depends on the
model architecture of the RL agent. For low-dimensional observation setting, we implement φ with
the architecture of low-dimensional observation PPO. Note that φ does not share parameters with the
RL agent in this case. The best hyperparameters settings can be found in Table. 1(Curiosity).

F Implementation Details of Noise
We directly apply the same architecture in Plappert et al. [33] without any modification. Please refer
to Plappert et al. [33] for more detail.

G Implementation Details of Demo
We collect 1000 episodes of expert demonstrations using the procedure defined in Sec. S9 for
training Demo. Each episodes lasts 50 timesteps. The demonstration data is in the form of a 3-tuple
(xt, a, xt+1), where xt is the current observation, at the action, and xt+1 the next observation. The
pseudocode for training Demo is shown in Algorithm. S1 below. In each training iteration, we
randomly sample 200 episodes, namely 10k transitions (line 4). The sampled data is then used to
update the inverse dynamics model (line 5).

H Configuration of Environments
We briefly explain each configuration of the environment below. For detailed description, please refer
to Plappert et al. [31].

• FetchReach: Control the gripper to reach a goal position in 3D space.
• FetchPush: Control the Fetch robot to push the object to a target position.

12

Algorithm 2 Demo
1: Initialize ZDemo, θI
2: Set constants Niter
3: for iter i = 1 to Niter do
4: Sample 200 episodes of demonstration from ZDemo as B
5: Update θI with the gradient calculated from the samples in B (according to Eq. 6)
6: end

• FetchPickAndPlace: Control the gripper to grasp and lift the object to a goal position. This
task requires a more accurate inverse dynamics model.

• FetchSlide: Control the robot to slide the object to a goal position. The task requires an even
more accurate inverse dynamics model, as the object’s movement on the slippery surface is
hard to predict.

• HandReach: Control the Shadow Dextrous Hand to reach a goal hand pose. The task is
especially challenging due to high-dimensional action spaces.

I Setup of Expert Demonstration
We employ Deep Deterministic Policy Gradient combined with Hindsight Experience Replay (DDPG-
HER) [32] as the expert agent. For training and evaluation, we run the expert to collect transitions for
1000 and 500 episodes, respectively. To prevent the inverse dynamics model from succeeding in the
task without taking any action, we only collect successful and non-trivial episodes generated by the
expert agent. Non-trivial episodes are filtered out based on the following task-specific schemes:

• FetchReach: An episode is considered trivial if the distance between the goal position and
the initial position is smaller than 0.2.

• FetchPush: An episode is determined trivial if the distance between the goal position and
the object position is smaller than 0.2.

• FetchSlide: An episode is considered trivial if the distance between the goal position and
the object position is smaller than 0.1.

• FetchPickAndPlace: The episode is considered trivial if the distance between the goal
position and the object position is smaller than 0.2.

• HandReach: We do not filter out trivial episodes as this task is too difficult for most of the
methods.

J Analysis of the number of expert demonstrations
Fig. 6 illustrates the performance of Demo with different number of expert demonstrations.
Demo(100), Demo(1,000), and Demo(10,000) correspond to the Demo baselines with 100, 1,000,
and 10,000 episodes of demonstrations, respectively. It is observed that their performance are com-
parable for most of the tasks except FetchReach. In FetchReach, the performance of Demo(100) is
significantly worse than the other two cases. A possible explanation is that preparing a sufficiently
diverse set of demonstrations in FetchReach is relatively difficult with only 100 episodes of demon-
strations. A huge performance gap is observed when the number of episodes is increased to 1,000.
Consequently, Demo(1,000) is selected as our Demo baseline for the presentation of the experimental
results. Another advantage is that Demo(1,000) demands less memory than Demo(10,000).

Figure 6: Comparison of different number of expert demonstrations in low-dimensional observation spaces.

K Visualization of stabilization technique
In this section, we visualize the effects of our stabilization technique with a list of rewards r in Fig. 7.
The rows of Before and After represent the rewards before and after reward shaping, respectively. The
bar on the right-hand side indicates the scale of the reward. It can be observed in Fig. 8 that after
reward shaping, the rewards are transformed to the negative distance to the specified δ (i.e., 2.5 in

13

this figure). As a result, our stabilization technique is able to encourage the DRL agent to pursue
rewards close to δ, where higher rewards can be received.

Figure 7: Visualization of the stabilization technique.

14

	Introduction
	Related Works
	Background
	Deep Reinforcement Learning
	Inverse Dynamics Model for Robotic Control

	Methodology
	Adversarial Active Exploration
	Training Methodology
	Stabilization Technique

	Experimental Results
	Experimental Setup
	Environments and Tasks
	Evaluation Procedure
	Expert Demonstrations for Evaluation
	Baseline Data Collection Methods

	Performance Comparison in Robotic Arm Manipulation Tasks
	Performance Comparison in Robotic Hand Manipulation Task
	Ablative Analysis

	Conclusion
	Qualitative Analysis of Robotic Arm Manipulation Tasks
	Proximal Policy Optimization (PPO)
	Implementation Details of Inverse Dynamics Model
	Implementation Details of Adversarial Active Exploration
	Implementation details of Curiosity
	Implementation Details of Noise
	Implementation Details of Demo
	Configuration of Environments
	Setup of Expert Demonstration
	Analysis of the number of expert demonstrations
	Visualization of stabilization technique

