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Abstract: Learning from demonstration is an effective method for human users to
instruct desired robot behaviour. However, for most non-trivial tasks of practical
interest, efficient learning from demonstration depends crucially on inductive bias
in the chosen structure for rewards/costs and policies. We address the case where
this inductive bias comes from an exchange with a human user. We propose a
method in which a learning agent utilizes the information bottleneck layer of a
high-parameter variational neural model, with auxiliary loss terms, in order to
ground abstract concepts such as spatial relations. The concepts are referred to in
natural language instructions and are manifested in the high-dimensional sensory
input stream the agent receives from the world. We evaluate the properties of the
latent space of the learned model in a photorealistic synthetic environment and
particularly focus on examining its usability for downstream tasks. Additionally,
through a series of controlled table-top manipulation experiments, we demonstrate
that the learned manifold can be used to ground demonstrations as symbolic plans,
which can then be executed on a PR2 robot.

Keywords: human-robot interaction, interpretable symbol grounding, learning
from demonstration

1 Introduction

As an increasing number of robots become deployed in field applications, where they must interact
in customized ways with human co-workers, there is a need for these robots to represent and reason
about their tasks in ways that accord with corresponding human concepts. Ideally, the human’s and
robot’s conceptualizations of the working environment must be able to align so that the robot can
adapt to the specific needs of the user. For example, in a table-top manipulation scenario, in order
for the agent to correctly respond to instructions regarding stacking or clustering a set of objects, it
should be able to comprehend concepts like an object being close to or on another one—Figure 1.

This motivates the need for a robot to be able to acquire and tune a domain model via interactions
with the human user. Moreover, people who are not robotics experts find it easier to provide the
necessary inductive bias in the form of demonstrations of the task rather than explicit specifica-
tions of the same task. It is well understood that reward specification is not only hard, but prone
to exploitation by the agent [1]. We can therefore use a Learning from Demonstration (LfD) [2]
method, together with providing high-level guidance using language. This guidance is necessarily
more abstract than the level of the robot’s sensor stream or native action representation. So, we need
to induce alternate latent representations from the low-level sensory data, that allow for subsequent
tasks to be grounded in this abstracted space.

Forming a series of hierarchical abstractions about the world that we share with each other—e.g.
the notions of color, shape, size, direction, objects’ relative position — is essential for humans to
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Figure 1: Example data used from a (a) photo-realistic blocks world, and (b) table-top object ma-
nipulation while teleoperating a 7 DoF arm of a PR2 robot.

communicate with one another. We would like our robots to also use these human-interpretable
concepts as representations that underpin LfD. To achieve this, we work in the setting of interactive
task learning [3], starting with the question of how best to align a learning agent’s representations (in
this paper, regarding inter-object relationships) with corresponding human labels. A specific aspect
of this problem is the issue of physical symbol grounding, [4, 5], i.e., how should a learning agent
make inferences about the relationship between symbolic labels and their manifestation in the richer
sensory feed of the robot.

In this paper, we propose a framework which allows human operators to teach a PR2 robot about
spatial relations and inter-object arrangements on a table top. Our main contributions are:

• A disentangled representation learning method in which inter-object relationships, man-
ifested in a high-dimensional sensory input, can be grounded in a learned low-dimensional
latent manifold. We explicitly optimize for the latent manifold to align with human ‘com-
mon sense’ notions, e.g. left and right are mutually exclusive and independent from front
and behind which are also mutually exclusive.

• Evaluating the learned representations in an ‘Explain-n-Repeat’ setup—see Figure 2 (b)—
in which discrete symbolic specifications, grounded in the learned manifolds, can be de-
rived from the latent projections of user demonstrations. The demonstrations are third
person observations of object manipulation in a table-top environment. We show that we
can infer both what is moved after what and how each object is manipulated from this set
of demonstrations. We further demonstrate that end effector poses can be predicted from
the steps of such inferred plans, and associated sensory data, see Figure 2 (c).

[blue.. on red...]
[green.. Off red...]
[green.. Off blue...]
...

(a) (b)

[green.. off red..]
[yellow.. off red..]
[yellow.. off green..]
...

[blue.. on red...]
[green.. unknown red...]
[green.. on blue...]
...

[blue.. off red...]
[green.. Off red...]
[green.. Off blue...]
...

Plan:
[1] put blue on red 
[2] put green on blue

Capture partially-labelled 
training pairs

Test-time demonstration
with extracted plan

(c) Same plan, new scene

+

[green.. on red..]
[yellow.. unknown red..]
[yellow.. on green..]
...

Figure 2: Overall setup: (a) during training, the agent receives observations from the environment
and weak annotation from the human expert as to how different objects relate to each other, at each
time step. (b) At test time, the agent uses the learned representations in order to explain how the
objects in the environment relate to each other, through time, with the explanation being structured
in the form of a plan; (c) each instruction from the plan can then be mapped to end-effector actions.

2 Related Work
Prior work in psycholinguistics has empirically shown that humans communicate more efficiently
and effectively with each other by aligning language and its use at all levels of linguistic processing
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(e.g., [6, 7]). One aspect of the problem is learning how to physically ground symbols in visual input.
The INGRESS framework [8] uses a multi-step process to learn a representation of objects within the
scene, including when objects are referred to within dialogue with a human. Learning relationships
between objects from raw sensory input can be achieved through the use of high-capacity models
like neural networks [9, 10] or with SVMs [11]. However, this can often require large quantities
of fully-labelled data and computational resources (e.g., the CLEVR dataset [12]) and the learned
models are often treated as black boxes.

Splitting the factors of variation in an unsupervised way is well studied in the representation learning
literature as a form for making the learned models more interpretable. This has been demonstrated
using both generative models –InfoGAN [13], which can be unstable in training and needs specifi-
cation of the distribution over the latent representation, and variational models of images—β-VAE
[14], β-TCVAE [15], oi-VAE [16] or of video [17]. As these models are trained in an unsupervised
way, the resulting embeddings for the factors of variation within the dataset do not necessarily map
to the variation that is necessary for the discrimination of the task at hand. In [18] the authors employ
a β-VAE representation for grounding of symbols in a semi-supervised way and achieve alignment
between the defined semantic concept groups and orthogonal latent vector space representing them.
Our work follows this weakly-supervised method of aligning the representations, but differs in that
we use the representations to help solve more complex downstream tasks. Moreover, we deal with
the segmentation problem when multiple objects are present in the scene. MONet [19] and IODINE
[20] present methods for performing iterative multi-object scene decomposition using deep varia-
tional inference models. Both approaches choose to solve the scene segmentation and representation
learning problems sequentially in an end-to-end fashion, only using unlabelled data. The main fo-
cus in both MONet and IODINE is on modelling object-related visual factors of variation. Andreas
et al. present Neural Module Netwoks (NMN) [21] which apart from object properties also learn
inter-object relations in the context of a Visual Question Answering (VQA) task. However, it is not
clear whether what the models learns accords with common-sense human notions. Moreover, it is a
fully-supervised approach which might not be a good fit for a realistic LfD setup where explanations
for each user demonstration are not expected to be exhaustive.

Lzaro-Gredilla et al. present the Visual Cognitive Computer (VCC) [20] and shows how repre-
sentations that align with human notions and concepts can be learned and then used for a robotic
manipulation task. However, the authors assume they have access to a model of the environment
and its dynamics, together with a deterministic mapping from sensory inputs to discrete symbols
and full plans for each interaction.

On the topic of bridging neural networks and logical plans, Asai et. al [22, 23] present FOSAE - a
method for learning how to extract first-order logic predicates and plans from raw sensory observa-
tions which can later be composed in a sequential plan. However, the authors claim that the method
sacrifices the interpretability of the learned representations for the potential benefit of greater auton-
omy in the system - which for us is an orthogonal goal, our primary focus being on richer forms of
human-robot interaction to help robots acquire customized skills.

3 Problem Formulation

3.1 Representation Learning Step

We work with user descriptions which come as natural language sentences of the
[target relations referent] form, where target is the object that is manipulated,
referent is the object that acts as a reference point and relations describes the configuration
which the target should satisfy with respect to referent.

Our aim is to efficiently learn how to compress a pair of high-dimensional inputs Itar ∈ RD, Iref ∈
RD to a low-dimensional vector space C ⊂ RL, where L � D, by optimizing a set of functions
qθ : RD −→ RZ , qφ : RZ −→ RD and qψ : R2Z −→ C ⊂ RL.

The weak labelling over an observed scene consists of a set of L conceptual groups G =
{g1, . . . , gL} that aim to describe different notions that are represented in the environment,
e.g. alignment along the spatial X/Y/Z axes, containment, support, etc. Each group is a set
of mutually exclusive discrete labels: gi = {yi1, ..., yini

}, ni = |gi| (e.g. the conceptual group
of alignment along Y can have the labels left and right, etc.) Additionally, we have a set of
object-centered conceptual groups O which represent notions like color, shape, size, etc and are
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extracted from the target and referent part of the given instructions. Such labels associated
with either the target or reference object are designated as otar and oref respectively. Let W =
{(x1,y1,or1,ot1), . . . , (xM ,yM ,orM ,otM ), (xM+1, ∅,orM+1,otM+1) . . . (xN , ∅,orN ,otN )}
be a set of N observation. xi = (Iitar, I

i
ref ), yi = {yp : yp ∈ gp}, p ∈ {1, . . . , L}; M of the

observations are given at least one relational label while the rest are passively gathered as unknown.
We don’t treat the unknown value as a label class during training later. Each xi corresponds to
a (target, referent) image pair and yi corresponds to a relations term from the
semantically parsed descriptions above. For example, a scene with 3 objects would result in 6
possible bi-object configurations and 6 (x,y,otar,oref ) pairs respectively. Again note that we
expect a proportion of the y labels to be unknown≡unlabelled, due to ambiguity in the scenes, e.g.
in Figure 1 (second image) the green cylinder is neither left nor right of the blue cylinder. For more
details on how linguistic instructions are parsed to labels and how input images are semantically
segmented consult Appendix A.

We explicitly optimize the vectors in C to preserve specific semantic concepts expressed over the
tuples (Itar, Iref ) and whose meaning is commonly agreed-upon, e.g. relative spatial positions.
The latter is achieved by using the vectors in C to predict the set of labels in each group gp ∈ G.
Additionally, a subset of the dimensions of each object-centered latent vector zi, i ∈ {tar, ref}, is
forced to predict the values in otar and oref respectively.

3.2 The ‘Explain-n-Repeat’ Step

At test time the agent receives a demonstration in the form of a sequence of T raw observations
I = {I1 . . . IT }. For each pair (otar and oref ) from the T raw observations we extract a set of
semantically-segmented observations Imask = {x1 . . .xT } which are projected to a latent embed-
ding trace T . In T we aim to find a corresponding movement prescription sequence S—which target
object moves when—and a sequence of instructions Y = {y} that is expressed through the symbols
that we have learned how to ground in C—how does each target object move.

To close the loop, when performing the demonstrations on the robot, apart from recording
(x,y,otar,oref ) pairs, we also record the 6 DoF pose p for the end effector of the arm that is
performing the object manipulation. We can thus learn how to regress from an initial image of the
scene and a relational specification vector y, describing the end state of the two objects, to a valid
pose p̂ which satisfies y. The predicted pose is fed to a MoveIt! motion planner [24]. We do not
address the grasping problem - we assume the robot is already holding the object to be moved.

4 Methodology

4.1 Learning Disentangled Relational Embeddings

The overall architecture is inspired by the MONet model [19]—augmenting the reconstruction loss
term in order to achieve better disentanglement in Z. We do not learn the segmentation process
but use already segmented masks. Similar to Hristov et. al [18], we explore the effects of adding
auxiliary classification losses to a Siamese Neural Network [25] which uses a β-VAE [14, 26, 27]
as a base architecture. It consists of a convolutional encoder network qθ, parametrized by θ which
takes an input xi and produces a vector zi—red and green object embeddings in Figure 3 (a). Each
zi is fed into a spatial broadcast decoder network pφ [28], parametrized by φ—Figure 3 (b). A set
of variational operators qψ , parametrized by ψ, take the concatenation of the z vectors and produce
a single vector c ∈ C—yellow relationship embedding in Figure 3 (b). The resultant vector, c, is
fed into a set of linear classifiers W, one per label group gi ∈ G, each with a softmax activation
function predicting a set of labels. Additionally, each zi is fed into a set of linear classifiers Wo,
one per latent dimension.

The rationale behind the combination of all of these losses—reconstruction R, variational KL and
multiple classification terms Q—is that they utilize different parts of the dataset in order to achieve
the overall goal of learning representations that are factorized and aligned with abstract human
notions. The latter is mostly enforced by the Softmax cross-entropy classification terms since they
force the latent vectors along each axis to be useful for predicting the labels for a particular concept
group. At the same time, the reconstruction loss makes use of all data points, labelled and unlabelled,
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Figure 3: (a) Overall architecture - two object-centric embeddings - z1 and z2 - are produced for
each masked RGBD input - (m;v). From their concatenation a relationship-centric embedding c is
produced. Parts of all embeddings are fed through a set of linear classifiers in order to predict a set
of discrete labels - one group of labels per latent axis. Additionally the object-centric embeddings
are used to reconstruct the original RGBD inputs v. (b) VAE with a spatial broadcast decoder and
masked reconstruction loss, similar to the Component VAE in [19]. (c) Fully connected operator qψ
for each relational concept group producing a 1D space in which the y symbols are grounded.

forcing the same latent vectors to be also useful for recreating the original inputs. As shown in [19],
maskingR forces the encoder network to produce z which are more factorized.

This, combined with optimizing the Kullback-Leibler divergence between the distribution of values
in C and Z and a prior isotropic normal distribution, incentivises C and Z to be smoother [26] and
for similar data pairs to be projected to the same regions of the manifold.

Additional parameters—α for the reconstruction term, β for the Kullback-Leibler divergence term,
γ for the cross-entropy terms—are used to scale the term in the overall loss—see Equation (1).

min
θ,φ,ψ,W,Wo

L(x,y,o, θ, φ, ψ,W,Wo) = βKL(C||Z) + αR+ γ(Qobj +Qrel),

Q = Qobj +Qrel =

2∑
i

|O|∑
o

H(ziow
T
o ,oo) +

|G|∑
j

H(qψ(cj |z1, z2)wT
j ,yj)

(1)

In order to evaluate the architecture we perform an ablation study consisting of disabling parts of
the full model—e.g. disable the classification part of the network for predicting the object labels
and only train the rest. The set of models used in experiments is as follows:

• NoR, No Qobj : (α = 0, γobj = 0)
• NoR, With Qobj : (α = 0, γobj 6= 0)

• WithR, No Qobj : (α 6= 0, γobj = 0)
• WithR, With Qobj : (α 6= 0, γobj 6= 0)

4.2 Inferring Symbolic Plans from Demonstration

Given the continuous manifold C in which inter-object relational discrete labels can be grounded,
we look into whether that feature space can be used in an LfD context. In particular, we investigate
whether the learned manifold allows us to segment the latent projections of user demonstrations for
moving objects.

Plan segmentation - Given a sequence of observations I and reference object labels oref , a prepos-
sessing step is taken to identify all target objects and to extract masked observations Imask, for each
pair of target and reference objects. Each Imask is projected to a latent projection T from which a

5



(b)    Chained behaviour - different movement, same object

t=0 t=T

(a) Repetitive behaviour - same movement, different object

t=0 t=T

[left][..][left] [front, left] [behind, left] [behind, right] [front, right][right][..][left] [right][..][left] [right][..][right]

Figure 4: Example testing data for (a) Repetitive motion along a single concept group—e.g. left to
right (row 1)—and (b) Chained motion along different concept groups—e.g. perform a C-shape-
sequentially from front to behind to right to front (row 1).

movement prescription sequence Ŝ is extracted. The latter designates when an object is manipulated
and when not. Using the methods described in Section 4.1 we identify the different target (moved)
objects—green and blue in Figure 4 (a). Then for each pair of target and a given reference object—
the red cube—we extract the corresponding traces of relational embeddings. Checking whether the
particular target object moves with respect to the reference object at each timestep t consists of
performing a likelihood ratio test with two candidate normal distributions, parametrized by Σmov
and Σstat, Σstat � Σmov . The procedure is more formally described in Algorithm 1, Appendix
B. However, in a given set of demonstrations we are not only interested in identifying when one
objects stops moving and another starts. We are also interested in how the relationships between
them change over time. More specifically, we are interested in being able to identify an invariant
symbolic plan Y that underlies a set of demonstrations, all of which demonstrate the same task.

Task essence extraction - This step is performed in a similar fashion to the plan segmentation
step described above. Given N latent projections T1, . . . , TN from N demonstrations for a single
(otar,oref ) pair we use a set of estimated 1D normal distributions for each relational label in each
conceptual group: K = {{N (µpq , σ

p
q )}, p ∈ {1, . . . , L}, q ∈ {1, . . . , |gp|} to perform label-oriented

likelihood ratio tests (as compared to the moving ones in the prev paragraph). As a result each T
is converted to a symbolic trace and the eventual identified plan Yotar

, for a given otar, is the most
invariant set of symbols from all traces - the task essence. It is worth clarifying that the task essence
extraction currently works only for tasks of deterministic nature - there’s a single sequence of actions
that achieve the goal. For more details refer to the supplementary materials1 or to Appendix B.

From symbolic plans to end effector poses - Predicting end effector poses of the robotic arm is
treated as a fully-supervised problem. From an observation of the environment—an image showing a
grasped object (otar) and a static object (oref ) on a table top—we extract the object-centric embed-
ding corresponding to the target object—ztar. Additionally, given a relational vector y, arising from
Yotar , describing the desired eventual state of the two objects, we sample a relational embedding c,
by using the fitted parametric distributions K (see previous paragraph). Given the concatenation of
ztar and c, we use an MLP with two hidden layers in order to regress to a pose vector p̂ ∈ R6.

5 Experiments, Evaluation and Results

left, right
front, behind
above, below
close, far
on, off
out of, in
off, on
not facing, facing
out, in

Table 1: User-defined spatial
relations

For learning the relational embeddings a set of standard objects is
used, as shown in Figure 1. The set of spatial prepositions and
their semantic grouping that are given in the user-scene descriptions
during the demonstrations are outlined in Table 1.

Photorealistic BlocksWorld - This synthetic dataset consists of
1,000 scenes, each containing 4 objects in a random configuration.
The objects’ attributes are the defaults from the original CLEVR
dataset [12], together with an additional gray tray object. Given the
6 concept groups—Table 1 (top)—this results in 72,000 possible
inter-object relationships, 40% of which are unlabelled.

It is worth noting that the different concept groups have a different
split between labelled and unlabelled data points as an artefact of
resolving the inherent ambiguity of some of the prepositions when

procedurally generating the different scenes. The decision of whether a relationship is known or
not is determined through a set of empirically-defined thresholds whose values are specified before
generating the dataset. For example, if an object is above a tray but their vertical distance is less

1https://sites.google.com/view/explain-n-repeat/
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than a threshold the pair is labelled as unknown along the in/out concept group. The proportion of
unlabelled data points across the 6 concept groups is 28%, 31%, 41%, 36%, 32%, 90% respectively.

For evaluating the efficacy of plan segmentation using the learned relation embeddings, two types of
moving scenes are generated - 6 repetitive behaviours of multiple target objects sequentially moving
along a specific concept group (5 demos per type) and 3 chained behaviours of the same target object
moving along different concept groups (8 demos per type)—see Figure 4. Task essence extraction
is tested only on the demonstrated chained behaviours. Accuracy is reported for each identified Ŝ
and edit distance is reported for each symbolic plan—see Equations 2 and 3.

Acc(S, Ŝ) =
1

T |Otar|

|Otar|∑
j

T∑
i

1(Soi = Ŝoi) (2) ed(Yo, Ŷo) =
1

|Yo|

|Yo|∑
i

1(Yoi 6= Ŷoi) (3)

PR2 Robot Experiment - 3 tasks are demonstrated by teleoperating a PR2 robot with an HTC Vive
controller—putting a red cube on a purple cup, making two cups face each other (as an example of
a necessary pre-pouring step), placing a yellow cube in a purple bowl—see Figure 1 (b). The spatial
inter-object prepositions that were learned from each of the 3 tasks are summarized in Table 1
(bottom). The separation of known/unknown depends on the temporal aspect of the demonstrations.
For instance, we know that at the beginning and at the end of each demonstration a pair of mutually
exclusive relational labels are satisfied, respectively. Everything in the middle is unknown. Here,
what matters is the segmentation of the demonstration into an initial, middle and final stages for
which we use a temporal template - first 2s and last 2s correspond to the initial and final stage, the
rest is the middle stage. For each task there are 20 demonstrations performed, with variations in the
position of the reference object in the scene and initial end effector poses. In total this results in
2,400 labelled and 6,000 unlabelled object pairs.

For evaluating how well we can predict an end effector pose from a given input image and a relational
spec vector, we record 10 additional demonstrations for each task. The mean absolute error along
each of the 6 axes of the end effector is reported between the inferred set of poses and the ground
truth ones, measured in meters for X/Y/Z and radians for Roll/Pitch/Yaw.

Model left-right front-behind below-above far-close off-on out-in
NoR, No Qobj 0.50 0.64 0.54 0.56 0.49 0.66
NoR, With Qobj 0.53 0.68 0.68 0.63 0.65 0.62
WithR, No Qobj 0.70 0.73 0.69 0.68 0.64 0.78
WithR, With Qobj 0.80 0.88 0.91 0.86 0.76 0.56

Model C-shape off-on-off jump over
All models 1 ≈ 0.74 1

Table 2: Plan segmentation Acc-what moves when-for (top) repetitive and (bottom) chained demos.

The performed experiments demonstrate that the learned feature space can be reliably used by the
agent in order to produce symbolic plans, using the dictionary of symbols it has been taught. Table
2 shows that the model which incorporates both R and Q performs best at identifying the move-
ment prescription sequences Ŝ in the repetitive demonstrations. This supports our hypothesis that
by enforcing object label classification and by utilizing the full dataset through the reconstruction
loss, we learn smoother and more factorized vectors z and c. This in turn allows for the task seg-
mentation process to be more robust. Further analysis is provided in Appendix C. As far as the
chained movement demonstrations are concerned, all models perform in an equal manner, which is
expected, since these sequences only involve a single object moving. The best performing model
from Table 2 is used on the symbolic plan inference task over the demonstrated chained behaviour
(where the underlying plan is over a single target object and is a multi-step one). Figure 5 reports
the average edit distance for the inferred plans Ŷ over all demonstrations for a given task (top row),
together with the average plan lengths |Ŷ|. Both quantities are plotted as a function of the number
of demonstrations used to infer the task essence which in turn is used to infer the step-by-step plan
for each demonstration. As expected, the more demonstrations we see per task, the closer the in-
ferred plans Ŷ get to the ground truth ones Y . The reason why some of the plots do not converge
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(c)
Figure 5: (top): edit distance statistics as a function of how many demonstrations the agent has seen.
(bottom) plan length statistics for the inferred plans as a function of how many demonstrations the
agent has seen for all three chained behaviours—(a) C-shape, (b) off-on-off and (c) jump over;

to the ground-truth numbers (red line across all plots in the figure) can be attributed to the fact that
some demonstrations contain object occlusions, making it hard to reliably infer the true plan without
noise.
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Figure 6: Mean Absolute Error between inferred poses p̂ and commanded poses p during teleop-
eration for (a) placing on, (b) facing cups, (c) placing in. The reported error values are across 10
demonstrations (X-axis) not seen during training.

Lastly we demonstrate that using the learned latent grounding of the taught linguistic symbols we
can regress end effector positions which capture the meaning behind the symbol (and its associated
task). Figure 6 reports the mean absolute error between inferred poses p̂ and the true demonstrated
ones p for all three teleoperated tasks. The plots reflect that for certain tasks the model learns to
predict more reliably only along the end effector axes that matter for the success of the task (in
the way it has been demonstrated)—e.g. for placing on and in we get lower error across X/Y/Z as
compared to when making the cups face each other. Respectively, the facing task puts more weight
on the Roll and Pitch axes (which matter for the cups to have the right orientation) and less weight
on the Yaw or on the translational X/Y/Z axes of the end effector.

6 Conclusion
Effective human-robot collaboration requires shared task representations that are both interpretable
and suitable for task completion. We present a framework which allows human demonstrators to
teach how to ground high-level spatial concepts in their sensory input. We show that while inter-
pretable to the human, due to the disentanglement we explicitly optimize for, the learned latent space
is also useful to tasks downstream. In particular, using photorealistic synthetic data we show how
such a feature space can be used by an agent to derive explanations for a set of demonstrations,
using the symbols it has been taught a priori. We also show how such discrete symbolic representa-
tions can be used as a building block for primitive action policies in the context of a robotic agent
performing a table-top manipulation task. Future work will involve applying the explain and repeat
framework on tabletop manipulation tasks of compositional nature, together with learning modifiers
over the taught spatial symbols - e.g. ”more/less to the left”, etc.
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Appendices
A Data Processing and Network Architecture

Preprocessing the gathered data consists of extracting the semantic masks, corresponding to each
object in the scene, from the raw RGBD pixel-level channels of information and all object and
relational labels associated with each pair of objects in a given scene. As issues of semantic seg-
mentation are not the focus of our work, we start with a system that provides us the semantic masks
for each object present in the scene from raw observation. In our robot experiments, the RGB part of
the input is fed to a pre-trained Mask R-CNN model, which dictates the partial labelling afterwards.
For the BlocksWorld we can extract the masks deterministically, since we have access to the full
state of the scene.

Elementary Dependency Structures (EDS) [29] and the wide-coverage English Resource Grammar
[30] are used to perform this step [29, 30]. The resultant [target relations referent]
tuples are used to perform weak labelling over sequence of observations that comprise the demon-
stration. Errors in the labels produces by the parsing procedure are not expected - the process is
deterministic and the parsed NL instructions always follow a predefined template.

For example, if we have [yellow_cube, {left, front} , blue_cube] as a parsed
description and the semantic segmentation model detects a yellow_cube and a blue_cube
present in the input image, this results in a single labelled data point (xi,yi,oti,ori) being added to
W , where xi = {Itar, Iref ) and yi = {left, front}, oti = {yellow, cube}, ori = {blue, cube}.
Any segmented pair whose labels do not appear in the description is added to W as an unlabelled
data point.

The model architecture is implemented in the Chainer framework2. The encoder network takes as
input a set of RGBD 128x128 pixel images, a 128x128 binary segmentation mask, and a set of object
and relational labels. It tries to reconstruct the same set of RGBD 128x128 pixel images, masked
with the corresponding binary segmentation mask, and predict the all labels which are not unknown.

Encoder
FC (2x8) Output LogNormal

FC (256)
Conv (k=3, s=2, p=1, c=64)
Conv (k=3, s=2, p=1, c=64)
Conv (k=3, s=2, p=1, c=64)
Conv (k=3, s=2, p=1, c=32)
Conv (k=3, s=2, p=1, c=32)
Input Image [128 x 128 x C]

(a) Encoder

Decoder
Output Logits

Conv (k=3, s=2, p=1, c=C)
Conv (k=3, s=2, p=1, c=64)
Conv (k=3, s=2, p=1, c=64)
Conv (k=3, s=2, p=1, c=64)

append coord channels
tile (128, 128, 8)
Input Vector [8]

(b) Decoder

Operator
FC (2 x 6) Output Lognormal

FC (64)
FC (256)

Input Vector [2 x 8]

(c) Operator

Table 3: Network architectures used for the reported models. (a) and (c) are standard convolutional
and fully-connected MLP networks, (b) is a spatial broadcast decoder, described in [28]

Across all experiments, training is performed for a fixed number of 50 epochs using a batch size
of 32. The dimensionality of the latent space |Z| = 8 across all experiments. The dimensionality
of |C| = 6 for the BlocksWorld experiments and |C| = 3 for the robot teleoperation experiments.
The Adam optimizer [31] is used through the learning process with the following values for its
parameters—(learningrate = 0.001, β1 = 0.9, β2 = 0.999, eps = 1e− 08, weightdecayrate =
0, amsgrad = False)

For all experiments, the values (unless when set to 0) for the three coefficients from Equation 1 are:

• α = 1, β = 10, γ = 50000

The values are chosen empirically in a manner such that all the loss terms have similar magnitude
and thus none of them overwhelms the gradient updates while training the full model.

2https://docs.chainer.org/en/stable/
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B Plan Segmentation Elaboration

Algorithm 1: Movement Prescription Seq Identification
Input: Sequence of T observations I = {I1 . . . IT }
Input: Referent object labels of oref
Input: Encoder network qθ, Σstationary,Σmoving
Output: Movement prescription sequence Ŝ

1 Ŝ = [];
2 Otar ← segment(I,oref );
3 For every two objects extract all tuples {(X,Y,o1,o2)} ← preproc(I|Otar

⋃
oref );

4 for each object pair in {(otar,oref )|otar ∈ Otar} do
5 Imask ← {(x,y,otar,oref ) ∈ (X,Y)|otar ∈ o1 & oref ∈ o2});
6 T ← qθ(Imask);
7 ŝ← [];
8 for each (τt, τt+1 in zip(T [: −1], T [1 :]) do
9 if N (τt+1|τt,Σmov) > N (τt+1|τt,Σstat) then

10 Append otar to ŝ;
11 else
12 Append ∅ to ŝ;
13 Append ŝ to Ŝ;
14 return Ŝ;

As described in sections 3.2 and 4.2, ee use the trained model qθ to convert a sequence of raw obser-
vations I—images in Figure 7 (a)—into a trace of T relational embeddings T = {τ1 . . . τT }, τi ∈
RC—colored blocks in Figure 7. In order to detect whether the two objects move with respect to
each other, a likelihood ratio test with two normal distributions—Nstationary andNmoving—is per-
formed on every two sequential embeddings τt and τt+1. For the purpose of the experiments, both
Σmov and Σstat are diagonal covariance matrices with σii being 1 and 0.1 respectively. More details
can be found in Algorithm 1 above and Figure 8 below.
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t=T
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.

. step 1

step 2

step 3

t=0

t=t1
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t=t2

(a) (b)

changing rel vector c for the 
relationship between the red 
cube and yellow cylinder

Figure 7: Plan segmentation pipeline.(a) Infer a movement prescription sequence—what is moved
after what—and (b) infer how is each object moved when it is manipulated. In this example the
red, green and blue object are sequentially stacked on top of the yellow one. A change in the color
shade corresponds to (a) an object being moved or (b) an object changing the way it relates to the
reference object in the scene along one or more concept groups.

Additionally, for each part of a given trace T where the objects are moving with respect to each
other, we can use the parametrised distributions K for each cluster in each group in RC (including
ones for unlabelled relationships) for an additional likelihood-ratio test to decide how the objects
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move—see Figure 7 (b). The latter is equivalent to essentially checking when and object changes
membership along each concept group with respect to the reference object in the scene. This allows
us to go from a sequence of observations Imask—masked images in Figure 8—to what is essentially
a symbolic plan Y .

It is noted that such an approach might capture noisy steps that do not represent the intent of the
demonstrator—e.g. we move an object from being left to right with respect to another object by
going behind it in the intermediate states. The upper-described procedure would infer that the moved
object being behind the static one is a valid substep when that is not actually part of the user’s intent.
Thus, in the presence of more demonstrations, we filter steps from the plan that are not identified
in all demonstrations, in order to produce the essence of the demonstrated task. The goal is to try
to identify the most invariant plan that best explains a set of demonstrations that have the same
underlying goal—e.g. if we have two demonstrations where an object is moved from left to right
with respect to another static object, we aim to identify an explanation that ignores the fact that once
we move in front and once behind that object.
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t=T

3: move green cube

1: move red cube

2: move blue cylinder
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Figure 8: Visual illustration of the movement prescription sequence procedure described in algo-
rithm 1 and Figure 7 (a)

C Disentanglement Analysis of the Information Bottleneck C

In order to bring additional clarity in the properties of the learned latent relational space, we provide
violin plots for the distributions of data points from each concept group (X axis on each plot). We can
observe that model which do not utilise object label information in training the object embeddings
z—Figure 9 and Figure 11—tend to learn relational embeddings c which fall in a tighter region,
centered around 0, due to the influence of the KL objective. We hypothesise that this is one of the
reasons for these models to underperform in inferring the movement prescription sequence for the
given demonstrations. With the latent clusters being projected closer, tuning the parameters of the
distributions used in the movement likelihood ratio test might required.
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Figure 9: Evaluation of the degree of disentanglement in the latent space C for each concept group
across the different baseline models used in the ablation study — NoR, No Qobj
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Figure 10: Evaluation of the degree of disentanglement in the latent space C for each concept group
across the different baseline models used in the ablation study — NoR, With Qobj
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Figure 11: Evaluation of the degree of disentanglement in the latent space C for each concept group
across the different baseline models used in the ablation study — WithR, No Qobj
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Figure 12: Evaluation of the degree of disentanglement in the latent space C for each concept group
across the different baseline models used in the ablation study — WithR, With Qobj
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