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Abstract: Self-driving vehicles plan around both static and dynamic objects, ap-
plying predictive models of behavior to estimate future locations of the objects
in the environment. However, future behavior is inherently uncertain, and models
of motion that produce deterministic outputs are limited to short timescales. Par-
ticularly difficult is the prediction of human behavior. In this work, we propose
the discrete residual flow network (DRF-NET), a convolutional neural network for
human motion prediction that captures the uncertainty inherent in long-range mo-
tion forecasting. In particular, our learned network effectively captures multimodal
posteriors over future human motion by predicting and updating a discretized
distribution over spatial locations. We compare our model against several strong
competitors and show that our model outperforms all baselines.
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1 Introduction

In order to plan a safe maneuver, a self-driving vehicle must predict the future motion of surrounding
vehicles and pedestrians. Motion prediction is challenging in realistic city environments. In Figure 1,
we illustrate several challenges for pedestrian prediction. Gaussian distributions often poorly fit
state posteriors (Fig. 1-a). Further, pedestrians have inherently multimodal behavior, as they can
move in arbitrary directions and have unknown and changing goals, each achievable with multiple
trajectories (Fig. 1-b). Even with strong evidence for a particular action, such as a road crossing,
partially observed environments increase uncertainty in the timing of the action (Fig. 1-c). However,
a self-driving vehicle motion planner needs actor predictions to be associated with time. Additional
challenges include efficiently integrating spatial and temporal information, the mixed continuous-
discrete nature of trajectories and maps, and availability of realistic data.

In the context of self-driving, most prior work represents behaviors through trajectories. Future
trajectories can be predicted with a recurrent neural network (RNN) [1, 2, 3], a convolutional neural
network (CNN) [4, 5, 6], or with constant velocity, constant acceleration, or expert-designed heuristics.
However, a trajectory that minimizes the mean-squared error with respect to the true path can only
capture the conditional average of the posterior [7]. The conditional average trajectory does not
represent all possible future behaviors and may even be infeasible, lying between feasible trajectories.

To express multiple possible behaviors, a fixed number of future trajectories can be predicted [8],
or several can be sampled [3, 9]. Still, in realistic environments, posterior predictive distributions
are complex and a large number of samples are needed to capture the space of possibilities. Such
models tradeoff prediction completeness and latency from repeated sampling. Further, the number of
possible trajectories increases exponentially over long time horizons, and uncertainty grows rapidly.

Instead of predicting trajectories, in this work, we take a probabilistic approach, predicting distri-
butions over pedestrian state at each timestep that can directly be used for cost-based self-driving
vehicle planning. Conditioning on a spatio-temporal rasterization of agent histories aligned to the
local map, we leverage deep convolutional neural network architectures for implicit multi-agent rea-
soning, and mimic human dynamics through a discrete residual flow network, which we refer to as
DRF-NET. We summarize our contributions as follows:

*Denotes equal contribution.
TWork done while at Uber ATG.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.



(c) —
() =

Figure 1: Challenging urban scenarios for pedestrian prediction, depicting pedestrian detections
(circles) and future state posteriors colored by time horizon. (a) Gaussian distributions often poorly
express scene-sensitive behaviors. (b) Inherent multimodality: the pedestrian may cross a crosswalk
or continue along a sidewalk. (c) Partial observability: signals and actors may be occluded.

e We develop a deep probabilistic formulation of actor motion prediction that provides
marginal distributions over state at each future timestep without expensive marginalization
or sampling. Our discrete residual flow equation is motivated by autoregressive generative
models, and better captures temporal dependencies than time-independent baselines.

e We propose the convolutional Discrete Residual Flow Network that predicts actor state over
long time horizons with highly expressive discretized distributions.

e We thoroughly benchmark model variants and demonstrate the benefit of belief discretiza-
tion on a large scale, real-world dataset. We evaluate the likelihood, displacement error,
multimodality, entropy, semantic mass ratio and calibration of the predictions, using a
novel ModePool operator for estimating the number of modes of a discrete distribution.

2 Related work

Prior work on pedestrian prediction has largely modeled trajectories, goals, or high-level intent.

Human trajectory forecasting The pedestrian prediction literature is reviewed in [10, 11]. Multi-
pedestrian interactions have been modeled via pooling [1, 3] or game theory [12]. Becker et al. [2]
predict future trajectories with a recurrent encoder and MLP decoder, reporting lower error than more
elaborate multi-agent schemes, and find that behaviors are multimodal and strongly influenced by the
scene. Social GAN [3] is a sequence-to-sequence generative model where trajectory samples vary in
speed and turning angle, trained with a variety loss to encourage diversity. However, the runtime of
the sampling approach scales with the number of samples (150 ms for 12 trajectories), even without
using a local map, and many samples are needed. SoPhie [9] is another sampling strategy integrating
external overhead camera imagery. In contrast, we predict entire expressive spatial distributions rather
than individual samples and incorporate a local map into prediction.

Goal directed prediction Ziebart et al. [13] use historical paths to pre-compute a prior distribution
over pedestrian goals indoors, then develop an MDP to infer a posterior distribution over future
trajectories. Wu et al. [14] use a heuristic to identify possible goal locations in a mapped environment
and a Markov chain to predict the next-time occupancy grid. Rehder et al. [15, 16] use a two-stage
deep model to predict a Gaussian mixture over goals, then construct distributions at intermediate
timesteps with a planning network. Still, the number of mixture components must be tuned, and the
mixture is discretized during inference, which is computationally expensive. Fisac and Bajcsy [17, 18]
specify known goals for each human indoors, then estimate unimodal state distributions by assuming
humans approximately maximize utility i.e. progress toward the goal measured by Euclidean norm.
They estimate prediction confidence from model performance and return uninformative distributions
at low confidence. Confidence estimation is complementary to our approach.

Semantic map Pedestrian predictors have separately reasoned about spatially continuous trajecto-
ries and discretized world representations [13, 15]. These works either ignore the semantic map or
integrate it at an intermediate stage. In vehicle prediction, input map rasterizations are more widely
used. IntentNet [5] renders a bird’s-eye view of the world to predict vehicle trajectories and high-
level intention simultaneously, using a rasterized lane graph and a 2D convolutional architecture to
improve over previous work [4]. Similar map rasterizations are used in [6, 19, 20], and this work.

Related modeling techniques The convolutional long short-term memory (ConvLSTM) architec-
ture has been applied to spatio-temporal weather forecasting [21]. A ConvLSTM iteratively updates
a hidden feature map, from which outputs are derived. In contrast, DRF-NET sequentially adapts the
output space rather than a hidden state. Similarly, the adaptive instance normalization operator [22]
uses a shared feature to predict and apply scale/shift parameters to a fixed, discrete image. Normaliz-
ing flows [23] apply a series of invertible mappings to samples from a simple prior, e.g. a Gaussian,
constructing a random variable with a complex PDF. While normalizing flows transform individual
samples, we directly transform a probability mass function (PMF) for computational efficiency.
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Figure 2: Overview of the Discrete Residual Flow Network. Pedestrian of Interest (Pol) and actor
detections are aligned with a semantic map. A multi-scale backbone jointly reasons over spatio-
temporal information in the input, embedding context into a feature F. Finally, the DRF head
recursively adapts an initial distribution to predict future pedestrian states on long time horizons.

3 Discrete Residual Flow Network

In this paper, we express beliefs over future pedestrian positions through categorical distributions
that discretize space. Such distributions can be used for cost-based planning or constrained path
optimization in self-driving vehicles. In this section, we explain how we represent historical observa-
tions as a multi-channel image encoding both the known map and detected actors, a process we call
rasterization. We then introduce a backbone deep neural network which extracts features from the
rasterized image, followed by the probabilistic framework for our DRF-NET. Finally, we introduce
our DRF head which uses the extracted features for prediction.

Encoding Historical Information Future pedestrian actions are highly correlated with historical
actions. However, actions are also influenced by factors such as road surface types, traffic signals,
static objects, vehicles, and other pedestrians. We rasterize all semantic map information and agent
observations into a 3D tensor, encoding both spatial and temporal information by automatic rendering.
The first two dimensions correspond to the spatial domain and the third dimension forms channels.
Each channel is an 576 x 416 px image encoding specific local bird’s eye view (BEV) information
at a resolution of 8 px per meter. Figure 3 shows an example rasterization from a real urban scene.

Dynamic agents are detected from LiDAR and camera with the object detector proposed in Liang
et al. [24], and are associated over time using a matching algorithm. Resulting trajectories are refined
using an Unscented Kalman Filter [25]. DRF-NET renders detected pedestrians in each timestep ¢
for the past 6 seconds in channel D; and detected non-pedestrians (e.g. vehicles) in channel V;. To
discriminate the pedestrian of interest from other actors, a grayscale image R masks their tracklet.

DRF-NET renders the local map in a similar fashion to [5], though centers the map about the
Pol. 15 semantic map channels M finely differentiate urban surface labels. These channels mask
crosswalks, drivable surfaces, traffic light state, signage, and detailed lane information. Maps are
annotated in a semi-automated fashion in cities where the self-driving vehicle may operate, and
only polygons and polylines are stored. The final rasterization is Q = [D<g, V<o, R, M] where [*]
indicates concatenation along the channel dimension, the subscript < 0 indicates a collection of
elements from all past timesteps and ¢ = 0 is the last timestep. All channels are rotated such that the
currently observed Pol is oriented toward the top of the scene.

Backbone Network DRF-NET uses a deep residual network with 18 convolutional layers (ResNet-
18) [26] to extract features F from the rasterization . We extract 4 feature maps at 1, %, % and
% of the input resolution from ResNet-18. These multi-scale intermediate features are upscaled and
aggregated into a i resolution global context with a feature pyramid network (FPN) [27].

Probabilistic Actor State Prediction We now introduce a probabilistic formulation of future actor
state prediction. Given rasterization {2, we are interested in inferring a predictive posterior distribution
over possible spatial locations of the Pol for each timestep ¢t where ¢ = 1, - - -, T;. Instead of treating
the state as a continuous random variable, we discretize space to permit a one-hot state encoding.
Specifically, we divide space into a grid with K bins. The state at time ¢, x;, is a discrete random
variable which takes one of the K possible bins.

Consider the joint probability of the states in the future T’ timesteps, i.e., Pxey -, (w1, o7, | Q).

This distribution can be modeled with several factorizations. The first and the most straightforward
factorization assumes conditional independence of future timesteps,

pxl,"wXTf ($17 o ITy | Q) = Ht pxr,(xt | Q) (1)
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Figure 3: Scene history and context representation. DRF-NET rasterizes map elements into a
shared spatial representation (b), augmented with spatio-temporal encodings of actor motion (c).

We can use a neural network, e.g., a CNN, to directly model py, (z; | ). In Section 4.3, we show
the performance of a mixture density network and fully-convolutional predictor that simultaneously
predict these factors. Still, conditional independence is a strong assumption. The second factorization
follows an autoregressive fashion, providing the foundation for many models in the literature,

px1,-~~,XTf (1‘1, Tty :CTf | Q) = Ht th\xgt,l (SUt | T<t—1, Q) (2)

For example, recurrent encoder-decoder architectures [1, 2, 3] sample trajectories one state at a time
and capture the conditional dependencies through a hidden state.

In contrast to the sample-based approach, often we desire access to compact representations of
Dx, (z¢ | Q) for a particular €, such as an analytic form or a discrete categorical distribution. As we
always condition on €, we refer to px, (z: | 1) as a marginal distribution. Access to the marginal
provides interpretability, parallel sampling and ease of planning as the marginals can be used as
occupancy grids. However, direct marginalization is expensive if not intractable as we typically
have no simple analytic form of the joint distributions. Approximation is possible with Monte Carlo
methods, though many samples are needed to characterize the marginal.

Instead, we propose a flow between marginal distributions that resembles an autoregressive model in
its iterative nature, but avoids sampling at each step. In contrast to a normalizing flow [23], which
approximates a posterior over a single random variable by iteratively transforming its distribution, dis-
crete residual flow transforms between the marginal distributions of different, temporally correlated
random variables by exploiting a shared domain.

Discrete Residual Flow Our model recursively constructs py, (- | ) from px, _, (- | ),
log P, (1 | ©2) = log px, _, (¢ | Q) +10g Yrsp, (€1, px,_, (- [ €2),€) —log Zy, 3)

Residual

where we refer to the second term on the right hand side as the residual. 1.9, is a sub-network
with parameter 0 called the residual predictor that takes the marginal distribution px, ,( - | §2)
and context {2 as input, and predicts an elementwise update that is used to construct the subsequent
marginal distribution px, ( - | €2). Z; is the normalization constant to ensure px, ( - | ) is a valid
distribution. Note that the residual itself is not necessarily a valid probability distribution.

Eq. (3) can be viewed as a discrete probability flow which maps from the distribution of x;_; to
the one of x;. We use deep neural networks to instantiate the probability distributions under this
framework and provide a derivation of Eq. (3) in the appendix, Section 6.5.

For initialization, px, ( - | ) is constructed with high value around our ¢ = 0 Pol position and near-
zero value over other states. In implementation, the residual predictor is a convolutional architecture
that outputs a 2D image, a compact and convenient representation as our states are spatial. This
2D image is queryable at state z; via indexing, as is the updated marginal. Additionally, in imple-
mentation, we normalize all marginals at once and apply residuals to the unnormalized potential p,

IOgﬁXt (xt | Q) = logﬁthl(:’Ct | Q) + log ¢t;9t (xtﬂﬁxt—l( ’ | Q)7 Q) “4)

Figure 2 illustrates the overall computation process. The embedding of the rasterization F(€2) is
shared at all timesteps, used by each residual predictor. Figure 4 further illustrates the architectural
details of the DRF residual predictor for one timestep.

Learning We perform learning by minimizing the negative log likelihood (NLL) of the observed
sequences of pedestrian movement. Specifically, we solve the following optimization,

m@i)n —Ex 0 Zgl log px, (¢ | ©2) ®)
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Figure 4: One step of recursive Discrete Residual Flow. The log potential is used to update the global
feature map . DRF then predicts a residual 1.9, to flow to the log potential for the next timestep.

Negative log likelihood (NLL) ADE (m) FDE (m) Mass Ratio (%)
Model Mean @1s @3s @10s 0.2-10s @ls @3s @10s | Acc. Recall
Density Net | 5.39 2.87 3.96 6.74 3.49 0.93 1.72 7.66 77.99 81.33
MDN-4 3.01 1.64 2.00 4.33 1.47 0.38 0.69 3.38 87.85 84.12
MDN-8 3.43 1.60 2.77 4.79 1.78 0.60 0.88 3.91 85.56 84.19
ConvLSTM | 2.51 0.89 1.86 4.07 1.58 0.47 1.06 3.20 88.02 85.02
DRF-NET \ 2.37 0.76 1.74 3.83 \ 1.23 \ 0.35 0.62 2.71 \ 89.78 85.41

Table 1: Comparison of the baselines and our proposed model DRF-NET with access to ground-truth
observations. Metrics are negative log likelihood in 0.5 x 0.5 m? bin containing future GT position,
average displacement error (ADE) and final displacement error (FDE) in meters, and percent of
predicted mass. Mean NLL, ADE and the mass ratios are averaged over 50 timesteps, t = 0.2 — 10 s.

where the expectation E [-] is taken over all possible sequences and will be approximated via mini-
batches. © = {01, - - -, 0r,, w} where w denotes the parameters of the backbone network.

4 Evaluation

There is not a standard dataset for probabilistic pedestrian prediction with real-world maps and
dynamic objects. Thus, we construct a large-scale dataset of real world recordings, object annotations,
and online detection-based tracks. We implement baseline pedestrian prediction networks inspired
by prior literature [28, 29, 15] and compare DRF-NET against these baselines on standard negative
log likelihood and displacement error measures. We propose an evaluation metric for measuring
prediction multimodality, which is one of the most characteristic properties of pedestrian behavior.
We also analyze the calibration, entropy and semantic interpretation of predictions. Finally, we present
qualitative results in complex urban scenarios.

4.1 Dataset

Our dataset consists of 481,927 ground truth pedestrian trajectories gathered in several North-
American cities. The dataset is split into 375,700 trajectories for training, 34,571 for validation,
and 71,656 held-out trajectories for testing. Dynamic objects are manually annotated in a 360°,
120 m range view from an on-vehicle LiDAR sensor. Annotations contain 6 s (30 frames) of past
observations and 10 s (50 frames) of the future. These 5 Hz, 16 s sliding windows are extracted from
longer logs.

We also fine-tune and evaluate DRF-NET with variable length trajectories from an object detector
in the same scenarios. The detector is discussed in Section 3. This assesses real-world, on-vehicle
prediction performance, reflecting the challenges inherent to real perception such as partial observ-
ability, occlusion and identity switches in tracking algorithms. While Pols are annotated for a full
16 seconds in our ground truth experiments, realistic tracks are of variable length. A self-driving
vehicle must predict the behavior of other agents with a very limited set of observations. Thus, we
evaluate DRF-NET by predicting 10 seconds (50 frames) into the future, given tracks with as few
as 3 historical frames, sufficient for estimating acceleration. Relaxing the requirements about past
history avoids skewing our dataset toward easily tracked pedestrians, such as stationary agents.

4.2 Baselines

In this section, we describe two baseline predictor families. These baselines are trained end-to-end
to predict distributions given features F({2) produced by the same backbone as our proposed model.
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Mixture Density Networks (MDNs) represent a conditional posterior over continuous targets given
continuous inputs with a fully-connected neural network that predicts parameters of Gaussian mixture
model [7]. For a baseline, we implement a variant of this architecture that models pedestrian posteriors
at multiple time horizons, conditioned on the past history and current location. Inspired by Rehder
et al. [15], we generate the i-th mixture component from the neuron outputs {mg, my, sz, Sy, 7, D},
which are then reparameterized as 0, ; = exp (s4,;) + €, Oy,i = €xXp (syl) + €, and p; = tanh (7“23
to obtain the mean ji;, covariance matrix >; and the responsibility of the mixture 7;:

- [ My i } Y. — [ U?m- PiJz,Qz‘Uy,i = €xXp (pz) ©6)
) T -
My PiGwi%yi Ty 1 exp (p;)

i =

Training MDNss is challenging due to a high sensitivity to initialization and parameterization. To
avoid numerical instabilities, the minimum standard deviation is e. Even with a careful initialization
and parameterization, training can be unstable, which we mitigate by discarding abnormally large
losses. Note that Rehder et al. [15] stabilized training by minimizing only the minimum of the
batchwise negative log likelihood. Minimizing this minimum loss leads to a good performance on
easy examples, but catastrophic performance on hard ones. Lastly, conversions from a discretized
spatial input to a continuous output can be challenging to learn [30], a problem that our proposed
DRF-NET avoids via a discretized output that is spatially aligned with the input.

ConvLSTM In contrast to our DRF-NET that recursively updates output distributions in the log-
probability space, one can also recurrently update hidden state using a Convolutional LSTM [21]
that observes the previous prediction. Output distributions are then predicted from the hidden state.

4.3 Results

We evaluate negative log likelihood (NLL) at short and long prediction horizons, where lower values
indicate more accurate predictions, as well as the mean NLL across all 50 future timesteps. In
Table 1 and 2, we present results on the held-out test set for ground truth annotated logs and tracked,
real-world detections, respectively. Our proposed DRF-NET achieves a superior likelihood over the
baselines by introducing a discrete state representation and a probability flow between timesteps.

Likelihood on ground truth tracks In order to evaluate our results under perfect perception, we
benchmark on ground truth (annotated) pedestrian trajectories. Table 1 shows that our proposed
model reduces the mean NLL by 0.64 when compared to the best performer among the MDNs and
by 0.14 with respect to the ConvLSTM baseline. This corresponds to a 90% increase in geometric
mean likelihood compared to the best MDN and to a 15% increase when compared to the ConvLSTM.

Likelihood on online tracks Under online, imperfect perception, DRF-NET achieves a reduction
of 0.23 in mean NLL over the best MDN and 0.16 over ConvLSTM, i.e. a 26% and a 17% increase
of the geometric mean likelihood of the future observed pedestrian positions, respectively (Table 2).
DRF-NET’s sequential residual updates may regularize and smooth predictions despite perception
noise. Adding more than 4 components to the density networks does not reduce NLL. Directly
predicting occupancy probability over a grid delivers stronger performance than discretizing a con-
tinuous spatial density. Using an explicit memory with hidden state updates (ConvLSTM) also has
inferior performance to our proposed flow between output distributions.

Displacement error We compute the expected root mean squared error, or expected displacement
error, between the ground truth pedestrian position and model predictions. This is approximated by
discretizing posteriors, computing the distance from each cell to the ground truth, and taking the
average weighted by confidence at each cell. Table 1 reports the error in meters, averaged over 50
timesteps (ADE) and at specific horizons (FDE). DRF-NET significantly outperforms all baselines.
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Figure 6: Test metrics. DRF-NET has low NLL (a) and captures the multimodality inherent in long-
range futures (b). A discrete state space (DRF and ConvLSTM) yields the lowest NLL and entropy
(c), and entropy per mode saturates. However, it increases with horizon for continuous MDNs (d).

Ground truth data (NLL) Real detection data (NLL)
Ablative model variant Mean @1s @3s @10s | Mean @1s @3s @10s

Independent, categorical (Fully conv) | 2.45 0.80 1.83 3.89 3.06 1.49 2.46 4.45

+ Sequential refinement (DRR) 2.40 0.80 1.78 3.83 3.02 1.49 2.44 4.40
Discrete Residual Flow 2.37 0.76 1.74 3.83 2.98 1.47 2.39 4.36

Table 3: Ablation study of multiple probabilistic prediction heads. Metric is NLL as in Table 1.

Model calibration To understand overconfidence of predictive models, we compute calibration
curves and expected calibration error (ECE) on the ground truth test set according to Guo et al. [31] by
treating models as multi-way classifiers over space. ECE measures miscalibration by approximating
the expected difference between model confidence and accuracy. DRF has the lowest calibration
error, with accuracy closest to the model confidence on average, as shown in Fig. 5. While somewhat
overconfident, these models could be recalibrated with isotonic regression or temperature scaling.

Multimodality and Entropy Analysis We propose a ModePool operator to estimate the number of
modes of a discrete spatial distribution. ModePool approximates the number of local maxima in a
discrete distribution p as follows, where the max is taken over |6, |, |6.| < | 4], i.e. k x k windows:

ModePooly, (p) = Zi,j Ly, j=max pits, ;450 Lpij>e (7

Only local maxima with mass exceeding a threshold e are counted. ModePool is efficiently imple-
mented on GPU by adapting the MaxPool filter commonly used in CNNs for downsampling. In
Figure 6-b, modality is estimated with k = 5, ¢ = 0.1. Given our output resolution, at most one mode
per 2.5 x 2.5 m? area can be counted. While the baseline MDN-4 predicts multiple Gaussian distri-
butions, we observe strong mode-collapse. In contrast, DRF produces predictive posteriors that have
increasingly multimodal predictions over horizons. Though an MDN of 8 mixtures captures some
multimodality as well, the mean number of modes is highly inconsistent over time (6-b, middle).

Fig. 6-c shows the mean entropy of the predicted distributions. Entropy for DRF-NET is the lowest.
As DRF-NET also achieves lower NLL at all future horizons (6-a), DRF-NET predictions can be
interpreted as low bias and low variance. We combine entropy and modality into a single metric in
Fig. 6-d. For the discrete heads (DRF, ConvLSTM), the entropy per mode saturates. These models
capture inherent future uncertainty by adding distributional modes e.g. high level actions rather than
increasing per-mode entropy. This is not the case for baselines, where entropy per mode grows over
time. Qualitatively, in Fig. 7, DRF-NET predictions remain the most concentrated over long horizons.

Semantic mass ratio Our semantic map can partition the world into three disjoint high-level classes,
C = {Crosswalk, Road, Off-Road}. To interpret how well models understand the map, we measure
confidence-weighted semantic accuracy, the mean predicted mass that falls on the correct map class.
We also measure safety-sensitive recall, the mean mass that falls into a drivable region when the Pol
is in a drivable region—performance when a Pol is on-road is very important to a self-driving car.
Let ¢(x) € C be the class of location x, determined by the map, and ¢} be the ground truth class of
the Pol position at time ¢. Then, we compute metrics as follows, reported in Table 1:

* 1 *
Accuracy(c%,X<0,Q) = T—thT:flP(c(xt) =cj) (8)

1
Recall(c”él,xSO,Q) = @ZtessP(c(xt) € {CW, ROAD}), 9)
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Figure 7: Pedestrian predictions: ground truth past trajectory is green, future is black, opacity shows
density, and color shows time horizon. MDN-4 predictions are omitted due to similarity to MDN-8;
both are largely unimodal. More results in the supplementary video.

where SS = {t: ¢; € {CW, ROAD}}, the safety-sensitive timesteps. DRF-NET significantly out-
performs baselines on semantic mass ratio metrics, and most accurately predicts the type of surface
the Pol will traverse. This suggests that DRF-NET better uses the map, and is qualitatively reflected
by low-entropy, concentrated mass within map polygons in Figure 7.

Ablation Study We conduct an ablation study that evaluates the value of discrete predictions and our
residual flow formulation. We study two variants of the DRF prediction head, a fully convolutional
and a discrete residual refinement (DRR) head. MDNSs predict continuous mixtures of Gaussians
assuming conditional independence of future states, which can be discretized for cost-based planning.
We can instead directly predict independent discrete distributions. The fully convolutional predictor
projects the spatial feature F (Section 3) into a 50-channel space representing per-timestep logits
with a 1x1 convolution on scene features. Spatial softmax produces valid distributions over the
discrete spatial support. The DRR head takes as input the discrete probability distributions output by
our fully convolutional predictor and sequentially predicts per-timestep residuals in log-space with
per-timestep weights. DRR thereby refines independent predictions sequentially.

Table 3 shows that state space discretization and categorical prediction (fully convolutional head)
has significantly better NLL than the best continuous mixture model in Table 1, a 0.56 reduction in
NLL. Sequential refinement of independent predictions using DRR improves performance. However,
predicting flow in the log probability space with DRF achieves the best likelihood.

Qualitative Results Figure 7-a shows predictions for a pedestrian in a challenging pre-crossing
scenario. Predictive posteriors modeled by DRF-NET (4th row) express high multimodality and con-
centrated mass, with three visible high-level actions: stopping, crossing straight, or crossing while
skirting around a car. DRF-NET also exhibits strong map interactions, avoiding parked vehicles.
However, MDNs predict highly entropic, unimodal distributions, and the ConvLSTM places substan-
tial spurious mass on parked vehicles. Across other test scenes, we observe that DRF-NET constructs
low-entropy yet multimodal predictions with similarly strong map and actor interactions. In Figure 7-
d, DRF-NET is the only model to correctly predict a crosswalk approach. Still, in failure cases,
all models predict crossings too early, possibly due to unknown traffic light state. This could lead
to more conservative self-driving vehicle plans if the pedestrians were nearby. Nonetheless, these
pedestrians and lights are distant.

5 Conclusion

In this paper, we develop a probabilistic modeling technique applied to pedestrian behavior prediction,
called Discrete Residual Flow. We encode multi-actor behaviors into a bird’s eye view rasterization
aligned with a detailed semantic map. Based on deep convolutional neural networks, a probabilistic
model is designed to sequentially update marginal distributions over future actor states from the
rasterization. We empirically verify the effectiveness of our model on a large scale, real-world urban
dataset. Extensive experiments show that our model outperforms several strong baselines, expressing
high likelihoods, low error, low entropy and high multimodality. The strong performance of DRF-
NET’s discrete predictions is very promising for cost-based and constrained robotic planning.
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6 Appendix

In this appendix, we provide additional implementation (Section 6.1-6.2), training (Section 6.3) and
evaluation (Section 6.4) details for our proposed DRF-NET and baseline architectures. We also
provide a derivation of the DRF update equation (Section 6.5).

6.1 Backbone network

In Section 3 of the paper, we described a deep convolutional neural network architecture that repre-
sents our spatio-temporal scene rasterization € as a global feature F. This CNN architecture forms
the initial layers of the proposed model and baselines, though each network is trained end-to-end
(backbone parameters are not shared across models). The backbone architecture is detailed in Fig-
ure 8, below. The proposed DRF-NET further projects the N x 256 x 144 x 104 feature F into a
128 channel space with a learned 1 x 1 convolutional filter for memory efficiency.

NXx128x144x104
feature map

Scene rasterization M 1/4 resolution

Subset of timesteps shown

Upsample-aggregate steps
to form feature pyramid

Q

Nx64x144x104 NXx128x72x52  Nx256x36x26 NXx256x36x26

feature map feature map feature map feature map
1/4 resolution 1/8 resolution 1/16 resolution 1/16 resolution

NX76x576x416
input tensor

Modified ResNet-18 with Group Normalization

Figure 8: Backbone feature pyramid network (FPN). N denotes the batch size, e.g. the number of
pedestrians of interest for inference or number of scenarios per batch for training.

6.2 Rasterization

Rasterization dimensions The input bird’s eye view (BEV) region is rotated for a fixed pedestrian
of interest heading at the current time and spans 52 meters perpendicularly and 72 meters longitudi-
nally, 50 ahead and 22 behind the last observed pose of the pedestrian. We set the input resolution
to 0.125 meters per pixel and the output resolution of our spatial distribution to 0.5 meters per pixel.
At the input resolution, our BEV rasterization channels are each 576 px by 416 px.

Encoding observed actor behavior We use the object detector proposed in Liang et al. [24], which
exploits LiDAR point clouds as well as cameras in an end-to-end fashion in order to obtain reliable
bounding boxes of dynamic agents. Further, we associate the object detections using a matching
algorithm and refine the trajectories using an Unscented Kalman Filter [25]. These detections are
rasterized for T}, = 30 past timesteps, with 200 ms elapsing between timesteps. At any past time t,
DRF-NET renders a binary image D; for pedestrian occupancy where pixel D; ; ; = 1 when pixel
1, j lies within a convex, bounding octagon of a pedestrian’s centroid. Other cells are encoded as 0.
Bounding polygons of vehicles, bicycles, buses and other non-pedestrian actors are also rendered in
a binary image V;. In Figure 3-c and Figure 8, we show how temporal information is encoded in the
channel dimension of tensors D and V.

To discriminate the pedestrian of interest (Pol) from other actors, a grayscale image R masks the
tracklet of the pedestrian to be predicted. As a convention, let the current timestep be ¢ = 0. If a pixel
1, j is contained within the bounding polygon of the Pol at timestep ¢ < 0, then R; ; = 1 + 1,y €
(0, Tpfl). By doing so, the whole Pol tracklet is encoded in a single channel with decaying intensity
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for older detections. This encoding allows for variable track lengths. All rasterization channels are
rotated for fixed Pol orientation at t = 0. We compute orientation with the difference of the last two
observed locations.

Encoding semantic map To represent the scene context of the pedestrian, DRF-NET renders map
polygons into 15 semantic map channels, collectively denoted as M, where each channel corre-
sponds to a finely differentiated urban surface label. Crosswalks and drivable surfaces (roadways
and intersections) are rasterized into separate channels. While sidewalks are not explicitly encoded,
non-drivable surfaces are implied by the road map. Three channels indicate traffic light state, classi-
fied from the on-vehicle camera with a known traffic light position: the green, red, and yellow light
channels each fill the lanes passing through intersections controlled by the corresponding light state.
Similarly, lanes leading to yield and stop signs are encoded into channels. Finally, we encode other
detailed lanes, such as turn, bike, and bus lanes, and a combined channel for all lane markers. In
detail, the 15 channels are as follows:

. Aggregated road mask, masking all drivable surfaces
. Masked crosswalks

. Masked intersections

. Masked bus lanes

. Masked bike lanes

. All lane markers / dividers

. Masked lanes leading to stop sign

. Masked lanes leading to yield sign

O 0 3 N Lt A W N =

. Lanes controlled by red stop light

—_
o

. Lanes controlled by yellow light

—
—_—

. Lanes controlled by green light

—_
[\

. Lanes without a turn

—
(9]

. Right-turn lanes

_
Ny

. Protected left-turn lanes
15. Unprotected left-turn lanes

This information is annotated in a semi-automated fashion in cities where the self-driving vehicle
may operate (Section 4.1), and only polygons and polylines are stored.

6.3 Training

Computing negative log likelihood For density visualization in Figure 7, and for computing discrete
negative log likelihood metrics in Table 1, the MDN predicted mixture is numerically integrated by
a centered approximation with 9 sampling points for each output grid cell of size 0.5 x 0.5 squared
meters. Discretizing the MDN allows an NLL metric to be compared between continuous predictions
and discrete predictions.

Optimization In our experiments with manually annotated trajectories, we train our models from
scratch using the Adam optimizer [32] with a learning rate of 10~°. When using trajectories from a
real perception system, we fine-tune the models learned using the ground truth data to better deal with
missing pedestrians and detector/sensor noise. Each training batch includes 2 pedestrian trajectories.
All experiments are performed with distributed training on 16 GPUs.

6.4 Metrics

Measuring modality To compute the number of modes (local maxima) in a distribution, we pro-
posed the ModePoolg, € operator. Our proposed operator in fact overestimates modality for MDNSs,
especially for the Density Network, at short timescales due to quantization error and the fixed win-
dow size. To compute modality of a continuous distribution, we discretize the distribution. When the
distributions are very long and narrow, as in Density Network short term predictions, multiple modes
can be registered. Despite this overestimation, models with the proposed discrete prediction space
(ConvLSTM, DRF-NET) expressed higher multimodality than the MDNSs.
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6.5 Derivation of Discrete Residual Flow

We derive Equation (3), the discrete residual flow update equation, as an approximation for explicit
marginalization of a joint state distribution. According to the law of total probability,

Pr (@ [ 9) =D Prxr s (@121 [ Q) (10)
= Pl (@ | 7021, 9Q) P, (1121 | Q) (11

Tt—1

Equation (11) can be seen as a recursive update to the previous timestep’s state marginal. Recall that
X, is a categorical random variable over K bins. Instead of representing the pairwise conditional
distribution p(z; | z¢—1,) and conducting the summation once per output bin at O(K?) cost per
timestep, we approximate (11) with a pointwise update,

pr, (xt | Q) = Z pXt‘thl(xt ‘ xt—laQ) pxt_l(l't_l‘Q) (11)
Tt—1
pxtlx‘*l(xt | xtfl’Q) pXt—l(mtfl | Q)
N Dx, (@t | (12)
Z Prer (74| Q) (z: [ Q)
1
~ 7 Vi (s (1D Q) (| D) (13

Exponentiated residual

where Z, is a normalization constant, and .., is a parametric approximator for the summation
that we refer to as the residual predictor. In principle, a sufficiently expressive residual predictor
can model the summation exactly. While the residual is applied as a scaling factor in Equation (13),
the residual becomes more natural to understand when the recursive definition is expressed in log
domain, completing the derivation,

10g px, (¢ | Q) =log px,_, (x4 | Q) +10g e, (x4, px,_, (- | Q),Q) —log Z, (14)

We construct log 1,9, such that it can be computed in parallel across all locations z, and such
that the update to log px, ( - | ) is an elementwise sum followed by normalization. In DRF-NET,
log 1.¢, is instantiated with a neural network that outputs a 2D image indexable at these locations
(Figure 4). Then, the update (14) incurs O(K) cost per timestep.

With this lens, the baseline fully convolutional predictor and the mixture density networks, which
assume conditional independence x; L x;_1 | €, directly approximate the marginal:

log px, (It | Q) = log 1/1t;9t (l’t, Q) —log Z; (15)

The baseline ConvLSTM propagates a cell and hidden state between steps and shares parameters of
the predictor, without sampling from intermediate marginals:

log px, (z¢ | ) = log f4(he) — log Z; (16)

ht7 Ct = 7/)0 (pxt_l( ' | Q)a ht—17ct—1)
ho = F(), ¢o is a parameter

Discrete residual flow retains most of the benefits of the independence assumption, i.e. tractable
marginal distribution estimation and parallelizability, with update more closely resembling a Markov
chain. However, there is no sampling between timesteps. As we established in our ablation study

(Table 3), applying DRF Eq. (14) outperforms the baseline fully convolutional predictor according
to Eq. (15) and the ConvLSTM update, Eq. (16).
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