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Abstract: Bayesian optimization (BO) recently became popular in robotics to op-
timize control parameters and parametric policies in direct reinforcement learning
due to its data efficiency and gradient-free approach. However, its performance
may be seriously compromised when the parameter space is high-dimensional. A
way to tackle this problem is to introduce domain knowledge into the BO frame-
work. We propose to exploit the geometry of non-Euclidean parameter spaces,
which often arise in robotics (e.g. orientation, stiffness matrix). Our approach,
built on Riemannian manifold theory, allows BO to properly measure similarities
in the parameter space through geometry-aware kernel functions and to optimize
the acquisition function on the manifold as an unconstrained problem. We test our
approach in several benchmark artificial landscapes and using a 7-DOF simulated
robot to learn orientation and impedance parameters for manipulation skills.
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1 Introduction

When robots learn new skills or adapt their behavior to unseen conditions, their learning process
needs to be safe, fast and data-efficient as the robot is a physical system interacting with the environ-
ment, making every single interaction costly. In reinforcement learning (RL) for robotics, Bayesian
Optimization (BO) [1] has gained increasing interest due to its success on optimizing parametric
policies in several challenging scenarios [2, 3, 4, 5]. Its popularity is due to its ability to model
complex noisy cost functions in a data-efficient manner, contrasting to data-hungry methods used
in deep RL [6]. However, BO performance degrades as the search space dimensionality increases,
opening the door to different approaches dealing with the curse of dimensionality [7, 8, 9]. Its
performance also depends on the generalization capabilities of Gaussian process (GP) models (the
common surrogate model of BO), which is strongly impacted by the definition of both the mean and
kernel functions.

A recent approach to improve BO performance is via domain knowledge, commonly introduced
into the GP mean function [2] or through the design of task-specific kernels [10], as detailed in § 2.
Nevertheless, several of these solutions are not task-agnostic, requiring new kernels as the task
domain varies. A more scalable approach is to provide domain knowledge that generalizes over
several tasks. In this line, we propose to provide BO with information about the geometry of the
search space, a key feature often overlooked in BO applications. Geometry-awareness is particularly
relevant when the parameter space is not Euclidean, which is common in robotic applications, where
a variety of manifolds arise [11, 12, 13]. For example, forces and torques belong to the Euclidean
manifold R?, stiffness, inertia and manipulability lie in the manifold of symmetric positive definite
matrices S, ., the special orthogonal group SO(3) or the unit-sphere S* are used to represent
orientations, and the special Euclidean group SE(3) describes robot poses.

We hypothesize that bringing geometry-awareness into BO may improve its performance and scala-
bility. To do so, we bring Riemannian manifold theory to Bayesian optimization (see § 3 for a short
background). We first propose to use geometry-aware kernels allowing GP to properly measure the
similarity between parameters lying on a Riemannian manifold. Second, we exploit Riemannian
manifold tools to consider the geometry of the search space when optimizing the acquisition func-
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tion (see § 4). These two contributions lead to a fully geometry-aware BO framework (hereinafter
called GaBO) which naturally handles the constraints of parameters lying on smooth differentiable
manifolds. We test GaBO with different benchmark functions and, as a proof of concept, in a set
of simulated scenarios aimed at refining simple control policies for robotic manipulation (see § 5).
Our results show that GaBO outperforms the classical BO formulation in convergence, accuracy and
scalability as the space dimensionality increases.

2 Related Work

BO has been widely applied in diverse robotic applications, such as behavior adaptation for dam-
aged legged robots [2], controller tuning for balancing [14], biped locomotion [10, 5], whole body
control [15], physical human-robot interaction [16, 17], and manipulation [18]. A key aspect of the
success of BO is the use of domain knowledge, mainly introduced into the surrogate model or the
acquisition function. This prior information aims at decreasing the problem complexity and improv-
ing the convergence and accuracy of BO. This section reviews how domain knowledge has been
exploited to improve BO performance.

Cully et al. [2] used simulated walking behaviors as prior knowledge that allowed a robot to quickly
adapt to drastic hardware changes. Pautrat et al. [19] extended this idea and exploited the GP mean
function to introduce prior knowledge about the robot behavior, which was later used to learn new
tasks using a pool of given priors. They also proposed a new acquisition function that harmonized
the expected improvement and the prior model likelihood. Wilson et al. [20] used trajectory data
extracted during policy execution to learn the initial state distribution, the transition and reward
functions. These were used to generate Monte-Carlo estimates of policy performance that were
used to define the GP mean function. The authors also introduced a Kullback-Leibler divergence
kernel that used trajectory information to measure the relatedness between policies. In contrast to
these works, we do not focus on imposing prior knowledge through the GP mean function but instead
exploit the geometry of the parameter space to drive the BO exploration.

Marco et al. [14] tuned the parameters of a pole-balancing robot controller using BO with an acqui-
sition function maximizing the information gain. The authors emphasized that a GP with common
kernels may degrade the learning outcome [4], and thus kernels leveraging the controller structure
may be preferred. Thus, they proposed two kernels exploiting the structure of linear quadratic reg-
ulators, which outperformed the common squared-exponential (SE) kernel. The shortcomings of
the SE kernels were also analyzed by Martinez-Cantin [21], who proposed a set of adaptive ker-
nels designed to model functions from nonstationary processes. This proved useful in direct policy
search where failures result in large discontinuities or flat regions while fast variations are observed
around the optimal policy. Rai et al. [5] used a gait feature transformation to generalize a range of lo-
comotion controllers and robot morphologies. This transform reparameterized the original space of
controller parameters to a 1D space, where a classical SE kernel was used. Antonova et al. [10] used
a neural network to learn a kernel using simulated bipedal locomotion patterns. This neural-network
kernel could be learned from the BO cost directly or from the trajectories in a cost-agnostic man-
ner. Unlike these works, we do not design task-specific kernels but instead exploit geometry-aware
kernel functions that can be used for different tasks whose search spaces share the same geometry.

Another way to introduce domain knowledge into BO is via the acquisition function. Englert and
Toussaint [3] and Drie et al. [18] included domain knowledge into the tuning of robot control pa-
rameters through an acquisition function using success information embedded into a GP classifier.
Yuan et al. [15] proposed a search space partitioning method to tackle the high dimensionality of
a whole-body quadratic programming controller. The acquisition function was given only a subset
of independent physically-meaningful partitions of the parameter space. In this line, our work in-
cludes domain knowledge into the acquisition function by exploiting geometry-aware optimization
that handle parameters lying on Riemannian manifolds.

The work by Oh et al. [22] is one of the few in BO literature where geometry-awareness is consid-
ered. The authors applied a cylindrical transformation to the search space to overcome boundary
issues when a sphere-like domain is given, and used a geometry-aware kernel. Their method was
more accurate, efficient and scalable when compared to state-of-the art BO. However, Oh et al.
[22] did not include geometry information into the optimization of the acquisition function. As
mentioned previously, our approach is fully geometry-aware as both the kernel function and the
optimization of the acquisition function consider the geometry of the search space.



3 Background

3.1 Bayesian Optimization

Bayesian optimization (BO) is a sequential search algorithm aiming at finding a global maximizer
(or minimizer) of an unknown objective function f
x* = argmax f(x), (D
xreX
where X C RP% is some design space of interest, with Dy being the dimensionality of the param-
eter space. The black-box function f has no simple closed form, but can be observed point-wise by
evaluating its value at any arbitrary query point x in the domain. This evaluation produces noise-
corrupted (stochastic) outputs y € R such that E[y|f(x)] = f(x), with observation noise o.

In this setting, BO specifies a prior belief over the possible objective functions. Then, at each itera-
tion n, this model is refined according to observed data D,, = {(z;,y;)}?_; via Bayesian posterior
update. An acquisition function v,, : X +— R is constructed to guide the search for the optimum.
This function evaluates the utility of candidate points for the next evaluation of f; therefore, the next
query point &, 41 is selected by maximizing vy, i.e. €,4+1 = argmax,, v, (x; D,). After N queries,
the algorithm makes a final recommendation @, representing its best estimate of the optimizer.

The prior and posterior of f are commonly modeled using a Gaussian Process GP(u, k) with mean
function 1 : X — R and positive-definite kernel (or covariance function) £ : X x X — R.
Therefore, the function f follows a Gaussian prior f(x) ~ N (u, K) where p; = p(x;) and K is
the covariance matrix with K;; = k(x;, ;). With & representing an arbitrary test point, the random
variable f (&) conditioned on observations is also normally distributed with the following posterior
mean and variance functions:

pn (&) = p(®)+k(@) T (K+0° 1)~ (y—p) and 07, (&) = k(&, &)~ k(2)" (K+0°1)"'k(Z), (2)
where k(&) is a vector of covariance terms between & and the observations @; [23]. The posterior
mean and variance evaluated at any point & respectively represent the model prediction and uncer-
tainty of the objective function at . In BO, these functions are exploited to select the next query
T ,+1 by means of the acquisition function. The mean and kernel functions completely specify the
GP and thus the model of the function f. The most common choice for the mean function is a
constant value, while the kernel typically has the property that close points in the input space have
stronger correlation than distant points. One popular kernel is the squared-exponential (SE) kernel
k(zi,x;) = 0 exp(—Bd(x;,x;)?), where d(-, -) denotes the distance between two observations and
the parameters 3 and 6 control the horizontal and vertical scale of the function. The kernel parame-
ters and the observation noise are usually inferred via maximum likelihood estimation (MLE).

The acquisition function balances exploitation (e.g. selecting the point with the highest posterior
mean) and exploration (e.g. selecting the point with the highest posterior variance) using the infor-
mation given by the posterior functions. In this paper, we use an improvement-based acquisition
function, namely, expected improvement (EI) [24]. For EI, the next query intuitively corresponds to
the point where the expected improvement over the previous best observation f,; is maximal.

3.2 Riemannian Manifolds

In robotics, diverse type of data do not belong to a vector space and thus the use of classical Eu-
clidean space methods for treating and analyzing these variables is inadequate. A common example
is the unit quaternion, widely used to represent orientations. The quaternion has unit norm and there-
fore can be represented as a point on the surface of a 3-sphere. Symmetric positive definite (SPD)
matrices are also widely used in robotics in the form of stiffness and inertia matrices, or manipula-
bility ellipsoids. Both the sphere and the space of SPD matrices can be endowed with a Riemannian
metric to form Riemannian manifolds. Intuitively, a Riemannian manifold M is a mathematical
space for which each point locally resembles an Euclidean space. For each point € M, there
exists a tangent space T,.M equipped with a smoothly-varying positive definite inner product called
a Riemannian metric. This metric permits to define curve lengths on the manifold. These curves,
called geodesics, are the generalization of straight lines on the Euclidean space to Riemannian man-
ifolds, as they represent the minimum length curves between two points in M (see Fig. 1).

To utilize the Euclidean tangent spaces, we need mappings back and forth between T, M and M,
which are known as exponential and logarithmic maps. The exponential map Exp_, : T, M — M
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(a) Sphere manifold S 2 (incl. e.g. orientations). (b) SPD manifold Sﬁ . (incl. e.g. stiffness ellipsoids)

Figure 1: (a) Points on the surface of the sphere, such as « and y belong to the manifold. (b) One point
corresponds to a matrix ( %; %z ) € Sym? in which the manifold is embedded. For all the graphs, the shortest
path between @ and y is the geodesic represented as a red curve, which differs from the Euclidean path depicted
in blue. w lies on the tangent space of @ such that u = Log_(y). I'(v1), I'(v2) are the parallel transported

vectors v; and vz from T M to Ty M. The inner product between vectors is conserved by this operation.

Table 1: Principal operations on the sphere S% and SPD manifold S, (see [25, 26, 27] for details).

Manifold dm(z,y) Exp,, (u) Log,, (y)
54 arccols(wTy) 1 iﬂcos(\|u\|)l+ isinl('u,) 1 1 d(z, y) ﬁ% 1
sb, log(X " 2Y X" 2)|r | XZexp(X 3UX"2)X2 | X2 log(X 2YX 2)X?3
Parallel transport I, .4, (v)
5 ( — wsin(||lu))@ + @cos(||lul)@ + I — HHT))'U Withw =
sb, Ax .y VAL ywihAx ,y =Y2X 2

maps a point u in the tangent space of « to a point y on the manifold, so that it lies on the geodesic
starting at & in the direction v and such that the geodesic distance d between « and y is equal
to norm of the distance between x and u. The inverse operation is called the logarithmic map
Log, : M — TzM. Another useful operation over manifolds is the parallel transport I'z_,,, :
ToeM — Ty M, which moves elements between tangent spaces such that the inner product between
two elements in the tangent space remains constant.

In this paper, we illustrate our approach in two manifolds widely used in robotics, namely the sphere
and SPD manifolds. The unit sphere S¢ is a d-dimensional manifold embedded in R?*!. The
tangent space 7,S¢ is the hyperplane tangent to the sphere at . The manifold of D x D SPD

matrices S ﬂ can be represented as the interior of a convex cone embedded in its tangent space of

symmetric matrices SymD . These manifolds and the foregoing operations are illustrated in Figure 1
and mathematically described in Table 1.

4 Bayesian Optimization on Riemannian Manifolds

In this section, we present the geometry-aware BO (GaBO) framework that naturally handles the
cases where the design space of parameters X is a Riemannian manifold or a subspace of a Rieman-
nian manifold, i.e. X C M. To do so, we first need to model the unknown objective function f with
a Gaussian process adapted to manifold-valued data. This is achieved by defining geometry-aware
kernels measuring the similarity of the parameters on the manifold. Moreover, the selection of the
next query point x,, 1 is achieved by optimizing the acquisition function on the manifold M.

4.1 Geometry-aware Kernels

The choice of the kernel function is crucial for the GP as it encodes our prior about the function
f. As our parameters x belong to a Riemannian manifold, it is relevant to include this a priori
knowledge in the choice of the kernel. A straightforward approach to adapt distance-based kernels
to Riemannian manifolds is to replace the Euclidean distance d by the geodesic distance d 4 in the
definition of the kernel. Thus, the geodesic generalization of the SE kernel is given by (see [28])

k(xi,z;) = Hexp(—ﬁdM(sci,acj)Z). 3)

Although it has been successfully used in some applications, Feragen et al. [29] showed that such
a kernel is valid, i.e. positive definite (PD) for all the parameters values, only if the manifold is
isometric to an Euclidean space. This implies that the geodesic SE kernel is not valid for curved
manifolds such as S¢ and Sf .. However, the same authors recently conjectured that there exists



100 100

5 0.10 ~
X 05 50
7

0.05

82| s8] st sz, | s,
Brin | 65 | 2. | 12 | 06 | 0.2

min
PD % of K
<

0.0 0

0.00 0
0.0 0.5 1.0 1.5 2.0 =10 —0.5 0.0 0.5 1.0

log,(83) logy(3)

Figure 2: Experimental selection of Bmin in S* (left plot) and 83 (middle plot). The percentage of PD
geodesic SE kernel matrices KK computed from 10 different sets of 500 samples on the manifold is depicted in
blue (right axis). The corresponding distribution of minimum eigenvalue A\min of K is depicted in purple (left
axis). Right table: selected values of Smin for different Riemannian manifolds used in this paper.

intervals of the lengthscale parameter 5 > [y resulting in PD kernels [30]. In this work, we
follow this approach and determine experimentally the intervals of lengthscales /3 for which kernel
matrices are PD for the manifolds of interest.

In order to compute S, we sample 500 points from 10 Gaussian distributions on the manifold
with random mean and covariance matrix I. We then compute the corresponding kernel matrix
K;; = k(z;, z;) for arange of 3 values with § = 1. We repeat this process 10 times for each value
of 8 and compute the percentage of PD geodesic kernel matrices K. As the minimum eigenvalue
function is continuous and Kg_,oc — I, we fiX Bmin €qual to the minimum value of 3 for which
100% of the matrices K are PD. Figure 2 (leff) shows the percentage of PD geodesic kernel matrices
and the distribution of their minimum eigenvalue i, as a function of 3 for S® and S ff_ - The values
of Bmin for the manifolds considered in this paper are provided in Fig. 2 (right).

Other types of kernels are available for specific manifolds and may also be used in BO [22]. For
example, the geodesic Laplacian kernel is valid on spheres and hyperbolic spaces [29]. Moreover,
kernels have been specifically designed for several manifolds (see e.g. [31] for the Grassmannian).

4.2 Optimization of Acquisition Functions

After refining the geometry-aware GP that models the unknown function f, the next query point
T4 is selected by maximizing the acquisition function ~,. In order to take into account the
geometry of the domain X C M, we propose to optimize -, using optimization techniques on
manifolds. Note that the acquisition functions are not altered but their search space is modified. In
this context, optimization algorithms on Riemannian manifolds constitute a powerful alternative to
constrained optimization. These geometry-aware algorithms reformulate constrained problems as an
unconstrained optimization on manifolds and consider the intrinsic structure of the space of interest.
Also, they tend to show lower computational complexity and better numerical properties [32].

In this paper, we use the conjugate gradient (CG) algorithm on Riemannian manifolds [33], de-
scribed in Algorithm 1, to maximize the acquisition function ~,, (or minimize ¢, = —v,), at each
iteration n of GaBO. The recursive process of the method involves the same steps as the Euclidean
CG, namely: (i) a line minimization along the search direction (step 3); (if) the iterate update along
the search direction (step 4); and (iii) the computation of the next search direction combining the
gradient of the function at the new iterate and the previous search direction (steps 5-6). The dif-
ferences with the Euclidean version are: (1) as the gradient V¢ (zy ), and thus the search direction
7%, belong to the tangent space of zj, the exponential map is needed to update the iterate along the
search direction; (2) the step size is fixed by solving argmin,, ¢y (Epok (aknk)) with a linesearch
on the manifold (an example of linesearch algorithm on manifolds is provided in Appendix C); (3)
the previous search direction 7, has to be parallel transported to the tangent space of 241 to be
combined with the gradient of the new iterate —V¢,,(2x+1) € T, +1/M. Note that we presented the
CG on manifold with the Hastenes-Stiefel update parameter 35, but other update techniques can
also be extended to Riemannian manifolds [25].

Some problems may require to bound the search domain to a subspace, for example, to cope with
physical limits or safety constraints in robotic systems when optimizing end-effector orientations
or impedance parameters. In such cases, and particularly when the manifold is not a closed space,
it is imperative to limit the domain of GaBO by defining boundary conditions inside the manifold.
Therefore, the acquisition function is maximized over the domain X C M.
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While most of the literature on manifold optimization focuses on problems where the only con-
straint is that the solution belongs to the manifold, only few works proposed to extend constrained
optimization algorithms on Riemannian manifolds. In this context, we propose to extend the bound-
constrained CG method [34] to Riemannian manifolds to cope with boundary conditions in the
optimization. To do so, the steps 4-6 of Algorithm 1 are updated as described in Algorithm 2. At
each iteration, if the updated iterate z;1 ¢ X, it is projected back onto the feasible domain and
the search direction is reinitialized. In S%, we bound the design space by setting limits on the com-
ponents of z € S?. If a component is out of the limits, we fix it as equal to the closest limit and
reformatted the remaining components so that  still belongs to the manifold (see Appendix D for an
example). For S f ., we define limits on the eigenvalues X of the SPD matrix. If an iterate zj1 ¢ X,
we project it back to the domain by reducing/increasing the maximum/minimum eigenvalue of the
iterate.

Notice that some problems may require to optimize several parameters belonging to different mani-
folds. In this case, the domain of GaBO is a product of manifolds. Consequently, the kernel function
corresponds to the product of the kernels on the different manifolds and the optimization of the ac-
quisition function operates directly on the product of manifolds.

Algorithm 1: Optimization of acquisition function with CG on Riemannian manifolds

Input: Acquisition function -y, initial iterate zop € M
QOutput: Next parameter point €,,+1
Set ¢, = —vx, as the function to minimize and 1o = —V ¢n(z0) as search direction ;
fork=0,1..., K do
Compute the step size g using linesearch on Riemannian manifold ;
Set zp+1 = Eszk (aknk) )
HS _ (Vén(2k41),Vén(2p41)—Von(zk))z, .
LA <"kvv¢n<zk+1)*v¢n(zk>>zk ’
Set Nrt1 = —Vn(zht1) + B> Doy oz (M)
if the convergence criterion is reached then
| break
end

Compute (5

end
Set T+l = Zk+1

Algorithm 2: Update of steps 4-6 of Algorithm 1 for a domain X C M

Set Zk+1 = Eszk (aknk) )
if Zkr1 € X then
| Execute steps 5-6 of Algorithm 1
else
Project 241 to &;
Set u11 = —V(zri1);
end

5 Experiments

We test GaBO using some benchmark test functions and two simulated experiments with a 7-
DOF Franka Emika Panda robot. All the implementations were built on the Python libraries
GPflow [35], GPflowOpt [36] and Pymanopt [37]. The simulated experiments were performed
using Pyrobolearn [38]. All the BO implementations use EI as acquisition function and were
initialized with 5 random samples. Source codes and a video of the experiments are available at
https://sites.google.com/view/geometry-aware-bo.

5.1 Benchmark functions

We use a couple of benchmark test functions to study the performance of GaBO in the Riemannian
manifolds S¢ and S f 1. To do so, we first project the test functions to these manifolds and then
carry out the optimization by running 100 trials with random initialization. The selection of the
kernel parameters is carried out by MLE. The search domain & of the test functions corresponds to
the complete manifold for S and to SPD matrices with eigenvalues A € [0.001, 5] for S f -
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Figure 3: The three first plots show the logarithm of the simple regret in function of the BO iterations for the
Ackley function in S® with d = {2, 3,4} over 100 trials. The first and third quartiles are represented with a
light tube around the median line. The last graph displays the total cost for end-effector orientation learning in
S? over 30 trials. The mean and one standard deviation are represented.
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Figure 4: Logarithm of the simple regret for benchmark test functions in the Riemannian manifold of SPD
matrices ST, over 100 trials. Left: Ackley function in 87 . Right: bimodal distribution in S , . The first and
third quartiles are represented with a light tube around the median line for the three BO methods.

In the case of S¢, we compare GaBO against the classical BO which carries out all the operations in
the Euclidean space (hereinafter called Euclidean BO). As the query points must belong to S¢, i.e.
||lz|| = 1, the maximization of the acquisition is considered a constrained problem in Euclidean BO.
We minimize the Ackley function for parameter spaces of dimensionality d = {2, 3,4} to analyze
the methods performance as the parameter dimension increases. An example of the evolution of
the surrogate model of GaBO for the Ackley function in S? is shown in Appendix E. Figure 3 dis-
plays the median and the first and third quartiles of the logarithm of the simple regret along 80 BO
iterations for the three aforementioned hypersphere manifolds. We observe that, although the perfor-
mance of the two algorithms are comparable for low-dimensional hyperspheres, GaBO outperforms
the Euclidean BO when the dimension increases: GaBO converges faster to a better optimizer with
lower variance than Euclidean BO. This is particularly evident for the Ackley function on S*, where
the median regret of Euclidean BO remains far from the minimum value and displays high variance,
while GaBO converges to a value close to the optimum for all the trials after 70 iterations. The fact
that GaBO can be slightly slower than the Euclidean BO to converge in S? may be due to the rela-
tively high value of By, in the kernel (3) for this manifold. High [,,;, limits the spatial influence of
each observation on the modeling of the function f. Thus, more observations are needed to model
slowly-evolving regions of the function (see Appendix B). A solution to this is to bound the domain
of the optimization to a subspace of the manifold, which is often necessary in most real applications,
and to determine the value (3., of the kernel for this subspace, resulting in a lower Sy .

Regarding the manifold S f _» we compare our method against the Euclidean BO (augmented with
the constraint Ay > 0) and an alternative implementation that takes advantage of the Cholesky
decomposition of an SPD matrix A = LLT, so that the resulting parameter is the vectorization of
the lower triangular matrix L (hereinafter called Cholesky BO). In this case, we test two functions,
namely a bimodal Gaussian distribution and the Ackley function. Figure 4 shows the regret for
300 iterations of GaBO, Cholesky BO and Euclidean BO for the two test functions in Si L We
observe that GaBO outperforms Cholesky and Euclidean BO in both cases. The computation time
of GaBO is slightly higher than the Euclidean equivalent (see Appendix F). However, this is not a
major drawback as physical robotic experiments to collect the next value of the function f will take
significantly longer than the optimization process.

5.2 Simulated robotic experiments

We here evaluate GaBO performance when looking first for the optimal orientation for a simple
regulation task, and second for the optimal stiffness matrix of an impedance control policy, which
is of interest for variable impedance learning approaches. For both experiments, we use a simulated
7-DOF Franka Emika Panda robot. Costs parameters values are reported in Appendix G.

In the first experiment, we use BO as an orientation sampler aiming at satisfying the requirements
defined by a cost function. This may be useful for tasks where the orientation reference of a con-
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Figure 5: Total cost for stiffness learning of a Cartesian impedance controller using direct policy search over
15 trials. The mean and one standard deviation are represented.

troller needs to be refined to improve the task execution. In this experiment, the velocity-controlled
robot samples an orientation reference = §,, around a prior orientation q,, fixed by the user, with
the aim of minimizing the cost function f(q) = w,||A(q, @)|* +w-||7|* +wy,cond(M), where g,
is the current end-effector orientation, and cond(M ) is the condition number of the linear velocity
manipulability ellipsoid. This cost function aims at minimizing the error between the prior and the
current end-effector orientation with low joint torques and an isotropic manipulability ellipsoid. We
run 30 trials with random initialization for each cost function. The last graph of Figure 3 shows the
total cost for 80 iterations of GaBO and Euclidean BO. We observe that GaBO converges faster to
a better optimizer with a close-to-zero variance over the trials. Note that the difference between the
two methods is accentuated compared to the benchmark function in S3.

Since direct policy search has been a successful RL approach in robotics, for our second exper-
iment, we seek to find the optimal Cartesian stiffness of a torque-controlled 7-DOF robotic arm
implementing a Cartesian control policy f = K7 (p — p) — KPp, where p and p are the linear
position and velocity of the robot end-effector, K* and KT are stiffness and damping matrices,
and f is the control force (transformed to desired torques via 7 = J' f). The robot task con-
sists of tracking a desired Cartesian position p while a constant external force f€ is applied to
its end-effector. The policy parameter corresponds to the stiffness matrix, that is & = K7. The
stiffness-damping ratio is fixed as critically damped. We tested GaBO, Euclidean BO and Cholesky
BO using two different cost functions: f1(K”) = wy||p — p||? + wadet(K”) + w.cond(K7)
and fo(KT) = wp||p — p|*> + w.||7|? for K7 € {S%,.S%,}. The cost function f; aims at
accurately tracking the desired position using a low-volume isotropic stiffness matrix, while f, aims
at tracking the desired position accurately with low torques. For f3, a —1 reward was added if the
desired position was reached. In the case of Si 4, only a2 x 2 submatrix of the full stiffness K P
is optimized with BO, while the other components stay constant. Instead, all the components of the
3 x 3 matrix K are optimized in S f’; 1. We run 15 randomly initialized trials for each cost function.

Figure 5 shows the total cost of the stiffness learning for the two cost functions in Si 4 and Si’_ e
We observe that Cholesky BO tends to outperform Euclidean BO as the complexity of the cost is
increased, and that GaBO outperforms the other methods for all the test cases. Moreover, while
the performance of Euclidean and Cholesky BO strongly degrades as the dimensionality increases,
GaBO still provides accurate and low-variance solutions.

6 Conclusion

We proposed GaBO, a geometry-aware Bayesian optimization framework that exploited the geom-
etry of the search space to properly seek optimal parameters that lie on Riemannian manifolds. To
do so, we used geometry-aware kernels that allow GP to properly measure the similarity between
parameters lying on a Riemannian manifold. Moreover, we exploited Riemannian manifold tools
to consider the geometry of the search space when optimizing the acquisition function. GaBO pro-
vided faster convergence, better accuracy and lower solution variance when compared to geometry-
unaware BO implementations. These differences were accentuated as the manifold dimensionality
increased. In this line, we will evaluate GaBO in higher-dimensional manifolds. We also plan
to investigate a more general projection approach to handle bound-constrained gradient methods on
Riemannian manifolds. Finally, our proof-of-concept experiments open the door towards optimizing
RL policies for complex robot learning scenarios where geometry-awareness may be relevant.
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Appendices

A Geometry-aware kernel parameters

Figure 6 shows the results of the experimental selection process of 5,,i,, for the geodesic SE kernel,
as introduced in Section 4.1, for the manifolds S2, S* and Si 4

00 10044 100

0 1 p 3 1 5 0.0 0.5 1.0 1.5 —1

2 )
log(5) 10‘%10(/3)

(a) S? (b) S* (c)S2.
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Figure 6: Experimental selection of Smin. The percentage of PD geodesic SE kernel matrices K computed
from 10 different sets of 500 samples on the manifold is depicted in blue (right axis). The corresponding
distribution of the minimum eigenvalue Amin of K is depicted in purple (left axis).

B Influence of 5,.;, on GaBO

In Section 5.1, we hypothesize that the fact that GaBO can be slightly slower than the Euclidean BO
to converge in S2 may be due to the relatively high value of 3., in the kernel (3) for this manifold.
In this appendix, we illustrate and analyze the effect of 5,;, on GaBO.

The value of 8 determines the spatial influence of the observations in the Gaussian process modeling
the function f. In other words, the value of 3 controls the maximum size of the extrapolation region
around one observation. Small 3 values permit to extrapolate in a large zone around one observation
and therefore are well suited to model functions that evolve slowly with only few observations. For
this type of functions, where the optimum /3 tends to be close to 5y, increasing [3,,,;, may result
in a slight increase of the number of observations needed to properly model the function. Therefore,
GaBO may need a few more query points to converge.

Figure 7 shows an example of the influence of the S value on the choice of the next query point.
Two different cases with 8 = 6.5 and 8 = 25 are considered. The left graphs displays the mean
of a GP based on 5 observation on the sphere with colors ranging from yellow (low values) to dark
purple (high values). The corresponding acquisition function is displays on the right graphs with
the same colors. The next query point, corresponding to the maximum of the acquisition function is
depicted by a red square. We observe that the zone of influence of the observations is reduced for
B = 25 compared to § = 6.5. This modifies the acquisition function, whose maximum is slightly
closer to the observation for a higher value of 5. Therefore, the number of query points needed to
reach the optimum of the function may slightly increase if the value S,y is increased. Note that
the difference between the query points obtained with 5 = 6.5 and 5 = 25 remains small for a
consequent difference between the two tested 5 values. Therefore, a slight increase of S, will
have a limited impact on the number of iterations needed by GaBO to converge.

In the case of rapidly-varying functions that are therefore better modeled by 3 values significantly
higher than ,,;,, a slight change on (3,,,;, will not impact GaBO.

C Adaptive line search on Riemaniann manifolds

Algorithm 3 presents the adaptive line search process on Riemannian manifolds [25]. The goal of
this algorithm is to compute the stepsize oy used in the conjugate gradient descent described in
Section 4.2. The line search aims at finding the step size that maximizes the acquisition function,

i.e. it minimizes the function ¢,, = —7,, along the search direction 7;,. As the search direction lies
on the tangent space of the iterate zy, this corresponds to solving
argmin ¢,, (Epok (a;m;c)) . 4)
ar
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(a)B8=6.5 (b) =25

Figure 7: Tllustration of the effect of 5 on GaBO. The GP mean and corresponding acquisition function are
depicted by colors ranging from yellow (low values) to dark purple (high values) on the left and right graphs,
respectively. The observations and next query point are depicted by black dots and a red square.

Algorithm 3: Adaptive linesearch for CG on Riemannian manifolds

Input: Function ¢, = —n, iterate zy, search direction 7y, initial stepsize o, contraction factor ¢
Output: Final stepsize o
forj=0,1...,Jdo
Set z = Exp,, (axnk)
if ¢n(2) > dn(zk) + 0.50% (Ve (2k), Ni) =, then
| break
end
Qp = Cag
end
if ¢n(2) > Pn(zx) then
\ o = 0

end

D Example of boundary conditions handling on S*

Figure 8 shows an example of the application of Algorithm 2 on the unit circle S*. In this example,
an acquisition function is optimized over the domain S with the constraint y < 0.6. Assume that
the point initially proposed by the algorithm in step 4 is z = (x,y)T = (0.49,0.87)7, depicted by
a red dot. This point does not satisfy the constraint y < 0.6, and needs to be projected back onto
the feasible domain. As explained in Section 4.2, we first fix the value of the y component to the
closest limit and obtain the point Z = (0.49,0.6)T, depicted by a yellow dot. Note that Z ¢ S* as
its norm is not equal to 1, thus we need to project this point on the manifold. To guarantee that the
bound constraints remain satisfied, we reformat only the components that were not affected by the
constraints. In this example, y is fixed at 0.6 and only the component x varies to obtain a point on
the manifold. Therefore, we obtain the final point z;,1 = (0.8, 0.6)T € X, depicted by a blue dot.

E Evolution of the surrogate model of GaBO for the Ackley function in S>

Figure 9 shows an example of the evolution of the surrogate model of GaBO for the Ackley function
in S2. The left column displays the mean of the GP model on the sphere with colors ranging from
yellow (low values) to dark purple (high values). The observed points x,, are depicted by black dots.

Figure 8: Application of Algo-
rithm 2 on S*. The manifold S*
is depicted by a balck curve and
the constraint y < 0.6 is shown
by the green dotted line. The ini-
tial point z, fixed point Z and fi-
nal point zy41 are depicted by
red, yellow and blue dots, respec-
tively. Arrows show the order of
the projections.

1.0
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The global minimum z* = (0,0,0)7 is shown as a green star and the current best guess is depicted
by a blue square. The middle and right columns show the GP model on the sphere projected on the
dimensions 1, 2 and xo, x3, respectively. The mean value of the GP is represented on the vertical
dimension with the same colors as the left column. The variance of the model, represented with two
standard deviations, is depicted by a gray envelope around the mean.

We observe that the region around the optimum of the objective function is well modeled by GP
model after 10 iterations. The current best guess is also close to the optimum. After 30 iterations,
the GP results in a good approximation of the objective function with a low variance in the region
around the optimum value.

F BO computation times

Table 2 provides the computation time per iteration of GaBO, Euclidean BO and Cholesky BO for
the optimization of the Ackley function on the different manifolds used in the paper. Overall, the
computation time of GaBO is slightly higher than the Euclidean equivalent. The increase observed
for Sf_ . when compared to S 4 is due to the fact that the exponential and logarithmic maps are more
complex in S f _, involving matrix exponential and logarithm computations, than their equivalent on
the hyperspheres. We do not consider the increase of the computation time as a major drawback as
physical robotic experiments will take significantly longer than this time to collect the next value of
the function f.

Table 2: Computation time for one iteration of the different BO frameworks when optimizing the Ackley
function on several manifolds. All the time values are given in seconds [s].

S? S3 St S22,
GaBO 1.554+0.32 | 1.49+£042 | 1.944+0.42 | 6.08 £5.36
Euclidean BO | 0.48 +£0.14 | 0.49£0.17 | 0.53+0.14 | 0.24 £0.17
Cholesky BO - - - 0.54 £0.12

G Parameters of simulated robotic experiments

Tables 3, 4 and 5 provide the values of the parameters for the simulated robotic experi-
ments presented in Section 5.2. The Franka-Emika robot was initialized from a joint position
(0.,0.3,0.,—1.,0.,1.5,0.)T for all the experiments.

Table 3: Cost parameter values for the orientation sampling experiment.

q Wy W Win,

(0.408,0.408,0,0.816)T | 1 | 10=* | 0.1

Table 4: Cost parameter values of f; in the optimal stiffness learning experiment.

P [m] D| wp | wa We feIN]
(0.66,—0.01,0.69)T | 0 | 1 | 107 | 10=* | (0,20,—20)7

Table 5: Cost parameter values of f5 in the optimal stiffness learning experiment.

p [m] p|wp | wr feIN]
(0.5,-0.4,0.75)T | 0 | 1 | 107° | (0,20,—20)"
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Figure 9: Surrogate GP of GaBO for the minimization of the Ackley function in S?. The GP mean is depicted
by colors ranging from yellow (low values) to dark purple (high values) and + two standard deviations in gray
(projected graphs). The global minimum and the current best guess are shown as a green star and a blue square.
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