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Abstract: In learning from demonstrations, it is often desirable to adapt the be-
havior of the robot as a function of the variability retrieved from human demon-
strations and the (un)certainty encoded in different parts of the task. In this paper,
we propose a novel multi-output Gaussian process (MOGP) based on Gaussian
mixture regression (GMR). The proposed approach encapsulates the variability
retrieved from the demonstrations in the covariance of the MOGP. Leveraging the
generative nature of GP models, our approach can efficiently modulate trajecto-
ries towards new start-, via- or end-points defined by the task. Our framework
allows the robot to precisely track via-points while being compliant in regions of
high variability. We illustrate the proposed approach in simulated examples and
validate it in a real-robot experiment.
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1 Introduction

In the context of learning from demonstrations (LfD), robot motions can be generated from demon-
strated trajectories using various probabilistic methods, e.g. Gaussian mixture regression (GMR)
[1], dynamical movement primitives (DMP) [2], probabilistic movement primitives (ProMP) [3]
kernelized movement primitives (KMP) [4] or Gaussian process regression (GPR) [5]. The co-
variance matrices of the prediction distributions computed by GMR, ProMPs and KMP encode the
variability of the predicted trajectory. This variability, reflecting the dispersion of the data collected
during the demonstrations, carries important information for the execution of the task. For example,
the phases of the task in which a high precision is required, e.g. picking an object in a specific loca-
tion, are characterized with a low variability, and vice-versa. During the reproduction, the variability
is typically used to define robot tracking precision gains and permits the combination of different
controllers [6]. However, the approaches encoding variability do not take into account the availabil-
ity of data in the different phases of the task. Inversely, the covariance matrices of the prediction
distribution of GPs correspond to the prediction uncertainty, which reflects the presence or absence
of training data in different phases of the task. This uncertainty measurement has been used, for
example, to modulate the behavior of the robot far from the training data [6] or to actively make
requests for new demonstrations in unexplored regions of the input space [7].

In LfD, it is often desirable to precisely refine parts of the demonstrated trajectories (e.g. due to
changes in the environment), while maintaining the general trajectory shape (mean and variability)
as in the demonstrations. It is also desirable to adapt the behavior of the robot, e.g. its compliance at
different phases of the tasks, as a function of the variability of the demonstrations or the presence of
(un)certainty in the reproduction. As none of the aforementioned methods provide both information
features simultaneously, several approaches have been developed to take into account prediction
uncertainty and variability. In [5], the reproduced trajectories are computed as a product of the
predictions of local GPs, obtained by clustering the input space similarly to the approach of [8].
Therefore, by adapting the parameters of each GP, the resulting uncertainty is adapted as a function
of the variability of the different phases of the demonstrations. In [9], the prediction uncertainty
and variability are inferred separately. The trajectories are predicted using a combination of GP
and dynamical movement primitives (DMP), therefore providing uncertainty measurement. On the
other hand, the variability in the reproduction is determined by inferring the components of the
corresponding covariance matrix with GPs.
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In this paper, we propose an approach that aims at encapsulating the variability information of
the demonstrations in the prediction uncertainty. We take inspiration from multi-output Gaussian
processes (MOGPs) under the linear model of coregionalization (LMC) assumption to design a non-
stationary, multi-output kernel based on GMR. In contrast with the aforementioned approaches, both
variability and uncertainty information are encoded in a single GP. Moreover, we define the prior
mean of the process as equal to the mean provided by GMR. This permits to ignore the training data
in the generation of new trajectories and to consider only via-points constraints as observed data,
therefore alleviating the computational cost of the GP. Moreover, setting the tracking precision as a
function of the retrieved covariance allows us to demand the robot to precisely track the via-points
while lowering the required tracking precision in regions of high variability.

The remainder of the paper is organized as follows. GMR and GPR are reviewed and compared in
Section 2. The proposed GMR-based GP is introduced in Section 3 and validated in a real-robot
experiment in Section 4. Finally, Section 5 presents a discussion on similarities and differences of
the proposed approach compared to other probabilistic methods, notably ProMP and KMP.

2 Background

2.1 Gaussian mixture regression

Gaussian mixture regression (GMR) exploits the Gaussian conditioning theorem to estimate the
distribution of output data given input data [10, 11]. A Gaussian mixture model (GMM) is first
estimated to encode the joint distribution of input and output datapoints, e.g., with an Expectation-
Maximization (EM) algorithm. The output given observed input is then predicted via a linear com-
bination of conditional expectations. Hence, GMR does not fit the regression function directly, but
relies instead on the learned joint distribution.

We denote X and Y random vectors of input and corresponding output data, respectively, and by
x and y arbitrary realizations of them. In a GMM with C components, the joint distribution of
(X>,Y >)> is encoded by (

X
Y

)
∼

C∑
`=1

π` N
((
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)
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with π`,µ` and Σ` the mixing coefficient (prior), mean and covariance matrix of the `-th component.

GMR computes the conditional distribution of the GMM joint distribution to infer the output vec-
tor corresponding to a given input vector. The resulting multimodal distribution possesses second
order moments that can be calculated from the conditional means and covariances of the multivari-
ate Gaussian distributions associated with individual components using the laws of total mean and
covariance, so that

ŷM(x) =

C∑
`=1

h`(x)ŷ`(x) and Σ̂M(x) =

C∑
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h`(x)Σ̃`(x)− ŷM(x)(ŷM(x))>, (2)

with componentwise conditional means and covariances

ŷ`(x) = µY
` + ΣYX

` ΣX
`
−1

(x− µX
` ) and Σ̂` = ΣY

` −ΣYX
` ΣX

`
−1

ΣXY
` ,

and Σ̃`(x) = Σ̂` + ŷ`(x)(ŷ`(x))>. The so-called responsability h` of component ` are computed
in closed form as

h`(x) =
π` φ (x;µX

` ,Σ
X
` )

C∑
i=1

πi φ (x;µX
i ,Σ

X
i )

, (3)

where φ (x;µ,Σ) stands for the probability density function at point x of the multivariate Gaussian
distribution with meanµ and covariance matrix Σ. The computational complexity of GMR is mainly
dependent on the number of GMM components as it governs the dimensionality of the maximum
likelihood problem usually tackled by Expectation-Maximization. Moreover, the number of GMM
components is the only parameter that needs to be specified and can be estimated online, e.g., with
a Bayesian nonparametric approach [12]. Therefore, GMR is well adapted for real-time application
and its simplicity allows it to be combined easily to other complementary approaches.
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Figure 1a shows an example of application of GMR. The training dataset consists of 5 demonstra-
tions of a two-dimensional time-driven trajectory. A GMM (C = 6) is first trained to encode the
joint distribution of the inputs t and outputs y. The conditional distribution of y given t is inferred
by GMR. The covariance Σ̂M(x) of the distribution encodes the variability of the demonstrations.
The output distribution is extrapolated in the absence of training data (t > 2).

2.2 Gaussian process regression

Gaussian processes (GPs) form a class of probabilistic models that aims at learning a deterministic
input-output relationship, up to observation noise, based on a Gaussian prior over potential objective
functions. In the noiseless GP framework, the output y is hence typically seen as a function of a
controlled input x. Randomness comes in an instrumental way as the function y(x) is assumed to
be one realization of a Gaussian random process or random function denoted Y (x). Predictions of
the objective function are then made by relying on the conditional distribution of Y (x) knowing that
Y (x

(o)
n ) coincides with the observed outputs y(o)

n at their corresponding observation inputs x(o)
n .

Multi-output Gaussian processes (MOGPs) generalize GPs to vector-valued output by predicting
jointly the output components (see [13] for a review). Therefore, MOGPs exploits the potential
relation between the output components, which are not taken into account if predictions are com-
puted separately for each dimension. Similarly to standard GP, the vector-valued objective function
is modeled in MOGP with a vector-valued GP (Y (x)), inducing finite-dimensional prior distri-
butions Y (x1:N ) ∼ N (µx1:N

,Kx1:N
) for any arbitrary set of inputs x1:N . We here denote

µx1:N
= µ(x1:N ) and Kx1:N

= k(x1:N ,x1:N ) the corresponding mean vector and covariance
matrix, where µ and k stand for the mean function and cross-covariance kernel of the MOGP and
µx ∈ RD,Kx ∈ RD×D with D the output dimension.

Denoting y(o)
1:N the observed realization of Y (x

(o)
1:N ) + ε, the posterior distribution follows by Gaus-

sian conditioning
Y (x)|y(o)

1:N ∼ N (ŷP(x), Σ̂P), (4)
with conditional mean and covariance functions given by
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)−1
K
x
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1:N ,x
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where Σε is the covariance matrix of the observation noise ε, which is assumed centered Gaussian
and independent of the process Y . The covariance Σ̂P(x) expresses the prediction uncertainty for
all components and between them. In typical cases, the further away the input data lies from the
training dataset the larger the prediction variance, as illustrated in Fig. 1-(right). Moreover, the
mean ŷP(x) then converges to the prior mean µx, equal to 0 in this case.

The class of covariance kernels that we consider in this paper is formulated as a sum of separable
kernel functions generated under the linear model of coregionalization (LMC) assumption [14]. This
class of kernel functions is often called separable as the dependencies between inputs and outputs
are decoupled. Therefore, the kernel k(x,x′) between two input vectors x and x′ is expressed as

k (x,x′) =

Q∑
q=1

Υqkq (x,x′) , (7)

where the so-called coregionalization matrices Υq ∈ RD×D are positive semi-definite matrices
representing the interaction among the output components. The choice of the scalar-valued kernels
kq and the design of the coregionalization matrices Υq are crucial for the GP as they represent our
prior knowledge about the function that is being learned.

Figure 1b shows an example of MOGP with the separable kernel (7) where Q = 1 and kq (x,x′)

is a Matérn kernel (ν = 5/2), so that kq (x,x′) = σ2
f

(
1 +

√
5r
σl

+ 5r2

3σ2
l

)
exp

(
−
√
5r
σl

)
, where

r =
√

(x− x′)>(x− x′) is the Euclidean distance between inputs and σf , σl are the variance and
lengthscale parameters, respectively.
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(a) (b)

Figure 1: Comparison between (a) GMR and (b) GPR. The training data are shown in light gray for all graphs.
The mean is represented by a continuous line and the variance by a light tube around the estimate. The left
graphs show the output trajectories estimated by GMR and GPR, respectively. The beginning of the trajectories
is marked by a cross. The right graphs show the estimated trajectory for each output component as a function
of the input t. Time and positions are given in seconds and centimeters, respectively.

3 GMR-based Gaussian Processes

In this section, we propose to combine GMR and GPR to form a GMR-based GP. The proposed
approach takes advantage of the ability of GPs to encode various prior beliefs through the mean and
kernel functions and allows the variability information retrieved by GMR to be encapsulated in the
uncertainty estimated by the GP. Moreover, the proposed approach enjoys the properties of genera-
tive models, therefore new trajectories can be easily generated through sampling and conditioning.

3.1 GMR-based GPs formulation

We define the GMR-based GP as a GP with prior mean

µ(x) = ŷM(x), (8)

and a kernel in the form of a sum of C separable kernels associated with the C components of the
considered GMM

k(x,x′) =

C∑
`=1

h`(x)h`(x
′)Σ̂`k`(x,x

′). (9)

The prior mean of Eq. (2) allows the GP to follow the GMR predictions far from training data.
Moreover, the constructed GP is also covariance non-stationary due to its spatially-varying core-
gionalization matrices [15]. The input-dependent coregionalization matrices h`(xm)h`(xn)Σ̂` cor-
responding to this conception are determined by GMR (via (2), (3)). Alternatively, one can say
that the GMR responsabilities h` weight the importance of the kernels k`(xm,xn) according to the
proximity of the input data to the center of GMM components. Thus, the kernels associated to the
centers close to the given input data are more relevant than distant centers. The covariance matri-
ces Σ̂` allows the dependencies between the output data to be described for each GMM component.
Note that both the coregionalization matrices and the number of separable kernels are determined by
GMR. Therefore, the only parameters to determine are the hyperparameters of the kernels k` which
can be estimated, for example, by maximizing the likelihood of the GP. Moreover, the variance pa-
rameters σf of the kernels k` are fixed to 1 as they are already scaled by the covariance matrices Σ̂`.
Thus, the estimation of hyperparameters is simplified compared to standard LMC.

Figure 2a shows the prior mean and 10 sample trajectories generated from the proposed GMR-based
GP where k` are Matérn kernels (ν = 5/2). The hyperparameters, namely the lengthscales σl,` of
the k` and the covariance of the noise Σε = σεI , were optimized by maximum likelihood estimation
within the GPy framework [16]. Note that the prior mean of the process corresponds to the mean
obtained by GMR in Figure 1a. Moreover, the prior uncertainty provided by the GMR-based GP
is lower in the regions where the variability of the demonstrations is low, e.g. at the bottom of the
straight vertical line of the B letter, and higher in the regions of higher variability, e.g. in the curves
in the right part of the B.
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(a) (b)

Figure 2: (a) Sample trajectories generated from GMR-based GP. The prior mean of the process and the sample
trajectories are represented by continuous blue and purple lines, respectively. The covariance K

t
(o)
1:N

of the

process is represented by a light purple tube around the prior mean. (b) Sample and predicted trajectories
generated from the posterior distribution of the GMR-based GP. The prior, sampled and predicted trajectories
are represented by continuous blue, dark pink and red lines, respectively. The uncertainty of the prediction
is represented by a light red tube around the predicted mean. Via-points, considered as observations for the
GMR-based GP, are represented by black dots. The trajectories are extrapolated from training data for t > 2.

3.2 GMR-based GPs properties

A particularity of the presented GMR-based GP is that the information on the demonstrations distri-
bution is included in the prior mean µx and covariance Kx after determining the hyperparameters.
Therefore, the training data can be ignored and our model can be conditioned uniquely on new ob-
servations. Figure 3a shows the mean and uncertainty recovered by a 1D-output GMR-based GP
without any observation. The process was constructed based on a GMM with two components with
k` defined as Matérn kernels (ν = 5/2). The lengthscale parameters σl of the k` and the covariance
of the noise of the process σε are fixed as equal to 1 and 1e−4, respectively. Note that the distribu-
tion corresponds to the prior of the GMR-based GP, therefore the mean is exactly equal to the mean
computed by GMR. Moreover, if a component ` is entirely responsible for a test datapoint so that
h` = 1, the corresponding uncertainty is equal to the conditional covariance of the component Σ̂`

augmented with Σε, as observed for t < 0.6 and t > 1.8 in Figure 3a. In the case where several
components are responsible for the datapoint, its uncertainty is a weighted sum of the conditional
covariances, as observed for the zone in between the two GMM components. Therefore, the prior
uncertainty obtained by GMR-based GP without observation reflects the variability provided by
GMR. However, note that the prior uncertainty of GMR-based GP is not equal to Σ̂M.

In the cases where it is desirable to adapt trajectories towards new start-, via- or end-points (ξv, ζv),
those particular points are used to define a new set of observation inputs and outputs (x

(o)
1:V ,y

(o)
1:V ) =

(ξ1:V , ζ1:V ) which is then used to infer the posterior distribution of the GMR-based GP with (4).
Figures 3b and 3c show examples where 2 and 3, via-points were added to the trajectory. We
observe that the mean of the process goes through the via-points and the uncertainty becomes very
small in these locations. Note that conditioning a trajectory towards via-points with GMR alone is
not straightforward due to the fact that covariance terms between two datapoints are equal to zero.

As in a standard GP, the predicted mean and uncertainty depend strongly on the kernel parameters.
Moreover, one of the advantages of the GMR-based GP is that each kernel k` can be chosen individ-
ually and their parameters are determined separately. Therefore, different behaviors can be obtained
as a function of the location in the input space, as shown by Figure 3d where the lengthscale pa-
rameters of the kernels corresponding to the left and right GMM component are equal to 0.1 and
5, respectively. Similarly to a standard GP, the noise of the process determines the behavior of the
GMR-based GP at the via-points location. As shown by Figure 3e where σε = 0.1, the constraint
of passing exactly through the via-points is alleviated and the mean of the GMR-based GP passes
close-by the via-points while the uncertainty is equal to the noise of the process. Note that the noise
parameter can also be defined separately for each kernel k`.

Figure 2b shows the predicted mean and corresponding uncertainty as well as three trajectories
sampled from the posterior distribution of the GMR-based GP on the B trajectory. As explained
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(a) (b) (c) (d) (e)

Figure 3: Example of time-driven 1D-trajectories predicted by GMR-based GP. The process was constructed
based on a 2-components GMM, represented by blue ellipses. The estimate of GMR-based GPR is shown by
a red continuous line with the corresponding uncertainty represented by a light tube around the mean. The
initial observations are discarded after determining the hyperparameters. The lenghtscale parameters and noise
covariance are fixed as σl = 1 and σε = 1e−4, respectively. (a) The posterior distribution without any new
observation is represented. (b-c) Two, respectively 3, via-points, represented with black dots, are added as
observations of the GMR-based GP. (d) The lengthscale parameters are fixed as σl = 0.1, σl = 5 for the left
and right GMM component, respectively. (e) The noise covariance of the process is fixed as σε = 0.1 (σl = 1).

previously, the initial demonstrations data were used for hyperparameters estimation but not incor-
porated as conditioning data and three via-points have been added as new observations. We observe
that the estimate and the posterior trajectories are adapted to pass close to the via-points. In the
zones far from the via-points, the predicted trajectory follows the prior mean of the process.

4 Experiments

In this section, we evaluate the proposed approach in a peg-in-hole task achieved by the 7-DoF
Franka Emika Panda robot. In the first part of the experiment, 3 demonstrations of the task were
collected by kinesthetically guiding the robot to first approach a hollow cylinder and then insert
the peg in it. For all the demonstrations, the hollow cylinder was placed 20 cm above the table.
The collected data, encoding time t and Cartesian position (y1 y2 y3)>, were time-aligned. We
trained a GMM and determined the hyperparameters of a GMR-based GP, as well as a MOGP
with the separable kernel (7) (Q = C) based on the time-driven demonstrated trajectories. Matérn
kernels (ν = 5/2) were chosen as individual kernels k` and kq for the GMR-based GP and MOGP,
respectively. The number of components of the GMM (C = 4) was selected by the experimenter.
Figure 4a shows the demonstrated trajectories and corresponding GMM states.

In the second part of the experiment, an obstacle was added in between the initial position of the
robot and the hollow cylinder. Moreover, the hollow cylinder was positioned directly on the table, i.e.
20 cm below its location during the demonstrations. Via-points were determined by the experimenter
to modulate trajectories so that the robot avoids the obstacle in the desired manner and its final
position corresponds to the new location of the hollow cylinder. The performances of the proposed
GMR-based GP, the MOGP and GMR to reproduce the task in the modified environment were
compared.

As explained in the previous section, the via-points were used to define a new set of observations
for the GMR-based GP, while the original training data are discarded after inferring the hyperpa-
rameters. In the case of the MOGP, the mean and uncertainty of the reproduction considering V
via-points are updated for each testing input x by conditioning the distribution (4) on the desired
via-points. The mean and variability of the reproduction obtained by GMR can be updated in a
similar way. However, as the covariances between different datapoints are not encoded in GMR, the
generated trajectory is discontinuous. Therefore, we did not reproduce it with the robot and we show
instead in the following graphs the GMR reproduction where no via-points are considered, whose
mean corresponds to the prior mean of the GMR-based GP.

The task was reproduced using a linear quadratic regulator (LQR) controller tracking the trajectory
predicted by GMR-based GPR, MOGP or GMR [1]. The required tracking precision was set as
proportional to the inverse of the posterior covariance Σ̂ of the different methods. This information
is exploited to demand a high precision tracking in the regions of the trajectories where high certainty
(GMR-based GP and MOGP) or low variability (GMR) are observed, and vice-versa.

Figure 5 shows snapshots of the robot reproducing the peg-in-hole task using the proposed GMR-
based GP (top row) and the MOGP (bottom row). We observe that the robot is able to circumvent
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(a) (b)

Figure 4: (a)-top Demonstrated trajectories (in light gray) and corresponding GMM (K = 4) represented
as blue ellipses. The Cartesian positions y1, y2, y3, considered as outputs, are represented as a function of
the time, considered as input. (a)-bottom Reproduced trajectories. The means of the trajectories generated
by GMR-based GP, MOGP and GMR are represented by red, yellow and blue lines, respectively, with their
respective covariance depicted by light tubes around the estimates. The via-points defined to modulate the
trajectories generated by GMR-based GP and MOGP are depicted with black dots. (b) 3D representation of
the reproduced trajectories by the robot. The beginnings of the demonstrated and reproduced trajectories are
depicted by stars.

Figure 5: Snapshots of the robot reproducing the peg-in-hole task using GMR-based GP (top row) and MOGP
(bottom row). Both methods allows the robot to circumvent the obstacle. However, the peg is successfully
inserted in the hole with the GMR-based GP, while the robot fails to insert the peg with MOGP (observe that
the blue hollow cylinder is behind the peg at the end of the trajectory).

the obstacle with both methods. However, the peg insertion fails when the MOGP is used, as the
peg is located in front of the cylinder at the end of the trajectory. This is due to the fact that the
trajectory generated by the MOGP straightly links the two zones characterized with via-points, while
the GMR-based GP trajectory tends to follow the prior mean defined by GMR in between the two
zones, as shown in Figure 4a-bottom. This behavior allows the robot to position the peg above the
hole before approaching the cylinder and perform the insertion as demonstrated in the first phase of
the experiment. Inversely, by using the MOGP, the robot approaches the hollow cylinder from the
side, and therefore is unable to insert the peg. These different behaviors are illustrated in Figure 4b,
where the 3D trajectories reproduced with the different methods are represented. In order for the
MOGP to successfully reproduce the insertion, a supplementary via-point could be added prior to
the insertion. However, this supplementary via-point is not needed by the GMR-based GP thanks to
its prior mean.

Moreover, as shown in Figure 4a-bottom, the uncertainty computed by the MOGP is low along the
whole trajectory, resulting in a rigid behavior of the robot for the whole reproduction. In contrast,
the GMR-based GP ensures a high tracking precision in the two parts of the trajectory characterized
by the via-points, while the robot can be more compliant elsewhere depending on the variability en-
coded by the GMR, notably at the beginning of the reproduced trajectory. A video of the experiment
and source codes are available at https://sites.google.com/view/gmr-based-gp.
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5 Discussion

By defining a prior mean as GMR and by encapsulating the variability of the demonstration in its
uncertainty, the proposed GMR-based GP allows efficient reproductions of tasks learned by demon-
stration while adapting the learned trajectories towards new start-, via- or end-points. We discuss
here similarities and differences between the proposed approach and other algorithms widely used
to learn trajectories. Figures accompanying the discussion are displayed in Appendix A.

As briefly mentioned in the previous section, adapting trajectories with GMR is difficult as condi-
tioning on via-points results in discontinuous trajectories and re-optimizing the underlying GMM to
fulfill via-points constraints is not straightforward. In contrast, the trajectories can be easily adapted
to go through start-, via- or end-points by conditioning on the desired observations in the case of GP
and ProMP. Trajectories can also be adapted using DMP. However, DMP does not handle variation
and uncertainty information. Moreover, as DMP and ProMP encode trajectories by relying on basis
functions equally spaced in time, selecting appropriate basis functions becomes difficult with high-
dimensional inputs. In contrast, kernel methods and GMR, for which GMM learns the organization
of basis functions, generalize well to high-dimensional inputs. By using GP, the trajectories are
modeled without considering the correlations between the output components. This problem can
be alleviated by replacing GP by MOGP. Notice that the computational complexity of testing for
the proposed GMR-based GP is importantly reduced compared to MOGP, as the set of observations
used in the testing part is only composed of desired via-points, therefore resulting in a computational
complexity of O(V 2D2) instead of O(N2D2), with D the output dimension and V � N .

Overall, KMP shares strong similarities with the proposed GMR-based GP. Both approaches are
kernel-based and can therefore cope with high-dimensional inputs. Moreover, both make use of
GMR, to retrieve a reference trajectory in the case of KMP and to define the prior mean as well as
kernel parameters for GMR-based GP. Therefore, the correlations between the output components
are taken into account in both models and they predict full covariances for inferred outputs. Note
that both approaches can make use of other algorithms than GMR to capture the distribution of the
demonstrations.

Compared to KMP which can be related to kernel regression, the framework of GMR-based GP al-
lows the representation of more complex behaviors, notably by defining priors for the process. Our
approach benefits of the properties of generative models, allowing sampling of new trajectories from
prior and posterior models (as shown in Fig. 2b), and is highly flexible due to the kernels k` that can
be chosen individually, resulting in different behaviors of the model in the different regions of the
input space. Moreover, GMR-based GP provide an uncertainty information encapsulating the vari-
ability in the variance parameter of the kernel, while KMP introduces the measure of the variability
of the demonstrations as the covariance matrix of the observation noise. As a consequence, for the
example of a robot tracking via-points, KMP will adapt the distribution according to the covariance,
representing the variability of the demonstrations, given initially by GMR. In contrast, our approach
allows us to set via-points that the robot is required to track precisely, where the covariance tends
to zero due to GP properties. This is relevant for the case in which controller gains are set as a
function of the observed covariance, as we can ensure high precision due to close-to-zero prediction
variances.

6 Conclusion
This paper presented a new class of multi-output GP with non-stationary prior mean and kernel
based on GMR. Our approach inherits of the properties of generative models and benefits of the
expressiveness and versatility of GPs. Within this framework, the variability of the demonstrations
is encapsulated in the prediction uncertainty of the designed GP. Correlations between the different
output components are taken into account by the model. Moreover, the method takes advantage of
the prior obtained from the demonstrations for trajectory modulation, considering only via-points
constraints as observed data to generate new trajectories. Our framework allows a precise tracking
of via-points while the compliance of the robot can be adapted as a function of the variability of
the demonstrations in other parts of the trajectories. Extensions of this work will investigate more
in details the properties and limits of the proposed approach. Moreover, we plan thorough compar-
isons between GMR-based GP and other approaches of interest, such as KMP. Finally, the proposed
approach may also be considered in an active learning framework, where new datapoints are queried
in regions of high uncertainty.
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Appendices

A Comparison of GMR-based GP with ProMP and KMP

Figure 6 shows an example of modulated trajectories recovered by ProMP, KMP and GMR-based
GP. The training data, consisting of 5 demonstrations of a two-dimensional time-driven trajectory,
are identical to the training data of Figures 1 and 2. As in Figure 2b, via-points are represented by
black dots. ProMP is evaluated with 20 Gaussian basis functions, while both KMP and GMR-based
GP are based on a 6-components GMM.

As expected the three methods are able to generate trajectories passing through the via-points. As
discussed in Section 5, ProMP encodes trajectories by relying on basis function equally spaced
in time. In contrast, both KMP and GMR-based GP rely on GMR, for which GMM learns the
organization of the basis functions. Note that the reference trajectory of KMP and the prior mean
of GMR-based GP, depicted by a light blue line in Figures 6b and 6c are the same, as they both
correspond to the mean of GMR.

We observe that the global shape of the trajectory is modified by introducing via-points with KMP. In
contrast, GMR-based GP tends to follow the prior trajectory in the absence of via-points. However,
this change of shape allows KMP to track more precisely the first via-point compared to ProMP and
GMR-based GP. Moreover, in the case of KMP, the prediction variance at the via-points depends on
the variability of the GMR, while it can be set close to zero with GMR-based GP. This is due to the
fact that, in the case of KMP, the variability of the demonstrations, encoded by GMR, is introduced
as the covariance matrix of the observation noise. In contrast, the tracking precision can be set
independently with GMR-based GP, as shown by Figures 3c, 3e. The aforementioned difference
between KMP and GMR-based GP can also be observed by comparing Figures 3 and 7. Moreover,
as opposite to KMP, the behavior of GMR-based GP can be modulated in different regions of the
input space due to the kernel k` that can be chosen individually (see Figure 3d).

(a) ProMP (b) KMP (c) GMR-based GP

Figure 6: Comparison of the predicted trajectories generated by (a) ProMP, (b) KMP and (c) GMR-based
GP with three via-points. The mean is represented by a continuous line and the variance by a light tube
around the estimate. Via-points are represented by black dots. The mean of the trajectories recovered from the
demonstrations (without via-points) are depicted by blue lines.

Figure 7: Example of time-driven 1D-trajectory predicted by KMP with three via-points. The reference tra-
jectory of KMP is based on the 2-components GMM of Fig. 3a, represented by blue ellipses. The lengthscale
parameter of the Gaussian kernel is fixed as σl = 1. The via-points are represented with black dots.
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B Computation Times

Table 1 gives the computation time for one test data with the training data of the real robot experi-
ment of Section 4 with a non-optimized Python code on a laptop with 2.7GHz CPU and 32 GB of
RAM.

Table 1: Computation time of GMR, MOGP and GMR-based GP for one test data in the real robot experiment
of Section 4. All the time values are given in milliseconds [ms].

GMR MOGP GMR-based GP
1± 0.1 4± 0.6 13± 1
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