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1 Derivation of the Dogleg step for QNTRM

The Dogleg method aims to obtain an approximate solution of the trust region problem

min
∆θ

fqk (θk + ∆θ) subject to (∆θ)TFk(∆θ) ≤ δk (1)

where fqk (θk + ∆θ) = fk + ∇fTk (∆θ) + 1
2 (∆θ)TBk(∆θ). In this section, we derive the Dogleg

step under the trust region defined by the KL-divergence constraint.

We begin by first transforming the trust region problem in (1) into standard form. Let Fk = LkL
T
k

which can be obtained for example by Cholesky factorization since the Fischer matrix Fk is positive
definite. Note that the factorization is only used for deriving the step and is never required for the
computations.

Defining ∆̂θ = LTk ∆θ we can recast the quadratic model as

f̂qk (θk + δ̂θ) = fk + ∇̂f
T

k (∆̂θ) +
1

2
(∆̂θ)T B̂k(∆̂θ) (2)

where ∇̂fk = L−1
k ∇fk and B̂k = L−1

k BkL
−T
k . It is easily verified that fqk (θk + ∆θ) = f̂qk (θk +

LTk ∆θ) and (∆θ)TFk(∆θ) = (∆̂θ)T (∆̂θ). Hence, the trust region problem in (1) can be recast as
the standard trust region problem

min
∆̂θ

f̂qk (θk + ∆̂θ) subject to (∆̂θ)T (∆̂θ) ≤ δk (3)

In the following, we will derive the Quasi-Newton, Gradient and Dogleg steps based on (3) and then,
transform these steps to the original space using the transformation ∆̂θ = LTk ∆θ.

The Quasi-Newton step for (3) is

∆̂θ
QN

= −B̂−1
k ∇̂fk = −LTkB−1

k ∇fk (4)

where the second equality is obtained by substitution. Thus, the Quasi-Newton step in the original
space of parameters is

∆θQN = −B−1
k ∇fk. (5)

The gradient direction for (3) is ∆̂θ
gd

= −∇̂fk = −L−1
k ∇fk. The optimum stepsize βk along the

gradient direction is obtained from

min
β
f̂qk (θk + β∆̂θ

gd
). (6)

Hence, the optimal stepsize along the gradient direction is

βk =
∇̂f

T

k ∇̂fk
∇̂f

T

k B̂k∇̂fk
=

∇fTk F
−1
k ∇fk

(F−1
k ∇fk)TBk(F−1

k ∇fk)
(7)
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and the scaled gradient direction is

∆̂θ
GD

= −βk∇̂fk. (8)

Thus, the scaled gradient step in the original space of parameters is

∆θGD = −βkF−1
k ∇fk. (9)

The Dogleg step for (3) computes a τk such that∥∥∥∆̂θ
GD

+ τk(∆̂θ
QN
− ∆̂θ

GD
)
∥∥∥2

= δk

=⇒
∥∥LTk ∆θGD + τk(LTk ∆θQN − LTk ∆θGD)

∥∥2
= δk

=⇒ ∆θ(τk)Fk∆θ(τk) = δk

(10)

where ∆θ(τk) = ∆θGD + τk(∆θQN −∆θGD).

2 Time performance comparison

In Table 1 we compare the wall clock time for each of the four tasks. For each task we average the
time needed to perform each single episode over all the episodes. The performance are computed
on a Linux desktop with i7-6700K Intel Core.

Algorithm Humanoid-v2 HalfCheetah-v2 Hopper-v2 Walker2d-v2
TRPO 9.68 ±0.13 [s] 3.19 ±0.018 [s] 3.79 ±0.04 [s] 4.29 ±0.06 [s]

QNTRPO 91.99 ±10.87 [s] 54.66 ±8.65 [s] 30.02 ±7.22 [s] 37.98 ±6.78 [s]

Table 1: Average and standard deviation in seconds of wall clock time for each episode of all the
experiments for the 4 environments on a Linux desktop with i7-6700K Intel Core.

QNTRPO is slower than the standard TRPO due to multiple inner iteratins that are performed for
each episode. The time performance is consistent with the computational analysis described in the
paper.

The QNTRM is an iterative procedure and the step for every iteration of Algorithm 3 is computed
by iterating over K steps of QNTRM (see Algorithm 2). Instead, in TRPO a single gradient descent
step is computed for each episode. As a result, the computational time per episode for QNTRPO
is no more than (2 ×K) that of TRPO owing to the possibly two linear systems solves in Dogleg
method and K iterations in QNTRM. In our experiments K is chosen to be 10 and it is clear from
Table 1 that the ratio in performance time between QNTRPO and TRPO is below 20.
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