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Abstract: The exploration mechanism used by a Deep Reinforcement Learning
(RL) agent plays a key role in determining its sample efficiency. Thus, improving
over random exploration is crucial to solve long-horizon tasks with sparse rewards.
We propose to leverage an ensemble of partial solutions as feachers that guide the
agent’s exploration with action suggestions throughout training. While the setup of
learning with teachers has been previously studied, our proposed approach — Actor-
Critic with Teacher Ensembles (AC-Teach) — is the first to work with an ensemble
of suboptimal teachers that may solve only part of the problem or contradict other
each other, forming a unified algorithmic solution that is compatible with a broad
range of teacher ensembles. AC-Teach leverages a probabilistic representation of
the expected outcome of the teachers’ and student’s actions to direct exploration,
reduce dithering, and adapt to the dynamically changing quality of the learner. We
evaluate a variant of AC-Teach that guides the learning of a Bayesian DDPG agent
on three tasks — path following, robotic pick and place, and robotic cube sweeping
using a hook — and show that it improves largely on sampling efficiency over a set
of baselines, both for our target scenario of unconstrained suboptimal teachers and
for easier setups with optimal or single teachers. Additional results and videos at
https://sites.google.com/view/acteach/.

1 Introduction

Reinforcement Learning (RL) algorithms have recently demonstrated impressive results in challenging
problem domains such as robotic manipulation [1, 2], planning [3], Go [4], and Atari games [5].
However, RL algorithms typically require a large number of interactions with the environment to
train policies that solve new tasks, which is particularly problematic for physical domains such as
robotics, where gathering experience from interactions is slow and expensive. A possible approach to
alleviate this problem is to train the agent to reproduce or bootstrap from the behavior demonstrated
by an expert using either offline or online Imitation Learning (IL) [6—11]. However, IL has its own
limitations: applying offline IL for long horizon tasks is costly and time consuming because large
amounts of expert interactions are necessary to cover corner-cases the agent may encounter. Online
IL may overcome this limitation by allowing the agent to query experiences on-demand, but requiring
an online expert that can solve the entire long-horizon task may be an even stricter limitation.

We argue that, in domains such as robotics, an alternative to collecting demonstration data or providing
full solutions is to encode knowledge into an ensemble of heuristic solutions (controllers, planners,
previously trained policies, etc.) that address parts of the task. Leveraged properly, these heuristics
act as teachers guiding agent exploration, leading to faster convergence during training and better
asymptotic performance. Notably, the agent can also learn to outperform its teachers and learn parts
of a task for which no teacher offers adequate advice. While prior work has addressed the problem
of policy learning with teachers [12—16], this work discusses a collection of teacher attributes that
characterize a single teacher’s behavior compared to the optimal policy, as well as the aggregate
behavior of the teachers in the ensemble, and proposes a unified algorithmic framework that efficiently
leverages the set of teachers during the agent’s training regardless of the teachers’ attributes.

Specifically, we assume that the set of teachers can have the following attributes: (i) partial — teachers
may recommend useful actions only in a part of the state space, (ii) insufficient — the agent cannot solve
the task by only using actions suggested by the set of teachers, and (iii) contradictory — performing
actions from different teachers in succession would hinder task completion (see Fig. 1).

*authors contributed equally
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Figure 1: (a) Visual representation of teachers’ attributes, with arrows representing actions and line color
representing different teacher policies. In this figure each example trajectory has the attributes of all the boxes it
is contained within. Italicized terms apply to single policies, and non-italicized terms refer to sets of policies.
We present formal definitions of these attributes in Sec. 3. (b) Our method, AC-Teach, (light blue) modifies the
actor-critic architecture to leverage advice from a set of teachers (red) as part of the Behavioral Policy to train
the Agent Policy using the probabilistic g-values of a Bayesian critic.
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Policy learning in this setting is not straightforward - the agent needs to collect experience by deciding
between its own on-policy actions or exploiting teacher advice, but also be able to leverage this
heterogeneously generated experience to learn to solve the task. Learning from experience collected
by another agent advocates using off-policy reinforcement learning [17], where a behavioral policy is
used to gather the training experience. The main challenge in the teacher ensemble setting is that the
utility of each teacher can vary in different state space regions, while the utility of the agent varies
over time as learning progresses. This adds to the known complications of training an agent from
off-policy experience, which may be unstable and result in poor performance — especially for Deep RL
algorithms — due to the compounding effects of function approximation and bootstrapping [18-20].

To address these challenges, we present Actor-Critic with Teacher Ensembles (AC-Teach), a
policy learning framework to leverage advice from multiple teachers where individual teachers might
only offer useful advice in certain states, offer advice that contradicts other teacher suggestions, and
where the agent might need to learn behaviors from scratch in states where no teacher offers useful
advice. AC-Teach is a novel behavioral policy mechanism for continuous control domains that is
robust to low-quality teacher ensembles through quantifying uncertainty over the value of actions
based on a probabilistic posterior critic network [21] and using the uncertainty to choose between
different action proposals. It is agnostic to the source of action proposals, since it models a single
action-value function (the critic) that is not explicitly conditioned on any teacher, and can therefore
easily scale to settings with larger number of teachers and even to settings with changing teacher sets.
By contrast, most prior work models each teacher independently in some form.

AC-Teach also includes a commitment mechanism that allows the behavioral policy to commit to
actions from a single policy for longer periods of time; the posterior critic is used to estimate the
probability of value improvement from switching the policy choice, and a switch is only enacted under
high confidence. This allows the behavioral policy to collect meaningful experience from partial
teachers without being hindered by contradictory teachers. Lastly, we also mitigate the instability of
off-policy learning by basing the behavioral policy on the critic, and training the critic network using
a target value that is generated by the behavioral policy. This helps reduce the off-policyness of the
experience being used to train the critic by coupling the critic and the behavioral policy together.

Summary of Contributions. (a) we present a collection of teacher attributes that comprehensively
characterizes the quality of a set of teachers for guiding agent training; (b) we propose Actor-Critic
with Teacher Ensembles (AC-Teach), a policy learning framework to leverage advice from multiple
teachers that is robust to low-quality teacher sets where individual teachers might only offer useful
advice in certain states, offer advice that contradicts other teacher suggestions, and where the agent
might need to learn behaviors from scratch in states where no teacher offers useful advice; (¢) Our
experiments demonstrate that AC-Teach is able to leverage such teacher ensembles to solve multi-step
tasks while significantly improving sample efficiency over baselines; and (d) we also show that
AC-Teach is not only able to generate policies using low-quality teacher sets but also surpasses
baselines when using higher quality teachers, hence providing a unified algorithmic solution to a
broad range of teacher attributes.



2 Related Work

Imitation and Reinforcement Learning from Offline Demonstrations: Imitation Learning has
been used to train a policy from a set of demonstrations, which are offline samples collected from an
expert that is assumed to be optimal. Recently, several works [22, 11, 23-26] have applied off-policy
deep RL algorithms to train an agent from a set of suboptimal demonstrations. However, off-policy
deep RL can be particularly unstable due to the compounding effects of function approximation and
bootstrapping leading to inaccurate extrapolation [27, 18-20]. In our setting, the behavioral policy is
able to follow any teacher in the policy set. Consequently, training the agent on this off-policy data
requires addressing the issue of instability. Imitation and Reinforcement Learning from Online
Teachers: Prior work has also investigated the use of one or more teacher policies for training an
agent. Several works [6, 27, 28] focus on the setting where an agent must learn to imitate a teacher,
who is available as an oracle during training. These methods assume that the expert is optimal and
can solve the entire task. By contrast, [29-31] assume access to a stable controller or prior solution
and use reinforcement learning to learn a residual to correct for suboptimal behavior. While these
approaches relax the need for a teacher that is optimal, they cannot be applied to settings with more
than one teacher.

Several prior works [12—15] present methods compatible with several teachers, but they assume
that one teacher should be selected over the others for the entire episode and formulate the problem
as regret minimization. This is unsuitable when considering teachers that might offer only partial
solutions to the task, since the final solution might require knowledge from several teachers that excel
in different parts of the state space. Li et al. [16] relaxes this assumption, but does so by treating
the teachers as options [32], which the agent must rely on at test-time as well as train-time, and
furthermore, their method does not support continuous control. The method presented in Xie et
al. [33] trains a DQN [5] behavioral policy to select between an expert and a DDPG [34] learner
policy. This method can be extended to settings with multiple experts, although this was not part
of the original manuscript. We developed a DQN-based behavioral policy for multiple agents as a
baseline in our experiments and show that AC-Teach outperforms this method.

Table 1: AC-Teach can be used in RL settings with both function approximation, and continuous control, and is
able to leverage a wide variety of teacher sets. The symbol ® indicates that the algorithm could potentially be
applied to this setting, but this has not been demonstrated empirically.

Deep | Continuous | No teachers | Multiple | Partial | Contradictory
RL control at test time | teachers | teachers Teachers
PRQL/OpsTL [12, 15] ® v v ©)
DQfD/DDPGID [22, 11] v v v ® O]
CAPS [16] v v O]
Residuals [30, 31] v v ®
Wheels [33] v v v ©) O} O]
AC-Teach (ours) v v v v v v

3 Problem Statement and Notation

Let M = (S, A, R, T,~, po) denote a discrete-time Markov Decision Process (MDP), where S is
the state space, A is the action space, R(s, a) is the reward function, 7 (s'|s, a) defines the transition
dynamics, v € [0, 1) is the discount factor, and py is the start state distribution from which a start
state so ~ po(+) is sampled in every episode. At every step, the agent observes the state s;, chooses an
action a; ~ 7y (+|s¢) sampled from the policy 7 parametrized by 6, and observes s;1 ~ T (-|st, at)
and a reward r; = R(sq, a;). The goal in reinforcement learning is to learn an agent policy 7y that
maximizes the expected discounted sum of rewards Ex[_,~ 7" R(s¢, a;)] from experience acquired
during exploration, where T = (sg, ag, $1,-..,ar—1, 1) is the trajectory produced by the policy.

In off-policy RL algorithms we consider two independent policies: (1) a behavioral policy, my, that
decides on actions to collect experience, and 2) an agent policy, Ty, that consumes the experience
and is trained to accomplish the original task. Both policies are part of the training process but only
the agent policy, 7y, is evaluated at test time. We note that since we seek to train an agent using
experience generated by different teacher policies, our algorithm must necessarily be off-policy.

Policy Learning with Teacher Sets: We consider the policy advice setting in which the behavioral
policy 7, can receive action suggestions from a set of teacher policies IT = {my, 72, ..., 7y} that
are available during training but not at test time [13]. The problem is then to specify a behavioral



policy m;, that efficiently leverages the advice of a set II of teacher policies to generate experience to
train an agent policy 7y with the goal of achieving good test-time performance in minimal train-time
environment interactions.

Teacher Attributes: To formalize the teacher attributes let us first consider an infinite-horizon MDPs
with deterministic transition function s’ = 7T (s, a), a set of absorbing goal states G C S, and a
sparse reward function rg(s) = 1(s € G). A generalization of the teacher attributes to MDPs with
stochastic dynamics and policies can be found in Appendix A.2. For a given deterministic policy 7
and a goal set G, the state-value function at the initial state is V7 (so) = rg(s0) + > _q Vg (s¢).
For this class of MDPs, the state-value function of deterministic policy 7 has a higher value at the
state s than at another state s’ if and only if 7 can reach a goal in G in fewer timesteps from s than
from s’ (see Proposition 1 and associated proof in Appendix A.2). In this context, we define three
teacher attributes: partial, sufficient, and contradictory.

Definition 3.1 (Partial Teachers) Let 7* denote the optimal policy and V; (s) denote the optimal
state value function, with respect to a fixed set of goals G. Then, a teacher policy is partial if in some
non-empty strict subset 35" C S, for all states s € S, we have that V5 (7 (s, a)) > Vg (s).

By Proposition 1, it follows that in some region of the state space, a partial teacher transitions from
one state to another state such that an optimal policy would reach the goal faster from the new state.
Thus, in that region, the partial teacher offers useful advice.

Definition 3.2 (Sufficient Teachers and Teacher Sets) A teacher policy = is sufficient if it has non-zero
value for some start state: Isg ~ po(-) such that VT (so) > 0. A teacher set IT = {7y, m2,...,7n}
is sufficient if there exists a mixture policy that is sufficient (a mixture policy is one that chooses
m(s) € {m1(s),m2(s),...,wn(3)}).

In other words, by Proposition 1, a teacher is sufficient if it can reach a goal state from some start
state and a teacher set is sufficient if some combination of teachers in the set can be used to reach a
goal state from some start state. Conversely, a teacher or teacher set that is not sufficient is said to be
insufficient. The ability to learn in settings with insufficient teachers is an important property for our
method, since it requires learning parts of a task that teachers are unable to solve.

Definition 3.3 (Contradictory Teachers) A teacher policy 7, is contradictory to teacher policy 71 and
a goal set G if there exists a state s € S where following the advice of 75 causes 7 to take more
timesteps to reach a goal in the goal set. Equivalently, following 72 in s leads to a state with lower
value for my: VG (T (s, m2(s)) < VG (s).

In other words, the policy 7o hinders the progress of 71 in some portion of the state space with
respect to the set of goals G. As previously established, our goal is to define a behavioral policy
that benefits from teacher sets that may or may not be sufficient or contain contradictory teachers.

There are multiple methods to maximize the RL objective based on the policy gradient theorem [17].
One family of solutions is actor-critic methods [34—-38]. Herein, we build AC-Teach with Bayesian
DDPG [34, 21], a popular actor-critic algorithm for continuous action spaces. The agent policy 7y in
AC-Teach is the actor in the DDPG architecture. Conceptually, AC-Teach can leverage any off-policy
actor-critic algorithm, such as, DDPG [34], SAC [37], or TD3 [38], among others.

DDPG. DDPG maintains a critic network (4(s, @) and a deterministic actor network mg(s) (the
agent policy), parametrized by ¢ and € respectively. A behavioral policy 7, (usually the same as
the agent policy, 7y, with an additional exploration noise) is used to select actions that are executed
in the environment, and state transitions are stored in a replay buffer 5. DDPG alternates between
collecting experience and sampling the buffer to train the policy 7y and the critic Q4. The critic
is trained via the Bellman residual 1oss Liie = (r +7Qg (s, mo/ (8')) — Q4(s, a))? and the actor
is trained with a deterministic policy gradient update to choose actions that maximize the critic
Lactor = —Q (s, mg(s)) where ¢’ and 6’ denote the use of target critic and actor networks.

The stability and performance of DDPG varies strongly between tasks. To alleviate these problems,
Henderson et al. [21] introduced Bayesian DDPG, a Bayesian Policy Gradient method that extends
DDPG by estimating a posterior value function for the critic. The posterior is obtained based on
Bayesian dropout [39] with an a-divergence loss. AC-Teach trains a Bayesian critic and actor in a
similar fashion - see Appendix B.1 for details.



4 Actor-Critic with Teacher Ensembles (AC-Teach)

In this section we introduce AC-Teach, an approach to leverage policy advice from a set of uncon-
strained teachers II in actor-critic RL algorithms as illustrated in Fig. 1(b) and Algorithm 1. AC-Teach
addresses four key challenges with regards to how to implement an efficient behavioral policy.

1. How to evaluate the quality of the advice from any given teacher in each state for a continuous
state and action space? AC-Teach is based on a novel critic-guided behavioral policy that evaluates
both the advice from the teachers as well as the actions of the learner.

2. How to balance exploitation and exploration in the behavioral policy? AC-Teach uses Thompson
sampling on the posterior over expected action returns provided by a Bayesian critic to help the
behavioral policy to select which advice to follow.

3. How to deal with contradictory teachers? AC-Teach implements a temporal commitment method
based on the posterior from the Bayesian critic that executes actions from the same policy until the
confidence in return improvement from switching to another policy is significant.

4. How to alleviate extrapolation errors in the agent arising from large differences between the
behavioral and the agent policy, the “large off-policy-ness” problem? AC-Teach introduces a
behavioral target into DDPG’s policy gradient update, such that the critic is optimized with the target
Q-value of the behavioral policy rather than the agent policy.

1. Critic-Guided Behavioral Policy. As introduced in Sec. 3, the behavioral policy, 7, collects
experience in the environment during training and is typically the output of the actor network 7y
with added noise. However, when teachers are available, the behavioral policy should take their
advice into consideration. To leverage teacher advice for exploration, we propose to use the critic to
implement 7, in AC-Teach as follows. Given state s, the agent policy 7y and each teacher policy
m; € II generate a set of action proposals {mg(s), m1(s),...,mn(s)}. The critic Q, evaluates the
set of action proposals and selects the most promising one to execute in the environment. This is
equivalent to selecting between the teachers and the agent, but notice that this selection mechanism is
agnostic to the source of the actions, enabling AC-Teach to scale to large teacher sets.

2. Thompson Sampling over a Bayesian Critic for Behavioral Policy. The behavioral policy
needs to balance between exploration of teachers, whose utility in different states is not known at
the start of training, and the agent policy, whose utility is non-stationary during learning versus
exploitation of teachers that provided highly rewarded advice in the past. Inspired by the similarity
between policy selection and the multi-arm bandits problem, we use Thompson sampling, a well-
known approach for efficiently balancing exploration and exploitation in the bandit setting [40].
Thompson sampling is a Bayesian approach for decision making where the uncertainty of each
decision is modeled by a posterior reward distribution for each arm. In our multi-step setting, we
model the posterior distribution over action-values using a Bayesian dropout critic network similar to
Henderson et al. [21].

Concretely, instead of maintaining a point estimate of ¢ and 4, we maintain a distribution over
weights, and consequently over values by using Bayesian dropout (Sec. 3). To evaluate an action for a
given state-action pair, a new dropout mask is sampled at each layer of ()4, resulting in a set of weights

(ﬁ, and then a forward pass through the network results in a sample ) (23(57 a). We then use critic @ 40
evaluate the set of action proposals {ag, a1, ...,an} and selects a; = arg max,, o, ....axn Qé(& a)

as the action to consider executing. The choice whether to execute this action depends on our
commitment mechanism, explained next.

3. Confidence Based Commitment. In our problem setup, we consider the possibility of contra-
dictory advice from different teachers that hinders task progress. Therefore, it is crucial to avoid
switching excessively between teachers and commit to the advice from the same teacher for longer
time periods. This is particularly important at the beginning of the training process when the critic
has not yet learned to provide correct evaluations.

To achieve a longer time commitment, we compare the policy selected at this timestep 7; via the
Thompson Sampling process to the policy selected at the previous timestep, 7;. We use the posterior
critic to estimate the probability for the value of a; to be larger than the value of a; (see Appendix B.2).
If the probability of value improvement is larger than a threshold 31, the behavioral policy acts
using the new policy, otherwise it acts with the previous policy. The threshold g controls the
behavioral policy’s aversion to switch, and ) controls the degree of multiplicative decay, to prevent



Algorithm 1 Actor-Critic with Teacher Ensembles (AC-Teach): Behavioral Policy

Require: s;, Q4, mp, II = {m1,...wn} > Current observation, Bayesian critic, Actor, Teacher set

1: A<« [mo(st), m1(8¢), ... TN (8t)] > Collect action proposals from actor and teachers
2: gZA> ~ q(®) > Posterior sampling of critic weights via Bayesian Dropout
3: ¢+ argmax;eqpo ... Ny @g(st, Ai) > Proposed policy choice via Thompson Sampling
4: ppetter < PlQo(5t, Ac,) > Qo (st, Ac,_, )] > Probability of value improvement (Appendix B.2)
5 ifpbetter < 51/}756 then
6: Ct + Ct—1 > Retain previous policy choice for low improvement probability
7: te —tc+1
8: else .0 > Accept proposed policy choice for high improvement probability
9: end if

10: return A, > Return action based on policy choice

over-commitment and make it easier to switch the policy choice when a policy is selected for several
consecutive time steps, as in prior work [12, 15].

4. Addressing Extrapolation Error in the Critic. Off-policy learning can be unstable for deep
reinforcement learning approaches [18-20]. We follow Henderson et al. [21] in training the learner
policy my and the Bayesian critic ()¢ on samples from the experience replay B. However, we further
improved the stability of training by modifying the critic target values used for the a-divergence
Bayesian critic loss. Instead of using r + vQ 4 (s’, mo/ (s')) as the target value for the critic, we opt to
use r + yQy (s, mp(s")).

In other words, the behavioral policy is used to select target values for the critic. We observed
that using this modified target value in conjunction with basing the behavioral policy on the critic
improved off-policy learning (see Appendix B.3). This, along with the behavioral policy summarized
in Algorithm 1, forms our method, AC-Teach.

S Experimental Setup

We designed AC-Teach to be able to leverage experience from challenging sets of teachers that do
not always provide good advice (see Table 1). In our experiments, we compare AC-Teach to other
learning algorithms that use experience from teachers with the aforementioned attributes (see Sec. 3)
for the following three control tasks (see Appendix D.1 for more task details). We outline the tasks
and teacher sets below. For each task, we design a sufficient teacher that can complete each task that
chooses the appropriate partial teacher to query per state, and unless differently specified, we add a
Gaussian action perturbation to every teacher’s actions during learning so that their behavior is more
suboptimal.

1. Path Following: A point agent starts each episode at the origin of a 2D plane and needs to visit
the four corners of a square centered at the origin. These corners must be visited in a specific order
that is randomly sampled at each episode. The agent applies delta position actions to move.

Teacher Set: We designed one teacher per corner that, when queried, moves the agent a step of
maximum length closer to that corner. Each of these teachers is partial since it can only solve part of
the task (converging to the specific corner). The four teachers are needed for the teacher set to be
sufficient. We additionally designed a set of contradictory teachers, which we explain in full detail in
Appendix C.1.

2. Pick and Place: A robot manipulation problem from [41]. The objective is to pick up a cube
and place it at a target location on the table surface. The initial position of the object and the robot
end effector are randomized at each episode start, but the goal is constant. The agent applies delta
position commands to the end effector and can actuate the gripper.

Teacher Set: We designed two partial teachers for this task, pick and place. The pick teacher moves
directly toward the object and grasps it when close enough. The place agent is implemented to move
the grasped cube in a parabolic motion towards the goal location and dropping it on the target location
once it is overhead.

3. Hook Sweep: A robot manipulation problem adapted from [31]. The objective is to actuate a
robot arm to move a cube to a particular goal location. The cube is initialized out of reach of the
robot arm, and so the robot must use a hook to sweep the cube to the goal. The goal location and
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Figure 2: Tasks and Performance with Sufficient Partial Teacher Set. The Path Following (top), Pick
and Place (middle), and Hook Sweep (bottom) tasks are shown above, during one task completion. The plots
(right), showing the average evaluation return of the agent during training, demonstrate that our algorithm
exhibits faster and better convergence than other baselines with a sufficient teacher set of noisy partial solutions.

initial cube location are randomized such that in some episodes the robot arm must use the hook to
sweep the cube closer to its base and in other episodes the robot arm must use the hook to push the
cube away from its base to a location far from the robot.

Teacher Set: We designed four partial teachers for this task, hook-pick, hook-position, sweep-in, and
sweep-out. The hook-pick teacher guides the end-effector to the base of the hook and grasps the hook.
The hook-position teacher assumes that the hook has been grasped at the handle and attempts to move
the end effector into a position where the hook would be in a good location to sweep the cube to the
goal. Note that this teacher is agnostic to whether the hook has actually been grasped and tries to
position the arm regardless. The sweep-in and sweep-out teachers move the end effector toward or
away from the robot base respectively such that the hook would sweep the cube into the goal, if the
robot were holding the hook and the hook had been positioned correctly, relative to the cube.

Baselines. We compare AC-Teach against the following set of baselines:

1. BDDPG: Vanilla DDPG without teachers, using a Bayesian critic as in [21].

2. DDPG + Teachers (Critic): Train a point estimate of the critic parameters instead of using
Bayesian dropout. The behavioral policy still uses the critic to choose a policy to run.

3. BDDPG + Teachers (Random): BDDPG with a behavioral policy that picks an agent to run
uniformly at random.

4. BDDPG + Teachers (DQN): BDDPG with a behavioral policy that is a Deep Q Network (DQN),
trained alongside the agent to select the source policy as in [33].

6 Results

Our experiments answer the following questions: (1) to what extent does AC-Teach improve the
number of interactions needed by the agent to learn to solve the task by leveraging a set of teachers
that are partial? (2) can AC-Teach still improve sample efficiency when the set of teachers is
insufficient and parts of the task must be learned from scratch? (3) how sensitive is the performance
of AC-Teach to the quality and size of the teacher set?

Fig. 3 addresses (1) by showing that AC-Teach outperforms all baselines in improving both the
sample efficiency of learning and the asymptotic performance of the agent. We present our results
on the Pick-and-Place task and defer results on the Path Following and Hook Sweep tasks in
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Figure 3: Evaluation with sufficient teacher sets: Test time performance of an agent trained for the
pick-and-place task with AC-Teach and baselines. Whether the teacher set contains just one sufficient
teacher (leftmost two graphs) or multiple partial teachers (rightmost two graphs), our method significantly
outperforms all others in both convergence speed and asymptotic performance. With multiple partial teachers,
the AC-Teach agent even outperforms our hand-coded teacher without noise, despite it being very close to
optimal.
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Figure 4: Evaluation with insufficient and low-quality teacher sets. Test time agent performance on the
pick-and-place task having trained with AC-Teach and other baselines. Both when utilizing just the
suboptimal pick teacher (left graphs) or when utilizing both suboptimal pick and place teachers along with added
non-helpful teachers which always suggest random actions (right three graphs), our method outperforms all
others in both convergence speed and asymptotic performance.

Appendix C.1 and Appendix C.2, along with ablation analysis (Appendix C.3) and experiments on
parameter sensitivity (Appendix C.4). Ablation studies suggest that all 4 components of our approach
are needed for it to work well across tasks.

We evaluate AC-Teach with sufficient and partial teachers by varying whether the teacher set contains
a single sufficient teacher or both the pick and place partial teachers, and whether these teachers are
made worse through the addition of noise. As shown in Fig. 4, our method consistently performs
better than all baselines across all teacher sets. Interestingly, both introducing suboptimality into the
teacher(s) and using partial teachers, instead of a single full teacher, improve performance for our
algorithm as well as the next best performing baseline. We believe this is due to suboptimal teachers
providing more varied advice and increasing the diversity of data in the replay buffer, which mitigates
extrapolation error.

Next, we evaluate AC-Teach with an insufficient teacher set by providing only the noisy pick teacher
and thus requiring the agent to learn the place part of the task on its own. As shown in the insufficient
partial noisy teacher plot in Figure 4, none of the baselines are able to learn in this condition, whereas
our method is able to approach the performance of our noisy full teacher.

Lastly, we demonstrate AC-Teach’s robustness to learning with miss-specified teachers by training
the agent with the two noisy pick and place teachers as well as 1, 2, and 4 teachers that always suggest
random actions. As can be seen in Fig. 4, the agent’s learning performance does degrade as we add
more random teachers but AC-Teach consistently outperforms the other baselines and is able to get
some benefit from the teacher set.

7 Conclusion

We presented AC-Teach, a unifying approach to leverage advice from an ensemble of sub-optimal
teachers to accelerate the learning process of an off-policy RL agent. AC-Teach incorporates teachers’
advice into the behavioral policy based on a Thomson sampling mechanism on the probabilistic
evaluations of a Bayesian critic. We compare AC-Teach with prior approaches and show that it
extracts useful exploratory experiences when the set of teachers is noisy, partial, incomplete, or even
contradictory. In future, we plan to apply AC-Teach to real robot policy learning to demonstrate its
applicability to solving challenging long-horizon manipulation in the real world.
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Appendix

A Problem Formulation

A.1 Relationship between Value Function and Reaching Time

We consider the class of infinite-horizon MDPs (defined in Sec. 3) that have a deterministic transition
function s’ = T (s, a), a set of absorbing goal states G C S, and a sparse reward function rg(s) =
1(s € G). Note that for a given deterministic policy 7 and a goal set G, we have

Vg (s0) =rg(s0) + Y _7'rg(st) = 1(so € G) + > _~'1(s: € G).

t=1 t=1

Proposition 1. In this class of MDPs, a deterministic policy  has a higher value for state s than
another state s' if and only if ™ can reach a goal in G in fewer timesteps from s than from s’.

Proof. Consider any goal state s, € G. Since every goal state is absorbing with reward 1, we have
V7™ (sq) = ﬁ Now consider any arbitrary state s. Since both the policy 7 and transition function 7
are deterministic, an agent acting according to 7 either reaches a goal state s, € G in a finite number

tg—1
of timesteps t, or never reaches a goal state. Therefore, the value function V7 (s) = 71i7 if T can
reach a goal state from s, and 0 otherwise. Now, assume 7 reaches a goal from state s in ¢, timesteps
. . ts—1 to—1
and from s in ¢, timesteps. Then states s and s" have value V7 (s) = — and V7" (s') = 37—
t

respectively. Since the function f(t) = g is monotone decreasing in ¢ for v € (0, 1), we have that

ts < te ¢ V™ (s) > V™(s), and the proposition holds. O

A.2 Extension to Stochastic MDPs

We now consider infinite-horizon MDPs with stochastic transition dynamics 7 (s’|s,a), a set of
absorbing goal states G C S, and a sparse reward function rg(s) = 1(s € G).

A.2.1 Interpretation of value function

The value function of a stochastic policy 7 is

Vg (s0) = E[iytl(st € g)}

t=0

Consider a trajectory collected by 7, 7 = (sg, ag, $1, a1, ... ) where a; ~ w(+|s¢), st ~ T (*|s¢, at).
Every trajectory either reaches a goal state and stays there so that lim;_, ., s; = s, for some s, € G,
or never reaches a goal state. Then, all possible trajectories collected by 7 either belong to the set of

goal-reaching trajectories T, or the complementary set Tgo. Every trajectory 7 € T, reaches a goal
tg—1
in some number of steps ¢, and consequently generates return Vli

generates 0 return since no state generates reward.

: c
- and every trajectory 7 € T}

Now we write the value function as the expected discounted sum of rewards of trajectories R(7)
Vg (s0) = E-[R(7)]
= P(1 € Ty) E-[R(7) | T € Ty + P(r € TY) E-[R(7) | T € T]
At
P<T€Tg)Et{7|:1-7|tg<OO:|
where the second line follows by the law of iterated expectations and the third line follows by
rewriting the first term as an expectation over the reaching time of trajectories that reach a goal and

using the fact that the second term vanishes since all returns of trajectories in the complementary set
are 0.
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Algorithm B.1 Actor-Critic with Teachers (AC-Teach) Training Loop

Require: 7, Qg, 7, I, B > AC-Teach Behavioral Policy, Critic, Actor, Teacher Set, Replay Buffer

1: for epoch = 1,. .., Nepoch do

2: for episode = 1, . .., Nepisodes O

3: fort=1,...,Tdo

4: ay < mp(st | Qg, ma, II) > Action from behavioral policy using Algorithm 1
5: B = BU  (st,a¢,7¢, 841 > Execute action and collect transition into replay buffer
6: end for

7: end for

8: foru =1,..., Nypdates dO

9: {(si,ae,7i,8i41) Y2, ~ B > Sample mini-batch from replay buffer
10: ¢ < ¢ — Vo Laritic(¢) > Update critic using loss in Equation 1
11: 0+ 0 — VoLaor(0) > Update actor using loss in Equation 2
12: end for
13: end for

Note that there is a natural decomposition in the value function. It is a product of P(7 € T), which
is the probability that 7 reaches a goal when it starts in state sg, and a return term that depends on
how fast 7 can reach a goal. Consequently, in the stochastic case, the value of a state is dependent on
two factors: reaching a goal from sy with higher certainty and reaching goals quickly, while in the
deterministic case, the value of a state only depends on reaching goals quickly. Thus, we can continue
to use value functions to extend our teacher attributes to the stochastic case, keeping in mind that the
value function now describes a tradeoff between reaching goals reliably, and reaching goals quickly.

A.2.2 Teacher Attributes for Stochastic MDPs

We have justified continuing to use value functions for defining our teacher attributes in the stochastic
MDP case. As such, we simply amend our definitions to account for stochasticity.

Definition A1.1 (Partial Teachers) Let 7* denote the optimal policy and V{ (s) denote the optimal
state value function, with respect to a fixed set of goals G. Then, a teacher policy is partial if in
some non-empty strict subset 35" C S, for all states s € S’, we have that E,/ V{3 (s") > V{3 (s) for
s’ ~T(]s,a)and a ~ 7(-|s).

Here we have just amended the definition to take an expectation over the next state reached when

following 7.

Definition A1.2 (Sufficient Teachers and Teacher Sets) A teacher policy 7 is sufficient if it has
non-zero value for some start state: Jso ~ po(-) such that VZ (sg) > 0. A teacher set Il =
{m1,ma,...,mn} is sufficient if there exists a mixture policy that is sufficient (a mixture policy is
one that chooses mr1(s) € {m1(s), m2(s),...,7n(s)}).

This is the same definition as earlier - a non-zero state value can only occur if and only if there is
some non-zero probability of reaching the goal.

Definition A1.3 (Contradictory Teachers) A teacher policy 7o is contradictory to teacher policy 73
and a goal set G if there exists a state s € S where following the advice of 72 causes 7 to take more
timesteps to reach a goal in the goal set. Equivalently, following 75 in s leads to a state with lower
value for 7y: V5" (s") < V' (s) for " ~ T(:|s,a) and a ~ ma(-[s).

Once again we have just amended the definition to take an expectation over the next state reached
when following 7.

B Additional Details about AC-Teach

B.1 Training the Bayesian Critic and Agent Policy

Algorithm 1 details how the AC-Teach behavioral policy 7, collects samples into the replay buffer
B. In Algorithm B.1, we outline how these samples are used to train the Bayesian critic Q4 and

12



actor policy my. Following Henderson et al. [21], we use an a-divergence loss for the critic, but use a
behavioral target value, as described in Sec. 4 to mitigate extrapolation error

K

1 aTt 2

Laie = —=og Y exp (= - (r+71Qu (5, m(s)) = @5, (5:0) ) + (1 = pap) 1613, (D
k=1

where K is the number of Monte Carlo dropout samples of the critic network weights gf)k and pgrop 1S

the dropout rate. Notice the use of the AC-Teach behavioral policy 7, for computing the target value.

The agent actor loss is simply the normal DDPG actor loss averaged over K Monte Carlo dropout
critic weight samples

K
Lactor = — Z quk (57 770(5)) . ()
k=1

B.2 Commitment Probability Estimation

As discussed in Sec. 4, when considering to switch to a policy 7; from a previously used policy
m;, we use the posterior distributions over the action-values of both policy actions to estimate the
probability for the expected return of a; to be larger than the expected return of a;. We consider
the posterior distribution over expected value provided by the Bayesian critic for each action as an
independent Gaussian distributed random variable Z; = Q4(s,a;) and Z; = Q4(s, a;). To obtain
these distributions we take /X' Monte Carlo samples of our posterior critic for each action by sampling
different dropout masks [39]. We use the MC samples to fit a Gaussian such that

1 K

Bz = = > Qs (s,a)
k=1
1 K

1
2 N N2 2 -
7= g Qo) ~a k-

3)

, where 7 is the precision of the variance estimate. We can compute the estimate of the probability
P(Z; > Z;) by leveraging the fact that Z; — Z; ~ N(uz, — piz,,0% + J%j) and computing
P(Z; — Z;) > 0 using the Gaussian cumulative distribution function. Intuitively, this probability
estimate corresponds to the belief that the new policy prescribed by the critic will yield higher Q-value
than the policy from the current timestep.

B.3 Mitigating Extrapolation Error

As discussed in Sec. 4, a key challenge when training with teachers is avoiding instability when
training the critic from off-policy experience. We observed that basing the behavioral policy on
the critic of the learner agent, as opposed to a separate model such as the DQN in Xie et al. [33],
significantly helped with this problem, as did using the behavioral target described in Appendix B.1.
We hypothesize that since the Bayesian critic is indirectly being used to generate data through the
behavioral policy and it is trained on the same distribution of data, the algorithm enjoys similar
stability benefits as on-policy methods. We intend to explore this further in future work.

C Additional Experiments

C.1 Path Following Experiments

We replicate the set of experiments presented in Fig. 3 and Fig. 4 for the path-following task,
and also present the performance of the behavioral policies at train time (effectively, the quality of
the collected experience the DDPG agent is trained with) in addition to the test time performance
of the learned agent. The results are depicted in Fig. C.1. We observe that our proposed method,
AC-Teach, converges faster and to larger reward level at test time than the baselines across the variety
of teacher setups as shown in the main text for Path Following task. Furthermore, unlike the
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Figure C.1: Evaluating AC-Teach with sufficient teacher sets. Test and train time agent performance on the
Path Following task for AC-Teach and other baselines. At test time, several baselines perform almost as well
as our method when utilizing just one sufficient teacher (leftmost two graphs), but when there are multiple partial
teachers (rightmost two graphs) our method significantly outperforms all others in both convergence speed and
asymptotic performance. At train time, it is notable that the DQN baseline is rarely able to surpass the quality of
the teachers it is supplied with and that the performance of the learned agent decreases substantially at test time
despite having been trained with the experience of the better-performing DQN behavioral policy at train time.
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Figure C.2: Evaluating AC-Teach on insufficient and contradictory teacher sets. The first three sets are
incomplete since they are missing teachers for 1, 2, and 3 goals respectively, while the last set is contradictory
because the midpoint teacher and endpoint teacher try to move the agent to different parts of the state space. We
see that our method significantly outperforms others in both convergence speed and asymptotic performance,
indicating that it is capable of learning parts of the task where no teacher offers useful advice, as well as learning
when to leverage each teacher’s advice, even when the advice is contradictory.

baselines it performs at test time than at train time, indicating that it better avoids extrapolation error
or over-reliance on the teachers.

Teacher set A consists of 3 suboptimal, partial teachers, one that can navigate to each goal. Notice
that one of the 4 goals will not have a corresponding teacher. Similarly, teacher sets B and C consist
of 2 suboptimal, partial teachers and 1 suboptimal, partial teacher respectively. Finally, teacher set D
consists of a midpoint teacher and a endpoint teacher that can be contradictory.

Notice that sets A, B, and C all test for the ability to learn from insufficient sets, with set C being
the most difficult as the teacher only helps with a quarter of the task. Meanwhile, set D tests for the
ability to learn from a set of teachers that offers contradictory advice, as the midpoint teacher always
tries to move to the midpoint between the current and previous goal and the endpoint teacher will
move away from the midpoint, towards either one goal or the other, depending on which is closer.

Fig. C.2 demonstrates that our algorithm is consistently able to leverage the incomplete sets of
teachers to learn the task - whether learning from 3, 2, or even just 1 of the single-goal teachers. The
agent quickly learns where to trust the teachers’ expertise and how to act in parts of the state space
where teachers do not offer useful advice.
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Figure C.3: Evaluating AC-Teach on large and adversarial teacher sets. Test and train time agent perfor-
mance on the Path Following task for AC-Teach and other baselines for the following teacher sets (from left
to right): 4 noisy partial teachers + 1 random teacher (set E), 4 noisy partial teachers + 2 random teachers (set
F), 4 noisy partial teachers + 3 random teachers (set G), and 1 sufficient teacher + 1 adversarial teacher (set H).
Our method significantly outperforms the baselines in both convergence speed and asymptotic performance,
indicating robustness to large sets of teachers where some teachers are random, or even adversarial.
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Figure C.4: Comparing policy choices of the AC-Teach behavioural policy with the DQN behavioural
policy. Results from the Path Following task with the sufficient noisy teacher set. The first column demon-
strates that over the course of training AC-Teach leverages the agent more than the DQN. The second column
demonstrates that our commitment mechanism results in less switching between different policies than the
baselines. The third column demonstrates that at the end of training the DQN learns to only leverage the teachers,
whereas our method learns to use the agent.

Additionally, we construct four teacher sets to evaluate the tolerance of our algorithm to teacher
sets that are larger and lower quality. Teacher sets E, F, and G all consist of four suboptimal partial
teachers, but they additionally include 1, 2, and 4 additional random teachers respectively. Teacher
set H consists of a suboptimal sufficient teacher and an adversarial teacher that tries to move away
from the current goal.

Fig. C.3 shows the results of this experiment. The performance of our algorithm does not degrade in
the presence of additional random teachers that do not help to accomplish the task (sets E, F, and
G), while our algorithm quickly detects the adversarial teacher, learns to ignore it and to query the
advice of the sufficient teacher in set H.

We also present a breakdown of the policy choices made during training by the baseline DQN
behavioural policy and the AC-Teach behavioural policy in Fig. C.4. The figure demonstrates that AC-
Teach leverages the learning agent more over the course of training, switches less between policies at
the start of training due to its commitment mechanism, and converges to use the learner and not the
teachers at the end of training.
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C.2 Hook Sweep Experiments

We present experiments on the Hook Sweep environment in Fig. C.5.
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Figure C.5: Evaluating AC-Teach on different teacher sets on the Hook Sweep task. As with the prior tasks,
we varied the types of teachers we trained the agent for the hook sweep task with. As in the prior tasks, our
algorithm is demonstrated to be the most robust.

C.3 Ablation Analysis

We test several modified versions of AC-Teach to evaluate the effect of each of its components,
in particular different variants of time commitment and behavioral target. Fig. C.6 (a) and (b)
depicts the result of our analysis. Interestingly, time commitment does not grant any benefit in the
Path Following task despite being useful in the Pick and Place and Hook Sweep tasks. On
the contrary, the behavioral target is not relevant for the performance of AC-Teach in the Pick and
Place and Hook Sweep tasks despite being important in the Path Following.

We hypothesize that the tasks present different characteristics that benefit (or not) from the features
of AC-Teach. In the case of Path Following, it includes little stochasticity and so the potential
extrapolation error that is countered with the behavioral target is larger. For the Pick and Place
task, both the end-effector and cube locations are randomized so the collected experience is varied
enough, making extrapolation error less problematic. However, the shorter time horizon to complete
the Pick and Place task and the possibility of pushing the cube away make commitment beneficial.

C4 Sensitivity Analysis

We also evaluate the sensitivity of our algorithm to different parameters and hyperparameters. In
our sensitivity analysis we use the Path Following task because the simplified dynamics allows to
better dissentangle and analyze the results.

Fig. C.6 depict the results of our sensitivity analysis. We observe that most parameters can have a
range of values and still work well. An exception to this is that we also observe that our algorithm
is sensitive to the value of the dropout precision parameter, 7, which is used in establishing the
regularization of the critic network as well as in the computation of the probability of a new policy
being better in our commitment mechanism. With more or less samples than the ones we used in our
experiments the performance drops significantly.

D Experimental Setup

D.1 Tasks

Path Following: A point agent starts each episode at the origin of a 2D plane and needs to
visit the four corners of a square centered at the origin. These corners must be visited in a
specific order that is randomly sampled at each episode. We set the goal locations to be at
(—0.25,-0.25), (—0.25,0.25), (0.25, —0.25), and (0.25,0.25). A goal location is considered visited
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Figure C.6: Sensitivity Analysis to 3 (a), 1 (b), tau (c) parameters, and to the number of dropout Monte Carlo
samples (c)

if the agent position is within 0.05 L2 distance. The observations are 5-dimensional and consist of its
current location, the current goal point, and the number of goals left to visit. The agent generates
bounded 2D displacements as actions with deterministic outcome. The max offset in each axis per
single action is 0.045. A sparse reward of 1 is given when the agent visits each corner, making 4 the
maximum undiscounted return per episode. Episodes are 200 steps long and do not terminate early.

Pick and Place: A robot manipulation problem from [41]. The goal is to pick up a cube and place
it at a target location on the table surface. The initial position of the object and the robot end effector
are randomized at each episode start, but the goal is constant. The initial cube location in each
episode is centered near (1.25,0.55), with random offsets of magnitude [—0.05, 0.05] in the x and
y planes. The goal location is at (1.45,0.55,0.425) — an arbitrarily chosen location near one of the
corners of the table. The end-effector begins above the center of the table near (1.34,0.75,0.5) with
random offsets of magnitude [—0.05, 0.05] in the x and y planes and a random offset of magnitude
[—0.025,0.025] in the z plane. The observation and action space is the same as in Plappert et al. [41].
The agent applies delta position commands to the end effector and can actuate the gripper. Rewards
are dense and defined as the negative L2 distance from the cube to the target location. Episodes are
100 steps long and do not terminate early.

Hook Sweep: A robot manipulation problem adapted from [31]. The objective is to actuate a robot
arm to move a cube to a particular goal location. The cube is initialized out of reach of the robot arm,
and so the robot must use a hook to sweep the cube to the goal. The goal location and initial cube
location are randomized such that in some episodes the robot arm must use the hook to sweep the
cube closer to its base and in other episodes the robot arm must use the hook to push the cube away
from its base to a location far from the robot. On every environment reset, with 50% probability, the
cube is initialized in front of the hook, and the goal is set to be far away from the robot base, and with
50% probability, the cube is initialized behind the hook, and the goal is set to be close to the robot
base. Thus, the robot has to learn to leverage the hook to either sweep the cube closer to itself or
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sweep the cube further away, depending on the goal initialization. The observation and action space
is the same as in Plappert et al. [41], with additional observation dimensions added for the hook state.
The agent applies delta position commands to the end effector and can actuate the gripper. Rewards
are dense and defined as the negative L2 distance from the cube to the target location. Episodes are
100 steps long and do not terminate early.

D.2 Implementation

We implement the BDDPG agent as well as the BDDPG + DQN and DDPG + Critic baselines on top
of the existing implementation in Stable Baselines [42] along with relevant modifications from [21]
taken from https://github.com/Breakend/BayesianPolicyGradients.

D.3 Training

All experiment results are presented over 5 seeds. Neither observations nor rewards were normalized.
The Path Following task was run by alternating 200 steps of task interaction with 100 gradient
updates to the policy, with a soft update to the target after every gradient update, until 100k task
interactions were reached. The Path Following task was run by alternating 200 steps of task
interaction with 40 gradient updates to the policy, with a soft update to the target after every gradient
update, until 500k task interactions were reached.

D.4 ACT Hyperparameters

Unless otherwise stated for specific experiments, we use commitment threshold 5 = 0.6 and
commitment decay ¢ = 0.99 in experiments throughout the paper.

D.5 DDPG Hyperparameters

We use most hyperparameters from [21], with values derived from https://github.com/
Breakend/BayesianPolicyGradients, as shown in Table D.1a.

Hidden Layers (Path Following) [64, 64] .

Hidden Layers (Mujoco) [64, 64, 64] Hidden Layers 64, 64]

DDPG Exploration (Path Following) % EO, 0.3; Learning Rate 5.0e — 4

DDPG Exploration (Mujoco) 0,0.1

Target Update 7 (Path Following) 0.01 Exploratlon Final € 0.02

Target Update 7 (Mujoco) 06021 Exploration Timesteps 100000

Dropott ™ o Buffer Size 100000

Elscolgnt Ez(lgtorh S 06989 Discount Factor 0.99
eep Pro at ollowing .

Keep Prob (Mujoco) 0.9 Train Fr €q 10

MC Samples 50 Target Network Update Freq 1000

Batch Size 128

Reward Scale 1 Batch Size 32

Actor L2 Loss (Path Following) 0.0 1

Actor L2 Loss (Mujoco) 0.1 Reward Scale

(a) DDPG Hyperparameters (b) DQN Hyperparameters

Parameters are largely the same across the three tasks, except for the several with listed differences
above; these were found via manual tuning and seem to reflect the Mujoco tasks being harder.

D.6 DQN hyperparameters
We use DQN with non-prioritized replay, with the hyperparameters listed in Table D.1b.
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