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Abstract: This paper considers the multi-robot navigation problem where the ge-
ometric center of a multi-robot team aims to efficiently reach the waypoint without
collisions in unknown complex environments while maintaining connectivity dur-
ing the navigation. A novel Deep Reinforcement Learning (DRL)-based approach
is proposed to derive end-to-end policies for the multi-robot navigation problem.
In order to guarantee the connectivity during the navigation, a constraint satisfying
parametric function (CSPF) is proposed to represent the navigation policy. Vir-
tual policy extended environment (VP2E), an implementation framework of the
CSPF is accompanied so as to make CSPF compatible with existing DRL tech-
niques which rely on differentiable parametric functions. Both simulations and
real-world experiments of a team of 3 holonomic robots are conducted to verify
the effectiveness of the proposed DRL-based navigation method.
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1 Introduction

Multi-robot teams have broad applications in surveillance, search, exploration, agricultural spraying,
collaborative transportation, etc [1]. When carrying out a mission, a multi-robot team may need to
operate in unknown complex environments. Therefore, the navigation policy is essential for the
safety and efficiency of the multi-robot team. The communication range is usually limited, thus the
navigation policy should take connectivity into consideration so as to guarantee communication for
collaborative operations.

Applying Deep Reinforcement Learning (DRL) to find the navigation policy for multi-robot teams
seems to be promising regarding the huge success of DRL in various domains including games,
robotics, natural language processing, etc [2, 3]. In comparison with conventional rule-based nav-
igation methods [4, 5, 6, 7, 8, 9, 10], DRL-based approaches [11, 12, 13] can derive end-to-end
policies which directly map raw sensor data to control signals. Such property is appealing because it
removes the necessity of constructing obstacle maps, which is required by conventional rule-based
methods. The real-time mapping is challenging and computationally prohibitive sometimes.

In spite of the end-to-end property, most of the existing DRL-based navigation approaches for multi-
robot team [11, 12, 13] lose control of the derived policies and can hardly provide constraint guar-
anteeing policies (in comparison with conventional rule-based methods which can easily provide
constraint satisfying policies [4, 5, 6, 7, 8, 9, 10]). The outputs of DRL-based policies (i.e., control
signals) are usually unconstrained and therefore always have the chance to break the connectivity
constraint, which may lead to undesirable consequences (e.g., communication termination).

In this paper, we study the multi-robot navigation problem where the geometric center of a multi-
robot team aims to efficiently reach the waypoint without collisions in unknown complex environ-
ments as shown in Figure 1. During the navigation, the multi-robot team is required to maintain
connectivity. We propose a novel DRL-based approach where the navigation policy is represented
by the constraint satisfying parametric function (CSPF). Consisting of a normal parametric func-
tion (e.g., neural network) and a constrained optimization module as shown in Figure 2a, the CSPF
allows imposing constraints on the outputs of the navigation policy (i.e., control signals) and there-
fore can guarantee connectivity during the navigation process. An implementation framework of the
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Figure 1: Problem description. (a) Annotations of objects. (b) Navigate the geometric center of the
robot team to the waypoint without collisions while maintaining connectivity.

(a) (b)

Figure 2: (a) Constraint satisfying parametric function (CSPF). Consisting of a normal parametric
function and a constrained optimization module, CSPF synthesizes representation capacity and con-
straint guarantee. (b) A toy example (where the output a ∈ R1) illustrating the CSPF. Given an input
o, different parameters θ correspond to different objective functions and thus produce different final
outputs a. Note that the final outputs always lie in the feasible set and satisfy constraints.

CSPF called virtual policy extended environment (VP2E) is proposed to make the CSPF compatible
with existing DRL techniques which usually rely on differentiable parametric functions [14, 15, 16].

1.1 Related works

In order to strictly guarantee connectivity, a mechanism of imposing constraints on the control signal
is required. A prevailing paradigm is reward shaping which either intuitively increases the punish-
ment on undesirable behaviors [11, 12, 13] or derives surrogate reward functions with theoretic
foundations [17]. However, reward shaping can only alleviate the violation of constraints but cannot
guarantee constraint satisfaction since the control signals are still from unconstrained policies.

In some works, a normalization function (e.g., sigmoid, tanh, clipping) is utilized to force the outputs
of parametric function lying in a specific interval [11, 15, 18]. The final control signals are obtained
by rescaling the normalized outputs to the target interval. The normalization-based methods are
suitable to handle output interval constraints but can hardly cope with constraints like connectivity.

Tools in control theory like control barrier functions [19] and lyapunov functions [20] are also uti-
lized to impose constraints. Such methods have solid theoretic foundations yet introduce additional
assumptions (e.g., availability of a valid set [19] and discrete action spaces [20]).

Hierarchical architectures follow the divide and conquer mechanism [21, 22, 23, 24]. In particular,
the DRL agent is only responsible for making high-level decisions while the final control signal
is left to a low-level constraint satisfying controller. However, designing the hierarchical architec-
ture (i.e., deciding concrete level/meaning of the high-level actions) is nontrivial and challenging
sometimes. Moreover, the low-level constraint satisfying controller may be unavailable.

In this paper, CSPF is proposed to represent the navigation policy in order to guarantee the connectiv-
ity constraint of multi-robot teams during navigation. In comparison with hierarchical architectures,
the CSPF can ensure connectivity while remaining plug-and-play (i.e., no necessity of explicitly
designing hierarchical architectures and no requirement on availability of low-level constraint satis-
fying controllers).

1.2 Contributions and paper organization

The main contributions of this paper are as follows:
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Figure 3: A DRL-based navigation approach [11]. (a) The local observation includes information of
the environment (purple lines), teammates (green arrows), waypoint (the yellow arrow) and current
velocity (the red arrow). (b) The centralized learning and decentralized execution mechanism.

• A novel DRL-based navigation approach where the navigation policy is represented by
CSPF is proposed to navigate the multi-robot team through unknown complex environ-
ments. The derived policy can directly map raw sensor data to control velocities without
obstacle maps while guaranteeing the connectivity of the multi-robot team;

• VP2E, an implementation framework of CSPF, is proposed to make CSPF compatible with
existing DRL techniques which rely on differentiable parametric functions;

• Simulation results illustrate that the multi-robot team can navigate through unknown com-
plex environments without collisions while maintaining connectivity;

• Indoor real-world experiments show that the proposed method succeeds in navigating a
team of 3 holonomic unmanned ground vehicles (UGVs) through dense obstacles.

The remainder of this paper is organized as follows: In Section 2, backgrounds including the prob-
lem description and a DRL-based navigation method are introduced. In Section 3, our DRL-based
multi-robot navigation method with CSPF is proposed. In Section 4, both simulation and real-world
experiment results are presented to verify the effectiveness of the proposed method. Section 5 con-
cludes the paper.

2 Backgrounds

In this section, the multi-robot navigation problem is elaborated and a DRL-based multi-robot navi-
gation approach (from which our method is extended) is introduced.

2.1 Problem description

Consider the scenario where a team of N holonomic robots with equal radii R operates in an un-
konwn environment containing M static obstacles as shown in Figure 1. The j-th (1 ≤ j ≤ M )
obstacle is a polygon denoted as p̃j = [p̃j1, . . . , p̃

j
zj ], where p̃jzj is the position of the zj-th vertex of

the polygon and zj is the number of vertexes of the j-th obstacle.

At each time step t, the i-th (1 ≤ i ≤ N ) robot located at pit with velocity vit receives an observation
oit (will be elaborated later) from the environment. Based on the team-level observation ot =
[o1t , . . . ,o

N
t ], the robot team samples a team-level action (i.e., velocity) at = [a1

t , . . . ,a
N
t ] from

the distribution πθ(ot). The distribution πθ(ot) is generated by the team-level policy πθ which is
a mapping from observation to distribution (e.g., Gaussian distribution) parametrized by θ. Within
the time interval ∆t, position of each robot is updated according to the corresponding action ai

t.

As shown in Figure 3a, the observation oit for the i-th robot at time step t includes information about
environment oiet (i.e., lidar), teammates oimt = [p1t − pit, . . . ,pi−1t − pit,pi+1

t − pit, . . . ,pNt − pit],
goal oigt = g − pit and current velocity oivt.

The multi-robot navigation problem aims to derive a navigation policy πθ which efficiently guides
the geometric center of the robot team p̄t =

∑N
i=1 p

i
t to a waypoint/goal g provided by global

planners without collisions. During the navigation, the robot team should maintain connectivity
(i.e., ‖ pit − pjt ‖2 ≤ d for any robot i 6= j, where d is the communication range).
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Figure 4: Virtual policy extended environment (VP2E). (a) Original DRL problem with undifferen-
tiable CSPF and original environment. (b) An equivalent DRL problem with differentiable virtual
policy and extended environment.

2.2 A DRL-based approach for multi-robot navigation

A DRL-based approach is proposed in the work [11] to solve the multi-robot navigation problem
presented above. The DRL-based approach formulates the multi-robot navigation problem as a
partial observable Markov decision process (POMDP) and derives a decentralized navigation policy
by a centralized learning decentralized execution mechanism.

The work proposes to adopt a centralized learning and decentralized execution mechanism
where decentralized navigation policy for multi-robot navigation problem can be derived by
DRL techniques originally intended for single-agent (robot) problem. As shown in Fig-
ure 3b, the main idea of the mechanism in the work [11] is imposing constraints on the
team-level policy πθ. In particular, the team-level policy is restricted to be a concatenation
of robot-level policies and the parameters of robot-level policies are shared (i.e., πθ(ot) =
[π̂θ(o1t ), π̂θ(o2t ), . . . , π̂θ(oNt )], where π̂θ is the robot-level policy). Viewing the robot team as an
entity, the team-level policy πθ can be derived by DRL algorithms originally intended for single
agent (e.g., Proximal Policy Optimization [14]). In the meanwhile, the derived team-level policy
πθ can be executed in a decentralized manner since the underlying robot-level policy π̂θ only takes
robot-level observation oit as input. One may refer to the work [11] for more details.

3 Methodology

In this section, we first present the CSPF accompanied with VP2E (an implementation framework
making CSPF compatible with existing DRL techniques which rely on differentiable parametric
functions) and then elaborate the application of CSPF in multi-robot navigation problem.

3.1 Constraint satisfying parametric function

Commonly used parametric functions in DRL (e.g., neural networks) have powerful representation
capacity. However, those parametric functions are unconstrained and may therefore produce outputs
(i.e., control signals) which induce violation of constraints. In the context of multi-robot navigation,
such violation of constraints may be the break of connectivity among robots. Aiming to remedy
the limitation (i.e., possible constraint violations) of common parametric functions, we propose to
represent the navigation policy by CSPF.

As shown in Figure 2a, CSPF consists of a normal parametric function and a constrained optimiza-
tion module. In comparison with common parametric function, the outputs of CSPF are not directly
from the normal parametric function zθ but from the constrained optimization module. Therefore,
the outputs are no longer unconstrained and may not induce violation of constraints. In CSPF, the
outputs of normal parametric function zθ(o) are interpreted as the inputs of the objective functions
f(z,a) in the constrained optimization module. The final control signals a are variables to be opti-
mized in the constrained optimization module, and thus can be imposed constraints. To illustrate the
core idea of CSPF, a toy example is presented in Figure 2b. Given an input o, different parameters
θ correspond to different objective functions and thus produce different final outputs a. Note that
the final outputs always lie in the feasible set and satisfy constraints.
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Mathematically, the CSPF described above is a mapping from input o ∈ Ro to output a ∈ Ra which
is parametrized by θ and can be expressed as a contrained optimization problem as follows:

argmin
a

f(zθ(o),a)

s. t. gi(o,a) ≤ 0, for i = 1, 2, . . . ,m

hi(o,a) = 0, for i = 1, 2, . . . , n,

(1)

where zθ(o) is a normal parametric function (e.g., neural network) parametrized by θ, f(z,a) is a
predefined objective function (e.g., quadratic function) taking the output of the normal parametric
function z and the final output a as input, gi(o,a) and hi(o,a) are functions for imposing con-
straints on the final output a.

With the predefined objective function f(z,a) serving as a bridge, CSPF takes the advantages of
representation capacity from normal parametric functions and constraint guarantee property from
the constrained optimization module. Though the concrete form of objective function f(z,a) needs
to be predefined in advance manually, we think this process is acceptable and can be analogized to
the common process of designing architectures of neural networks.

It should be pointed out that instead of first training a neural network during training and then
appending a constraint layer to the neural network during execution, we consistently regard the
whole CSPF as the policy during both training and execution.

Note that even given a differentiable parametric function zθ, the CSPF in Equation 1 may become
undifferentiable because of the constrained optimization module and thus incompatible with those
DRL techniques relying on differentiable parametric functions [14, 15, 16]. In order to cope with
the possible incompatibility induced by undifferentiability and leverage the powerful existing DRL
techniques, we propose VP2E, an implementation framework of CSPF.

In VP2E, the separation between agent and environment no longer lies between CSPF and the orig-
inal environment as shown in Figure 4a but rather between the virtual policy and the extended en-
vironment as shown in Figure 4b. In particular, the virtual policy refers to the normal differentiable
parametric function (e.g., neural network) producing virtual actions (i.e., inputs of the objective
function in Equation 1) for the extended environment. The extended environment stacks the con-
strained optimization problem on the original environment (which can be easily implemented by a
preprocessing module) and thus becomes an environment takes virtual actions as inputs. By imple-
menting the CSPF in the VP2E framework, the original DRL problem (with possible undifferentiable
CSPFs and original environments) is transformed into an equivalent DRL problem (with differen-
tiable virtual policies and extended environments) and thus can leverage existing powerful DRL
techniques which rely on differentiable parametric functions.

3.2 Connectivity guaranteed multi-robot navigation

In this part, we demonstrate how to extend the DRL-based approach in the work [11] with the
proposed CSPF to derive connectivity guaranteeing navigation policies. In particular, we retain
the overall framework of the DRL-based method in the work [11] and substitute the CSPF for the
original unconstrained parametric function (a neural network). More specifically, the neural network
originally representing the navigation policy πθ now serves as the zθ in Equation 1 and its network
architecture remains unchanged. In this paper, the concrete form of objective function in Equation 1
is designed to be f(z,a) = aTa+ zTa for simplicity. Note that the choice of objective function is
not unique and is up to the specific applications.

We assume the kinematic model of the robots are known and its mathematical expression is
pit+1 = pit + ai

t ∆t, where pit/a
i
t are the position/action of the i-th robot at time step t. Note that

the assumption of known kinematic model is completely different from the assumption of known
dynamics P (oit+1|oit,ai

t). The former is the description of the position transition, while the lat-
ter is the description of the observation transition (which is hard to obtain since the observation oit
contains external environment information such as sensing data).
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Figure 5: Connectivity guaranteed multi-robot navigation. The i-th robot computes its final control
signal ai

t based on its local observation oit by sequentially running the virtual policies ẑθ, sharing
intermediate results ẑθ(oit) (low cost communications of 2D vectors), solving a constrained opti-
mization problem to obtain at and selecting the corresponding action ai

t.
Given the kinematic model, the connectivity constraint can be imposed to the control signal at with
constraint functions in Equation 1 and the corresponding CSPF is formulated as follows:

argmin
at

aT
t at + zθ(ot)

Tat

s. t. ‖pit+1 − p
j
t+1‖22 − d2 ≤ 0 for 1 ≤ i < j ≤ N // connectivity contraints

pit+1 = pit + ai
t ∆t, for i = 1, 2, . . . , N. // kinematic model

(2)

We assume the connectivity constraint is satisfied at the initial time step (i.e., ‖pi0−p
j
0‖22−d2 ≤ 0).

As a result, the feasible set of Equation 2 (i.e., the set of actions guaranteeing the connectivity
constraint at the next time step) is always nonempty, which can be easily proved by the mathematical
induction: suppose the connectivity constraint is satisfied at time step t (i.e., ‖pit − p

j
t‖22 − d2 ≤ 0),

there always exists a solution at = 0 to guarantee the connectivity constraint at time step t+ 1. The
connectivity constraint at the initial time step is satisfied. Therefore, there always exists a solution
to guarantee the connectivity constraint, i.e., the feasible set is nonempty.

The Equation 2 can be further transformed by substituting the kinematic model and utilizing the
following equation (which is the definition of the teammate information in observation oimt):

oijmt =

{
pjt − pit for j < i

pj+1
t − pit otherwise.

(3)

We take the 1-st robot as an example to show the process of decision making. The final mathematical
expression of CSPF from the perspective of the 1-st robot (i.e., transform the Equation 2 with the
teammate observation o1mt of the 1-th robot) is as follows:

argmin
at

aT
t at + zθ(ot)

Tat

s. t. (∆t)2‖ai+1
t − a1

t‖22 + 2∆t(o1imt)
T (ai+1

t − a1
t ) + ‖o1imt‖22 ≤ d2

for i = 1, . . . , N − 1

(∆t)2‖ai+1
t − aj+1

t ‖22 + 2∆t(o1imt − o
1j
mt)

T (ai+1
t − aj+1

t ) + ‖o1imt − o
1j
mt‖22 ≤ d2

for 1 ≤ i < j ≤ N − 1.

(4)

The Equation 4 is a convex optimization problem on variable at and thus can be solved efficiently.
In this work, we use SNOPT [25] to solve the Equation 4. After solving the optimization problem
in Equation 4, the 1-st robot should select its corresponding action a1

t in the result at to execute.
To summarize, the overall process of the proposed connectivity guaranteed multi-robot navigation
is shown in Figure 5. Note that the transformation from Equation 2 to Equation 4 is not unique.
Each robot can derive an equivalent constrained optimization problem by utilizing its own teammate
observation oimt.

4 Experiments

In this section, simulation and real-world experimental results with a team of 3 holonomic robots
are presented to verify the effectiveness of the proposed DRL-based navigation method.
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(a) Block. (b) Gear. (c) Groove. (d) Corridor. (e) Passageway.
Figure 6: Qualitative simulation results. Obstacles are grey polygons. Robots are pink, brown and
blue circles. Shaded discs are lidar measurements. Green circle is the centroid of the robot team. The
goal is the dark red circle and colored dashed lines are the trajectories of robots with corresponding
colors. The color scheme applies across all simulation results.

(a) Random. (b) Connectivity curve.

Figure 7: An analysis on a navigation process. (a) A randomly generated scenario. (b) The connec-
tivity curve of the navigation in (a), where the x-axis is the time step and the y-axis is the maximum
distance among robots at a specific time step. The red dashed line is the communication range d.

4.1 Simulation results

In this part, we show the performance of the proposed method in terms of the learning process and
the execution period. For simplicity, we refer the work [11] by ”UC method” (UC is the abbreviation
of unconstrained) in the rest of this paper. We retain the overall training configuration of the UC
method and simplify the two period learning with the linear learning rate decay.

Figure 6 shows that our method manages to reach goals in various scenarios including the passage-
way (Figure 6e) where a rule-based method (more precisely, an artificial potential field method [5])
fails [11]. Moreover, it can be seen from Figure 7 that the connectivity is consistently maintained
when navigating with our method while the connectivity constraint is violated during the navigation
with the UC method. It shows the advantage of our method in terms of guaranteeing connectivity.

The training curve is shown in Figure 8a. It can be seen that the convergence rate is enhanced
and the variance is reduced after applying CSPF to guarantee connectivity. The improvement is
reasonable since the connectivity constraint can be viewed as a prior knowledge incorporated into
the learning process. In comparison with policies represented by unconstrained parametric functions
in the UC method, policies in our method are provided with the prior knowledge “don’t break the
connectivity” via the CSPF and thus constantly guarantee connectivity, which frees the DRL agent
from wasting time on learning the behavior of maintaining connectivity. As a consequence, the
agent can concentrate on those behaviors which have to be learned in a trial-and-error manner and
achieves a better performance.

To evaluate the performance of the proposed method, we conduct a statistical comparison where
100 scenarios are generated randomly (look like Figure 7a) to test the derived policies. The adopted
quantitative metrics are defined as follows [11]:

(a) Convergence curve. (b) Connectivity. (c) Success rate. (d) Efficiency.

Figure 8: Quantitative simulation results.
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(a) Chasis. (b) Appearance. (c) Robot team.
Figure 9: Real-world experimental platform

(a) Initial positions. (b) Switch formation. (c) Reach the goal.
Figure 10: Snapshots of a team of 3 holonomic UGVs navigating through obstacles.

• Connectivity: The negative average distance constraint violation over a trajectory, i.e.,
−(1/T ′)

∑T ′

t=1 ct, where ct = avg({max(0, ‖pit − p
j
t‖2 − d) | ∀i 6= j}) is the average

distance constraint violation at time step t and T ′ is the trajectory length.
• Success rate: The ratio of the success times nsuccess over the total number of test cases
ntotal, i.e., nsuccess/ntotal.

• Efficiency: The ratio of the travel time lower bound tlb (dividing Euclidean distance be-
tween the initial position and the goal by the maximum velocity) over the actual travel time
ttravel, i.e., tlb/ttravel.

Higher values indicate better performance for all quantitative metrics. Failure navigations are ne-
glected in connectivity and efficiency. To alleviate stochastic errors, the final quantitative metrics
of a method is the average performance of 3 policies trained with different random seeds. It can
be seen that the proposed method can strictly guarantee connectivity (Figure 8b) while achieving
comparable performance in success rate (Figure 8c) and efficiency (Figure 8d) compared with the
UC method.

4.2 Real-world experimental results

To validate the practicability of the proposed method in real world, we deploy the derived policy
of the proposed method on a team of 3 holonomic UGVs. As shown in Figure 9, each UGV is
equipped with a 2D lidar (RPLIDAR-A2) and an onboard computer (Nvidia Jetson TX2). Besides,
UGVs can communicate virtual polices ẑθ(oit) between each other. In order to enable detections
among UGVs, we wrap UGVs with boxes and set 2D lidars at different heights. Positions and
velocities are provided by the OptiTrack motion capture system.

The snapshots of a real-world indoor experiment are presented in Figure 10. With the end-to-end
policy derived by the proposed method, the robot team succeeds in navigating through cluttered ob-
stacles without collisions while maintaining connectivity. It shows the practicability of our proposed
method. It should be noticed that the kinematic model pit+1 = pit + ai

t ∆t (which we assume the
robots obey) is relatively imprecise in the real world. The violation of kinematic model assumption
will hamper the navigation performance. We attribute the success of real-world deployment to the
merits of the closed-loop control (in comparison with open-loop control).

5 Conclusion

This paper presents a DRL-based approach for the multi-robot navigation problem. By extending
a previous DRL-based method with the proposed CSPF (accompanied with VP2E), connectivity
guaranteed end-to-end navigation policies can be derived. Simulation results show that the CSPF
can indeed accelerate the learning process and guarantee connectivity during navigation. The real-
world experiments of a team of 3 holonomic UGVs further verify the practicability of the proposed
method. In the future work, the proposed method may be further decentralized so as to remove the
necessity of explicit data communications.
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poses for sampling-based nonholonomic motion planning. IEEE Robotics and Automation
Letters, 4(2):1053–1060, 2019.

[23] C. Hubschneider, A. Bauer, J. Doll, M. Weber, S. Klemm, F. Kuhnt, and J. M. Zöllner. Inte-
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