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Abstract: When teams of robots collaborate to complete a task, communication
is often necessary. Like humans, robot teammates should implicitly communicate
through their actions: but interpreting our partner’s actions is typically difficult,
since a given action may have many different underlying reasons. Here we pro-
pose an alternate approach: instead of not being able to infer whether an action is
due to exploration, exploitation, or communication, we define separate roles for
each agent. Because each role defines a distinct reason for acting (e.g., only ex-
ploit, only communicate), teammates now correctly interpret the meaning behind
their partner’s actions. Our results suggest that leveraging and alternating roles
leads to performance comparable to teams that explicitly exchange messages.
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1 Introduction
When teams of robots are deployed in our homes, warehouses, and roads, often these robots must
collaborate to accomplish their task. Imagine two robots working together to move a heavy table
across a room (see Fig. 1). Due to occlusions, each agent can only see some of the obstacles within
this room. Thus, the robots need to communicate to inform their partner about the obstacles they see.
One option is for the robots to explicitly communicate by directly sending and receiving messages:
i.e., we could tell our teammate where the obstacles are. But humans utilize more than just explicit
communication—we also implicitly communicate through our actions. For example, if our partner
guides the table away from our intended trajectory, we might infer that we were moving towards an
obstacle, and that there is a better path to follow. Collaborative robot teams—like humans—should
also leverage the information contained within their partner’s actions to learn about the world.

Unfortunately, interpreting the meaning behind an action is hard. Robots can take actions for many
different reasons: to exploit what they know, convey information to their partner, elicit information
from their partner, or explore the environment. So when we observe our partner applying some force
to the table, what (if anything) should we learn from that action? And how do we select actions that
our partner can also interpret? In this paper, we show that assigning roles alleviates these challenges:

Teams of robots can correctly interpret and learn from each other’s actions when the team is
separated into roles, and each role provides the robots with a distinct reason for acting.

Returning to our example, imagine that our partner’s role is to exploit their current information: they
move the table towards the goal while avoiding the obstacles that they can observe. If we know this
role, we can now interpret their actions: when our partner applies an unexpected force, it must be
because of some obstacle that we did not see. Hence, assigning roles enables us to learn from our
partner’s actions and update our estimate of the system state naturally, without requiring additional,
explicit communication. In this paper, we make the following contributions:

Roles in Two-Player Teams. We focus on decentralized two-player teams where each agent sees
part of the current state, and together the agents observe the entire state. We show that—without
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Figure 1: (Left) Our problem setting, where two robots must work together to complete a task. Each robot
observes different parts of the true system state. (Right) Unlike centralized teams, decentralized teammates
should implicitly communicate through actions: here each agent sees one obstacle, and tries to infer where
the other obstacle is based on their partner’s actions. Interpreting our partner’s actions is hard: there are many
reasons why an agent might choose an action. We introduce speaker and listener roles so that each agent has a
distinct reason for acting, enabling the robots to learn from and implicitly communicate through their actions.

roles—the agent policies are interdependent, and interpreting the actions of our partner leads to
infinite recursion (what do you think I think you think, etc.). To remove this interdependence and
reach interpretable actions, we introduce two classes of policies: a speaker role, where agents exploit
what they know, and a listener role, where agents learn by modeling their partner as a speaker.

Mimicking Explicit Communication. We explore how roles can be used to make our decentral-
ized team behave like a centralized team that communicates explicitly. We find that decentralized
teammates which alternate between roles can match the centralized team, but if the agents always
maintain the same roles, the team may become unstable. We also reveal that speakers trade-off
between stochasticity and communication: to improve overall team performance, speakers should
choose more deterministic actions than the centralized policy to clearly convey their observations.

Comparing Implicit to Explicit. We implement roles both in a simulated game and a two-robot
manipulation task. Our simulations compare implicitly communicating through actions to explicitly
communicating by sending messages, and demonstrate that—when robots leverage roles—implicit
communication is almost as effective as explicit communication. In robot experiments, teams that
alternated roles successfully communicate their observations and collaborate to avoid obstacles.

Overall, this work is a step towards learning from our partner’s actions in decentralized robot teams.

2 Related Work
Multi-Agent Teams. Teams of robots have performed tasks such as localization [1], navigation [2],
and manipulation [3, 4]. While many works rely on centralized coordination [5], decentralized multi-
agent teams are receiving increasing attention [6, 2, 7, 8]. Within decentralized control, the problem
is reformulated as a decentralized partially-observable Markov decision process (Dec-POMDP) [9,
10] or coordinator-POMDP [11]. In practice, solving these optimization problems is frequently
intractable: related works instead rely on high-level abstractions [12], sparse interactions between
agents [13], specific problem instances [14], or control approximations [6]. Alternatively, with
multi-agent reinforcement learning (MARL), agents can learn decentralized policies from trial-and-
error [15]. Today’s MARL approaches often leverage actor-critic methods to scale to high dimension
state-action spaces [16, 17, 18]; however, these methods require offline, centralized training, and
must deal with the credit assignment problem (i.e., who is contributing to the team’s success?).

Communication. Across both control and learning approaches, communication between agents
is key to effective collaboration. The protocol that the agents use to communicate can be either
based on pre-defined triggers [19, 20] or learned from training data [21, 22, 23]. But the method
that the agents use to communicate is generally explicit: the agents have a separate channel with
which they directly broadcast and receive messages from their teammates [24]. At the other end
of the spectrum, [25, 26, 27] study cooperative robots that do not attempt to exchange information.
Unlike these recent works that either have access to explicit communication or omit communication
entirely, we will focus on leveraging implicit communication through actions.

Roles in Human Teams. Our research is inspired by human-human teams, where different roles
naturally emerge in collaborative tasks [28, 29]. For example, when two humans are working to-
gether to physically manipulate an object, the agents can identify and assume complementary roles
based on their partner’s force feedback alone [30]. Roles have also been applied to human-robot
interaction: here the robot dynamically adjusts its level of autonomy (i.e., becomes a leader or fol-
lower) in response to the force feedback from the human partner [31, 32, 33]. We will extend these
ideas to robot-robot teams, where we believe that roles can similarly improve collaboration.
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3 Interpreting Actions via Roles
Consider a decentralized, two-agent team where the agents share a common objective. Each agent
observes part of the system state. To make good decisions, both agents need an accurate estimate of
the entire state; for instance, we need to know whether there is an obstacle behind us, if there is free
space to our right, etc. While we know the aspects of the state that we directly observe, how can we
estimate the parts of the system state that our partner sees? One natural solution is to learn about
the environment based on the implicit communication contained within our partner’s actions. In this
section, we show that correctly interpreting the meaning behind our partner’s actions is challenging
when both agents try to learn from their partner and exploit what they observe at the same time.
Returning to the table moving example: when our partner applies a force, is this because of what
they have learned from our own actions, because of an obstacle behind us, or some combination of
both? To correctly infer the unobserved state, each agent must reason over their partner’s behavior,
and this behavior may in turn depend on the first agent’s actions. Accordingly, we here introduce
speaker and listener roles to remove this interdependency: the speaker implicitly communicates
relevant parts of the state that they observe to the listener, who learns a more accurate state estimate.

Two-Agent Team. We formulate our two-player team as a decentralized Markov decision process
(Dec-MDP) [9]. Let the state space be S = S1×S2 and let the action space beA = A1×A2, where
Si andAi are the state and action space for agent i. The team has dynamics T : S ×A×S → [0, 1]
and receives reward R : S × A → R. At the current timestep t, agent i observes its own state
component sti, and collectively the team observes st = (st1, s

t
2). We therefore have that the state is

jointly fully observable: st is known given the current observations of both agents, st1 and st2. When
making decisions, agent i has access to its history of observations, s0:t

i = (s0
i , s

1
i , . . . , s

t
i), as well

as the history of actions taken by both agents, a0:t−1. For simplicity, we assume that each agent ob-
serves its partner’s current action selection (our results still hold if they observe the previous action).
Hence, the agents have policies of the form π1(at1 | s0:t

1 , a0:t−1, at2) and π2(at2 | s0:t
2 , a0:t−1, at1).

Mimicking Centralized Teams. One approach to control decentralized teams is solving this Dec-
MDP; however, the problem is NEXP-complete [10], and often intractable for continuous state
and action spaces. We study a different approach: we find policies for both decentralized agents
to collectively mimic the behavior of a centralized team [34, 23]. Imagine that—when moving a
table—both teammates know exactly what their partner sees; when we explicitly communicate our
observations, we can solve the problem together, and collaborate perfectly to carry the table. We will
treat this centralized policy that uses explicit communication as the gold standard for our decentral-
ized team, while recognizing that the decentralized team only has access to implicit communication,
and may not be able to completely match the centralized team. Importantly, the optimal centralized
policy is the solution to an MDP, and can be tractable computed offline (P-complete) [10].

Interdependent Policies. Let the centralized policies be π∗1(at1 | st1, st2) and π∗2(at2 | st1, st2). When
both decentralized agents choose their actions to best mimic this centralized behavior, we reach:

π1(at1 | s0:t
1 , a0:t−1, at2) ∝

∑
s0:t2

π∗1(at1 | st1, st2) · π2(at2 | s0:t
2 , a0:t−1, at1) · P (s0:t

2 | s0:t
1 , a0:t−1)

π2(at2 | s0:t
2 , a0:t−1, at1) ∝

∑
s0:t1

π∗2(at2 | st1, st2) · π1(at1 | s0:t
1 , a0:t−1, at2) · P (s0:t

1 | s0:t
2 , a0:t−1)

(1)

See the appendix for our complete derivation. We cannot solve Eqn. (1) as is because the policies are
interdependent: π1 and π2 both appear in each other’s policy, so that solving for π1 requires solving
π2 for all possible s0:t

2 , which requires an inner loop that solves for π1 over all possible s0:t
1 , and so

on. Going back to our table example: imagine that our partner observes whether there is an obstacle
behind us, and we want to infer the likelihood of this obstacle from their actions. This is easy when
our partner’s actions are only based on this obstacle—but if our partner’s behavior is also a response
to our own actions, how to we know which aspects of our partner’s behavior to learn from? To break
this interdependence and recover interpretable actions, we separate our team into two roles: an agent
that exploits what it observes (the speaker), and an agent that learns from its partner’s (the listener).

Speaker. A speaker is an agent that makes decisions by purely exploiting their observations s0:t
i .

Let Agent 1 be the speaker; the speaker policy that best matches π∗1 is:

π1(at1 | s0:t
1 ) =

∑
s2

π∗1(at1 | st1, st2) · P (st2 | s0:t
1 ) (2)
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More generally, any policy of the form πi(a
t
i | s0:t

i ) is a speaker. Because speakers react to their ob-
servations, these actions convey information about the parts of the state they see to their teammates.

Listener. A listener makes decisions based on its own observations while also learning an improved
state estimate from its partner’s behavior. If Agent 2 is the listener, the policy that matches π∗2 is:

π2(at2 | s0:t
2 , a0:t−1, at1) ∝

∑
s0:t1

π∗2(at2 | st1, st2) · π1(at1 | s0:t
1 ) · P (s0:t

1 | s0:t
2 , a0:t−1) (3)

Compared to (1), now the listener models its partner as a speaker, and solving for π1 (the speaker
policy) does not depend on π2 (the listener policy). More generally, we consider any policy of the
form πi(a

t
i | s0:t

i , a0:t−1, atj) as a listener if it interprets its teammate’s actions with πj(atj | s0:t
j ).

4 Leveraging Roles Effectively
Now that we have defined roles, let us return to our table carrying example. Imagine that we are the
speaker and our partner is the listener: what is the best speaker policy for us to follow? Should we
always remain a speaker, or do we need to switch speaker and listener roles with our teammate? And
if our decentralized team uses roles, when can we fully match the behavior of a centralized team? In
this section we explore these questions, and analyze how roles operate within simplified settings.

4.1 When Can We Use Roles to Match a Centralized Team?

Roles enable implicit communication through actions. This implicit communication is typically less
informative than explicitly sharing observations; but when an agent’s actions can completely convey
their observed state, robots can leverage roles to fully match the behavior of a centralized team:

Theorem 1. For continuous systems, if there exist surjective functions g1 : A1 → S1 and
g2 : A2 → S2, a decentralized team using speaker and listener roles can match a centralized team.

Proof. The decentralized team matches the centralized team’s performance by communicating with
actions while rapidly alternating between speaker and listener roles. Define a∗1 as the optimal central-
ized action for agent 1, and let ā1 be a naive action that completely conveys what agent 1 observes:
g1(ā1) = s1. We choose the speaker action to be ā1 and the listener action to be a∗2+(a∗2−ā2), where
the listener can compute a∗2 because it observes s2 and infers s1 from g1(ā1). The agents change
roles: agent 1 is the speaker for time [t, t+ dt) and agent 2 is the speaker for time [t+ dt, t+ 2dt).
Taking the limit as dt→ 0 (i.e., as the roles change infinitely fast), the team’s action a becomes:

at = lim
dt→0

at + at+dt

2
= lim
dt→0

1

2

([
āt1

a∗t2 + (a∗t2 − ā2
t)

]
+

[
a∗t+dt1 + (a∗t+dt1 − āt+dt1 )

āt+dt2

])
= a∗t

and so the decentralized team’s action converges to the optimal action of the centralized team.

Intuitively, consider the table example with two dynamic obstacles, one of which is observed by
each teammate. When we are the speaker, we apply a force with a direction and magnitude that
conveys our obstacle’s position to the partner; likewise, when our partner is the speaker, their action
informs us where their obstacle is. By quickly switching speaker and listener roles we can both
understand the state, and match the behavior of a team that explicitly tells one another about the
obstacles. Theorem 1 can also be extended to a team of N agents (see appendix for full proof).

4.2 Analyzing Roles in Linear Feedback Systems

To better understand how roles affect decentralized teams, we specifically focus on teams controlled
using linear feedback. Here the centralized policy is a∗ = −K∗s, where K∗ is the desired control
gain; for instance, this policy could be the solution to a linear-quadratic regulator (LQR). Assuming
our decentralized team is similarly controlled with a = −Ks, we first determine whether alternating
speaker and listener roles is necessary to ensure system stability. We next consider situations where
the centralized policy includes stochastic behavior, and we identify how speakers should optimally
trade-off between mimicking this desired noise and effectively communicating with the listener.

Do We Need to Change Roles? Imagine that we are the speaker within the table-carrying example.
In the best case, our actions completely convey our observations to our partner. But if we are never a
listener, we never know what our partner observes; and, if the team’s behavior depends on our own
actions, this can lead to situations where we are unable to collaboratively accomplish the task:
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Proposition 1. If the teammates never change speaker and follower roles, and the team is attempting
to mimic a centralized controller a∗ = −K∗s, there exist controllable system dynamics for which
the decentralized team a = −Ks becomes unstable for any choice of K.

Proof. We prove this by example. Let agent 1 always be the speaker and let agent 2 be the listener.
Consider the following controllable system with linear dynamics ṡ = As+Ba, where a = −Ks:[

ṡ1

ṡ2

]
=

[
1 1
0 1

] [
s1

s2

]
−
[
0 0
1 0

] [
K11 0
K21 K22

] [
s1

s2

]
(4)

Note that K12 = 0; this is because the speaker makes decisions based purely on their own state, s1.
The listener is able to perfectly infer s1 since it observes the speaker’s action a1, and s1 = −K−1

11 a1.
For this team to have stable dynamics the eigenvalues of A−BK must have a strictly negative real
part. But here the eigenvalues are: 1 ±

√
−K11. Hence, no matter what speaker and listener gains

K11, K21, and K22 we choose, the decentralized team becomes unstable.

How Should We Speak and Listen with Noise? Returning to our table carrying example, we
now know that we should alternate speaker and listener roles even when our actions completely
convey our observations. But what if we cannot fully observe the actions of our partner (e.g. due to
sensor noise)? As long as this estimate is unbiased, we can still match the expected behavior of the
centralized team by treating these noisy actions as accurate measurements:
Proposition 2. If the teammates incorrectly sense their partner’s action ai as ai + ni, where ni is
unbiased noise, the decentralized team can match the centralized controller action a∗ = −K∗s in
expectation by speaking and listening as if ai + ni were the teammate’s true action.

Proof. Let agent 1 be the speaker, let agent 2 be the listener, and let the decentralized controller be
a = −Ks, where K is shown in Eqn. (4). The speaker takes action a1 = −K11s1, but the listener
measures a1+n1, and infers the speaker’s state as ŝ1 = s1−K−1

11 n1. Accordingly, when the listener
acts based on ŝ1, their action has an additional term K21K

−1
11 n1. Next the agents switch roles, and

the first agent (i.e., the listener) acts with an additional term K12K
−1
22 n2. When the agents rapidly

alternate between speaker and listener roles, the team’s behavior includes these terms:

a = −K∗s+

[
K∗12K

∗,−1
22 n2

K∗21K
∗,−1
11 n1

]
, K∗ =

[
K∗11 K∗12
K∗21 K∗22

]
, En[a] = −K∗s = a∗ (5)

This matches the centralized team’s action in expectation if n1 and n2 are unbiased.
Noisy action measurements are undesirable but often unavoidable. Conversely, there are cases where
the centralized policy itself recommends stochastic actions: i.e., when an agent sees an obstacle in
front of it, it should go around on the right-side 30% of the time, and on the left otherwise. The
speaker and listener can choose whether or not to incorporate this stochasticity. Intuitively, we might
think that both the speaker and listener should match the optimal centralized policy; but, when the
speaker’s actions become more stochastic, it is harder for the listener to correctly interpret what the
speaker has observed. Imagine we are the listener: the more random the speaker’s action is, the less
information we have about what the speaker sees, which makes it more challenging for us to learn
the system state. This leads to a trade-off between speaker noise and overall team performance:
Proposition 3. If the centralized policy is stochastic, so that a∗ = −K∗s+n, and n is sampled from
a Gaussian distribution n ∼ N (0, diag(w2

1, w
2
2)), the speaker policy that minimizes the Kullback-

Leibler (KL) divergence between the decentralized and centralized policies has a variance less than
or equal to the corresponding variance of the centralized policy.

Proof. Let the first agent be the speaker and let the second agent be the listener. The decentralized
team takes action a = −Ks + m, where m ∼ N (0, diag(σ2

1 , σ
2
2)). We solve for the variances σ2

1
and σ2

2 that minimize the KL divergence between the decentralized and centralized policies:

min
σ2
1 ,σ

2
2

KL
[
N
(
−Ks, diag(σ2

1 , σ
2
2)
)
, N

(
−K∗s, diag(w2

1, w
2
2)
)]

(6)

Selecting K to best match K∗, and taking the expectation of Eqn. (6), the optimal variances are:

σ2
1 =

K2
11w

2
1w

2
2

K2
11w

2
2 +K2

21w
2
1

≤ w2
1, σ2

2 = w2
2 (7)

See the appendix for our full derivation. Hence, while the listener should match the variance of the
corresponding centralized policy, the speaker should intentionally choose a variance σ2

1 ≤ w2
1 .
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Figure 2: Simulated task. (Left) Two agents collaborate to carry a rigid object while avoiding obstacles. Each
agent can only see the obstacles matching their color. In this example, the explicit and dynamic roles teams are
able to negotiate the obstacles to reach the goal, while the static roles team fails. (Right) Example of implicit
communication via actions: here the speaker sees an obstacle, and abruptly moves to the right (1). The listener
updates its state estimate based on this unexpected motion, and also moves to avoid the unseen obstacle (2).

Summary. If two decentralized agents are collaborating with roles, they can match the behavior of
a centralized team when their actions completely convey their observations. But even in these cases,
alternating between speaker and listener roles is necessary; the team may become unstable if their
roles never change. When choosing how best to speak and listen, greedily mimicking the centralized
policy is effective, and robust to noisy, unbiased measurements of the partner’s actions. In situations
where the centralized policy is stochastic, however, a trade-off emerges: speakers should select more
deterministic actions in order to better convey their observations to the listener.

5 Simulations and Experiments
Roles are sufficient when actions can completely convey the state an agent observes. But what about
more general situations, where the observation space has a higher dimension than the action space?
And how do our proposed roles function on actual robot teams? Here we explore these challenging
cases in a simulated game (see Fig. 2) and a two-robot manipulation task (see Fig. 4). We compare
fixed and dynamic role allocations to different amounts of explicit communication. Overall, we find
that there is a spectrum across explicit and implicit communication, and that implicit communication
via roles approaches the performance of equivalent explicit communication.

5.1 Simulated Table-Carrying Game with Implicit and Explicit Communication

We simulated a continuous state-action task in which two point robots carried a table across a plane
(see Fig. 2). Each robot observed half of the obstacles within this plane, and so together the team
needed to communicate to obtain an accurate state estimate. We compared using explicit and implicit
communication. During explicit communication, agents sent and received messages that contained
the exact location and geometry of the closest obstacle. By contrast, during implicit communication
the agents leveraged roles to learn from their partner’s actions. An example is shown in Fig. 2: here
the speaker sees an obstacle—that the listener cannot observe—and changes its motion to implicitly
indicate to the listener that there is an obstacle directly ahead.

Independent Variables. We varied the (a) communication strategy and (b) task complexity. There
were three levels of communication strategy: explicit, dynamic roles, and static roles. Within explicit
and dynamic roles, we also varied the number of timesteps T between communication; i.e., the ex-
plicit teams could only send messages about the closest obstacle every T timesteps, or, analogously,
the speaker and listener roles alternated after T timesteps. In order to adjust the task complexity, we
increased n, the total number of obstacles in the environment.

Dependent Measures. Within each simulation, two agents held a rigid table, and tried to carry that
table to the goal without colliding with an obstacle. We measured the success rate (λ) of reaching
the goal over 1000 randomly generated environments. As a baseline, we also tested fully centralized
teams: these centralized teams reached the goal in all environments (λ = 1).

Hypotheses:
H1. Dynamically alternating roles leads to better performance than fixed role allocations, even in
cases where actions can completely convey the location of the closest obstacle.
H2. In environments where actions cannot completely convey the closest obstacle, dynamic role
allocations perform almost as well as explicitly communicating the closest obstacle.
H3. Implicit communication via roles is robust to noisy action observations.
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Table 1: Success rate λ when both robots knew the geometry of the obstacles a priori, but not their locations.
Each agent implicitly communicated the positions of the obstacles that they could see through their actions.
Importantly, the agents could completely communicate the position of the closest obstacle with their current
action: hence, the success rate of explicit teams (not listed) is almost identical to that of dynamic teams.

Roles (Dynamic) Roles (Static)
Obstacles T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 0.995 0.914 0.827 0.872 0.757
n = 4 0.982 0.786 0.656 0.735 0.545
n = 8 0.924 0.586 0.434 0.539 0.305

We provide additional details about this simulated game in the appendix and supplementary code.

5.2 Rapidly Changing Roles Outperforms Static Roles

We first tested hypothesis H1 in a setting where each agent knew the geometry of all the obstacles
in the environment (i.e., all obstacles were circles with the same radius). Since the obstacle shape is
known and fixed, agents could fully convey the closest obstacle’s (x, y) location through their 2-DoF
actions. Our results are shown in Table 1; we point out that dynamic roles and explicit are almost
the same in this case, and so we focus on comparing dynamic roles to static roles. For each tested
number of obstacles, the teams that rapidly alternated roles outperformed teams with fixed roles.
Indeed, when there are only n = 2 obstacles, the mapping from action space to observation space
was surjective, and the dynamic roles team converged towards λ = 1 as T → 0 (Theorem. 1). But
dynamically alternating roles was not always better: when the teammates changed roles too slowly
(T = 16), their performance was actually worse than maintaining a constant speaker and listener.

5.3 Implicitly Communicating via Roles Competes with Explicit Communication

Next, we explored hypothesis H2 in more complex settings where the agent’s current action could
not completely convey what they observed to their partner. Here the robots did not know the obstacle
geometry a priori; instead, each obstacle radius was randomly sampled from a uniform distribution.
Teams with roles had to try and implicitly communicate about both the obstacle location and shape—
by contrast, explicit teams could send messages to their partner that completely conveyed the closest
obstacle. Our findings are visualized in Fig. 3. We see a spectrum in performance across explicit,
dynamic roles, and static roles. Although directly sending obstacle information is always better than
learning from actions, implicitly communicating through dynamic roles is almost as successful as
explicitly communicating with our partner at the same time interval T . This suggests that leveraging
roles to learn from our partner’s actions can be nearly as effective as direct communication, even in
cases where the observations cannot be completely conveyed in a single action.

5.4 Roles with Noisy Action Observations Match Noisy Explicit Communication

So far we have conducted simulations in settings where the agents can perfectly measure the com-
munication of their partner. Now we take a step back, and consider hypothesis H3 when the com-
munication channel itself is noisy. This encompasses scenarios where the partners cannot perfectly
measure each other’s actions, or, analogously, when the explicit messages are corrupted. Our results
with zero mean Gaussian noise are listed in Table 2. As expected, including noise decreased perfor-
mance across both explicit and dynamic roles. But teams with dynamic roles that rapidly alternated
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Figure 3: Success rate λ when the robots did not know the obstacle geometry a priori. Not only was the obser-
vation space higher dimensional than the action space, but agents could not even convey the closest obstacle’s
position and radius in a single action. There is a spectrum in performance across both communication type and
frequency. For realtime explicit communication, the agents fully convey the closest obstacle at every timestep.
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Table 2: Success rate λ when the communication was noisy. We simulated zero-mean Gaussian noise, and
chose the variance so that the coefficient of variation was 0.1. Both explicit communication (noisy messages)
and implicit communication (noisy action observations) had the same noise ratio. Dynamic roles performed
almost on par with realtime explicit communication, where both agents exchanged messages at every timestep.

Explicit Roles (Dynamic) Roles (Static)
Obstacles T = 0 T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 0.925 0.884 0.818 0.787 0.829 0.757
n = 4 0.833 0.747 0.669 0.606 0.655 0.545
n = 8 0.553 0.512 0.416 0.357 0.398 0.305

were still almost on par with explicit teams that communicated in realtime, demonstrating that roles
were as robust to noisy actions as explicit teams were to noisy messages. Similar to before, fixed
speaker-listener teams were more successful than teams that slowly alternated roles.

5.5 Manipulation Experiments with Two Robot Arms

We implemented our dynamic role and static role strategies on two decentralized robot arms (Panda,
Franka Emika). Our experimental setup is shown in Fig. 4: the robots were controlled using separate
computers, and were tasked with placing a rod on the table top without any explicit communication.
In order to complete this task, the robots had to negotiate two obstacles—but, like in our simulations,
each robot could only see one of these obstacles. Because of their differing knowledge about the
system state, the robots originally had opposite plans about how to move the rod to the table: one
robot wanted to move the rod forwards (with respect to the camera), while the other robot planned
to move the rod backwards. We expect intelligent robots to recognize that there is a reason why
their partner disagrees with them, and learn from their partner’s actions in realtime to update their
estimate of the system state. We controlled the robots using static speaker-speaker and speaker-
listener roles, as well as dynamic roles that alternated every 0.5 s. During the experiments, only the
dynamic roles team inferred the obstacles that their partners observed, and aligned their actions to
successfully place the rod on the table (see Fig. 4). Please also refer to our video submission.

6 Discussion
Summary. Decentralized robot teams should learn about what their partner observes based on their
partner’s actions, but this is not possible when both agents attempt to simultaneously exploit their
observations and communicate with their partner. We have therefore introduced separate speaker and
listener roles: our analysis shows that teammates which dynamically alternate roles theoretically and
experimentally approach the performance of teammates that can explicitly communicate.

Limitations and Future Work. This work is limited to Dec-MDPs, where the agents collectively
observe the full system state. But we recognize that often there are parts of the state that neither agent
can fully observe; accordingly, our future work will focus on extending roles to Dec-POMDPs.

Figure 4: Two decentralized robot arms tasked with placing a rod on the table while implicitly communicating
via roles: the left robot sees obstacle OL and the right robot sees OR. (Left) The behavior of static role and
dynamic role teams after t s. Both static role teams collided with obstacle OL because they failed to mutually
communicate their observations. The team that alternated roles successfully reasoned over each other’s actions,
conveyed the obstacle positions, and aligned their actions. (Right) We plot the norm of the force the two agents
exerted on one another, as well as the alignment between the two agent’s end-effector movements.
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7 Appendix
7.1 Extension of Theorem. 1 to N -Agent Teams

Moving beyond two-agent teams, robots can also alternate between speaker and listener roles in N -
agent scenarios to obtain optimal centralized performance. Let one agent be the listener, and let the
otherN −1 agents speak to this listener; if the robots alternate the listener role, then the closed-loop
system still converges to centralized team’s performance. As in the two-agent case, we define a∗i
as the optimal centralized action for agent i, and let āi be the naive action that purely depends on
agent i’s local state. Under the surjective mapping assumption, we have gi(ai) = si. We choose the
speaker i’s action to be āi, and the listener j’s action to be a∗j + (N − 1)(a∗j − āj). Agents alternate
the listener role with interval dt. Taking the limit as dt→ 0, the overall team action a becomes:

at = lim
dt→0

∑N−1
k=0 a

t+kdt

N

= lim
dt→0

1

N

(
a∗t1 + (N − 1)(a∗t1 − āt1)

āt2
...
ātN

+


āt+dt1

a∗t+dt2 + (N − 1)(a∗t+dt2 − āt+dt2 )
...

āt+dtN



+ . . .+


ā
t+(N−1)dt
1

ā
t+(N−1)dt
2

...
a
∗t+(N−1)dt
N + (N − 1)(a

∗t+(N−1)dt
N − ā

t+(N−1)dt
N )


)

= a∗t

And so, following the simple yet effective role rotation mechanism, the decentralized team still
converges to the optimal action of the centralized team if they rotate the roles fast enough.

7.2 Derivations for Eqn. (1)

π1(at1 | s0:t
1 , a0:t−1, at2) =

∑
s0:t2

P (at1, s
0:t
2 | s0:t

1 , a0:t−1, at2)

=

∑
s0:t2

P (at1, a
t
2, s

0:t
2 | s0:t

1 , a0:t−1)

P (at2 | s0:t
1 , a0:t−1)

∝
∑
s0:t2

P (at1, a
t
2, s

0:t
2 | s0:t

1 , a0:t−1)

=
∑
s0:t2

P (at2 | at1, s0:t
2 , s0:t

1 , a0:t−1) · P (at1 | s0:t
2 , s0:t

1 , a0:t−1)

· P (s0:t
2 | s0:t

1 , a0:t−1)

=
∑
s0:t2

π2(at2 | s0:t
2 , a0:t−1, at1) · π∗1(at1 | st1, st2) · P (s0:t

2 | s0:t
1 , a0:t−1)

(8)

Thus we have

π1(at1 | s0:t
1 , a0:t−1, at2) ∝

∑
s0:t2

π∗1(at1 | st1, st2) · π2(at2 | s0:t
2 , a0:t−1, at1) · P (s0:t

2 | s0:t
1 , a0:t−1) (9)

Similarly, we could derive the symmetric formulation for π2.

π2(at2 | s0:t
2 , a0:t−1, at1) ∝

∑
s0:t1

π∗2(at2 | st1, st2) · π1(at1 | s0:t
1 , a0:t−1, at2) · P (s0:t

1 | s0:t
2 , a0:t−1)

(10)

7.3 Derivations for Eqn. (7)

For the stochastic centralized policy, we have:

π∗1(a1 | s1, s2) = N (K11s1 +K12s2, w
2
1)

π∗2(a2 | s1, s2) = N (K21s1 +K22s2, w
2
2)

(11)
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The states s1 and s2 are constant and independent, and sampled from Gaussian priors: s1 ∼
N (µ1, σ

2
s1) and s2 ∼ N (µ2, σ

2
s2). Without loss of generality, let agent 1 be speaker and agent

2 is listener. The speaker and listener policies are:

π1(a1 | s1) = N (K11s1 +K12µ2, σ
2
1) (12)

π2(a2 | s2, a1) = N (K21K
−1
11 (a1 −K12µ2) +K22s2, σ

2
2) (13)

Now we can do the KL divergence to solve for the parameters θ = {σ1, σ2}

min
θ
KL = min

θ

[
log

w1

σ1
+
σ2

1 + (K11s1 +K12s2 −K11s1 −K12µ2)2

2w2
1

+ log
w2

σ2
+

σ2
2 + (K21s1 +K22s2 −K21K

−1
11 (a1 −K12µ2)−K22s2)2

2w2
2

]
= min

θ

[
log

w1w2

σ1σ2
+

σ2
1

2w2
1

+
K2

12(s2 − µ2)2

2w2
1

+
σ2

2 +K2
21(s1 −K−1

11 (a1 −K12µ2))2

2w2
2

]
(14)

Taking expectation over Eqn. (14), we reach:

min
θ

E[KL] = min
θ

[
K2

12σ
2
s2

2w2
1

+ log
w1w2

σ1σ2
+

σ2
1

2w2
1

+
σ2

2 +K2
21σ

2
1/K

2
11

2w2
2

]
(15)

The optimal choices of σ1 and σ2 are:

σ1 =
K11w1w2√

K2
11w

2
2 +K2

21w
2
1

, σ2 = w2 (16)

So far, we already derive Eqn. (7). Further, the minimum values for the KL divergence are given by:

K2
12σ

2
s2

2w2
1

+ log

√
K2

11w
2
2 +K21w2

1

K11w2
+ 1 (17)

7.4 Simulation Environment

In our simulation environment, we make the simplification of making agent i velocity vi as input
action, instead of force. And we pose no hard constraint of speed continuity. Formally, Eqn. (18)
gives the system dynamics. The team center’s translation velocity vtransc is the average of two
agents’ input velocity v1 and v2, the angular velocity for rotation is computed by first projecting the
velocity difference to the stick’s perpendicular direction (unit vector uri points from stick center to
agent i). And then dividing by r, the length from stick center to agent (half the stick length):

vtransc =
1

2
(v1 + v2), ω =

1

r
uri × (vi − vtransc ) (18)

7.5 Planning

We adopt the well-known potential field model [35] for planning. Agents at location q plan their
path under the influence of an artificial potential field U(q), which is constructed to reflect the
environment. There are two types of potential field sources. We denote the set of attractions k ∈ A
and the set of repulsive obstacles j ∈ R. The overall potential field is the sum of all attractive and
repulsive potential field sources as in Eqn. (19). The action (input velocity vi) an agent i at location
qi takes lies in the direction of the potential field gradient as in Eqn. (20). wv is a predefined
hyperparameter controlling velocity scale. In this way, the potential field planner could naturally
combine agent’s knowledge of goal g as an attraction and its nearby obstacles as repulsive sources.

U(q) =
∑
k∈A

Ukatt(q) +
∑
j∈R

U jrep(q) (19)

vi(qi) = −wv∇U(qi) = −wv(
∑
k∈Ai

∇Ukatt(qi) +
∑
j∈Ri

∇U jrep(qi)) (20)
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Table 3: Average centralized game length over failure cases when both robots knew the geometry of the obsta-
cles a priori.

Roles (Dynamic) Roles (Static)
Obstacles T = 1 T = 4 T = 16 Speaker-Listener Speaker-Speaker

n = 2 164.00 152.93 146.53 145.96 143.13
n = 4 181.11 154.98 149.99 148.04 146.75
n = 8 167.61 160.47 156.89 158.13 154.65

In our implementation, we directly give the gradient for attractive potential field∇Ukatt(q) and repul-
sive potential field ∇U jrep(q) as in Eqn. (21) and Eqn. (22). watt and wrep are the hyperparameters
controlling the relative scale of the attractive and repulsive potential field. qk is the location for
attraction k. qj is the location for repulsive source j. ρj(q) is the minimum distance of agent at
location q to obstacle j. ρ0 is a hyperparameter controlling the effective range of repulsive potential
field. The repulsive potential field is 0 outside of the range ρ0.

∇Ukatt(q) = watt ∗
q − qk
‖q − qk‖

(21)

∇U jrep(q) =

{
wrep ∗

(
1

ρj(q) −
1
ρ0

)(
1

ρj(q)

)
q−qj
‖q−qj‖ if ρj(q) ≤ ρ0

0 if ρj(q) > ρ0

(22)

7.6 Inference

As discussed in Sec. 3 and Sec. 4, the listener would perform inference over the speaker i’s action
vi(qi). In our context, since the goal attraction is known and shared, what the listener is trying to
infer are the speaker’s repulsive obstacles j ∈ Ri. In our implementation, the listener approximates
the speaker i’s repulsive potential field with one inferred obstacle j̄i at location q̄i. More formally,
this is equivalent to solving Eqn. (23):

vi(qi) = −wv(
∑
k∈Ai

∇Ukatt(qi) +∇U j̄irep(q̄i)) (23)

Combined with Eqn. (21) and Eqn. (22), numerical solution for obstacle j̄i’s location qj̄i is obtained
by bisection iteration.

7.7 Supplementary Experiment Results

We show our supplementary experiment results in simulation for Sec. 5.2 and Sec. 5.4 here respec-
tively.

7.7.1 Rapidly Changing Roles Outperforms Static Roles

In this setting, in addition to success rate λ for Table 1 in Sec. 5.2, we also measure an additional
metric, centralized policy’s average game length l for dynamic role and static role teams. The results
are summarized in Table 3. The dynamic role team with shortest switch interval has the highest game
length. It indicates that its failure cases are the most difficult and thus suggests that it could deal
with more complex environment.

7.7.2 Roles with Noisy Action Observations Match Noisy Messages

In Sec. 5.4, we explored the noisy action observation case with coefficient of variance 0.1 as in Ta-
ble 2. We also vary the noise level by setting different coefficient of variation σ

µ ∈ {0.001, 0.01, 0.1}.
The σ is the Gaussian standard deviation, and the µ is the mean value of action observation, i.e. the
groundtruth action value. For explicit communication, we add the same scale communication noise
(coefficient of variation) for sending obstacle location. We summarize our full results in Table 4. As
noise level increases, the success rate gradually drops and the gap between dynamic role and explicit
communication becomes greater. This is because the error gets amplified by the nonlinearity during
inference process. Nevertheless, across all cases, the dynamic role methods with short switch inter-
val (T = 1, 4) consistently performs better than fixed speaker-listener team, followed by dynamic
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role with long switch interval (T = 16), and then the speaker-speaker team. Overall, the dynamic
role strategy could decently deal with disturbance and the performance is still on par with explicit
communication.

Table 4: Success rate λ over 1000 games when communication is noisy. σ
µ

is coefficient of variation that
controls the noise level for both action observation and explicit communication. Here S-L represents the static
Speaker-Listener team and S-S for static Speaker-Speaker team.

Explicit Roles (Dynamic) Roles (Static)
Obstacles noise level σµ T = 0 T = 1 T = 4 T = 16 S-L S-S

n=2
0.001 0.997 0.989 0.89 0.818 0.889

0.7580.01 0.996 0.980 0.891 0.814 0.889
0.1 0.925 0.884 0.818 0.787 0.829

n=4
0.001 0.984 0.943 0.778 0.653 0.731

0.5580.01 0.981 0.927 0.768 0.651 0.731
0.1 0.833 0.747 0.669 0.606 0.655

n=8
0.001 0.904 0.738 0.531 0.388 0.495

0.2960.01 0.900 0.716 0.504 0.388 0.491
0.1 0.553 0.512 0.416 0.357 0.398
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