
Active Domain Randomization

Bhairav Mehta
Mila, Université de Montréal

Manfred Diaz
Mila, Université de Montréal

Florian Golemo
Mila, Université de Montréal, ElementAI

Christopher J. Pal
Mila, Polytechnique Montréal, ElementAI, CIFAR

Liam Paull
Mila, Université de Montréal, CIFAR

Abstract:
Domain randomization is a popular technique for improving domain transfer,
often used in a zero-shot setting when the target domain is unknown or cannot
easily be used for training. In this work, we empirically examine the effects
of domain randomization on agent generalization. Our experiments show that
domain randomization may lead to suboptimal, high-variance policies, which
we attribute to the uniform sampling of environment parameters. We propose
Active Domain Randomization, a novel algorithm that learns a parameter sampling
strategy. Our method looks for the most informative environment variations within
the given randomization ranges by leveraging the discrepancies of policy rollouts
in randomized and reference environment instances. We find that training more
frequently on these instances leads to better overall agent generalization. Our
experiments across various physics-based simulated and real-robot tasks show that
this enhancement leads to more robust, consistent policies.

Keywords: sim2real, domain randomization, reinforcement learning

1 Introduction

Recent trends in Deep Reinforcement Learning (DRL) exhibit a growing interest in zero-shot domain
transfer, i.e. when a policy is learned in a source domain and is then tested without finetuning in a
previously unseen target domain. Zero-shot transfer is particularly useful when the task in the target
domain is inaccessible, complex, or expensive, such as gathering rollouts from a real-world robot. An
ideal agent would learn to generalize across domains; it would accomplish the task without exploiting
irrelevant features or deficiencies in the source domain (i.e., approximate physics in simulators),
which may vary dramatically after transfer.

One promising approach for zero-shot transfer has been Domain Randomization (DR) [1]. In DR,
we uniformly randomize environment parameters (i.e. friction, motor torque) in predefined ranges
after every training episode. By randomizing everything that might vary in the target environment,
the hope is that the agent will view the target domain as just another variation. However, recent
works suggest that the sample complexity grows exponentially with the number of randomization
parameters, even when dealing only with transfer between simulations (i.e. in Andrychowicz et al.
[2] Figure 8). In addition, when using DR unsuccessfully, policy transfer fails, but with no clear
way to understand the underlying cause. After a failed transfer, randomization ranges are tweaked
heuristically via trial-and-error. Repeating this process iteratively leads to arbitrary ranges that do (or
do not) lead to policy convergence without any insight into how those settings may affect the learned
behavior.

In this work, we demonstrate that the strategy of uniformly sampling environment parameters
from predefined ranges is suboptimal and propose an alternative sampling method, Active Domain
Randomization. Active Domain Randomization (ADR), shown graphically in Figure 1, formulates

Correspondence to mehtabha@mila.quebec

Figure 1: ADR proposes randomized envi-
ronments (c) or simulation instances from
a simulator (b) and rolls out an agent pol-
icy (d) in those instances. The discrimina-
tor (e) learns a reward (f) as a proxy for
environment difficulty by distinguishing be-
tween rollouts in the reference environment
(a) and randomized instances, which is used
to train SVPG particles (g). The particles
propose a diverse set of environments, try-
ing to find the environment parameters (h)
that are currently causing the agent the most
difficulty.

DR as a search for randomized environments that maximize utility for the agent policy. Concretely,
we aim to find environments that currently cause difficulties for the agent policy, dedicating more
training time to these troublesome parameter settings. We cast this active search as a Reinforcement
Learning (RL) problem where the ADR sampling policy is parameterized with Stein Variational
Policy Gradient (SVPG) [3]. ADR focuses on problematic regions of the randomization space
by learning a discriminative reward computed from discrepancies in policy rollouts generated in
randomized and reference environments.

We first showcase ADR on a simple environment where the benefits of training on more challenging
variations are apparent and interpretable (Figure 2). In this case, we demonstrate that ADR learns to
preferentially select parameters from these more challenging parameter regions while still adapting
to the policy’s current deficiencies. We then apply ADR to more complex environments and real
robot settings (Figure 3) and show that even with high-dimensional search spaces and unmodeled
dynamics, policies trained with ADR exhibit superior generalization and lower overall variance than
their Uniform Domain Randomization (UDR) counterparts.

2 Preliminaries

2.1 Reinforcement Learning

We consider a RL framework [4] where some task T is defined by a Markov Decision Process (MDP)
consisting of a state space S, action space A, state transition function P : S × A 7→ S, reward
function R : S ×A 7→ R, and discount factor γ ∈ (0, 1). The goal for an agent trying to solve T is
to learn a policy π with parameters θ that maximizes the expected total discounted reward. We define
a rollout τ = (s0, a0..., sT , aT) to be the sequence of states st and actions at ∼ π(at|st) executed
by a policy π in the environment.

2.2 Stein Variational Policy Gradient

Recently, Liu et al. [3] proposed SVPG, which learns an ensemble of policies µφ in a maximum-
entropy RL framework [5].

max
µ

Eµ[J(µ)] + αH(µ) (1)

with entropyH being controlled by temperature parameter α. SVPG uses Stein Variational Gradient
Descent [6] to iteratively update an ensemble of N policies or particles µφ = {µφi}Ni=1 using:

µφi ← µφi +
ε

N

N∑
j=1

[∇µφj J(µφj)k(µφj , µφi) + α∇µφj k(µφj , µφi)] (2)

with step size ε and positive definite kernel k. This update rule balances exploitation (first term moves
particles towards high-reward regions) and exploration (second term repulses similar policies).

2.3 Domain Randomization

Domain randomization (DR) is a technique to increase the generalization capability of policies trained
in simulation. DR requires a prescribed set of Nrand simulation parameters to randomize, as well

2

as corresponding ranges to sample them from. A set of parameters is sampled from randomization
space Ξ ⊂ RNrand , where each randomization parameter ξ(i) is bounded on a closed interval
{
[
ξ
(i)
low, ξ

(i)
high

]
}Nrandi=1 .

When a configuration ξ ∈ Ξ is passed to a non-differentiable simulator S, it generates an environment
E. At the start of each episode, the parameters are uniformly sampled from the ranges, and the
environment generated from those values is used to train the agent policy π.

DR may perturb any to all elements of the task T ’s underlying MDP1, with the exception of keeping
R and γ constant. DR therefore generates a set of MDPs that are superficially similar, but can vary
greatly in difficulty depending on the character of the randomization. Upon transfer to the target
domain, the expectation is that the agent policy has learned to generalize across MDPs, and sees the
final domain as just another variation of parameters.

The most common instantiation of DR, UDR is summarized in Algorithm 2 in Appendix E. UDR
generates randomized environment instances Ei by uniformly sampling Ξ. The agent policy π is then
trained on rollouts τi produced in randomized environments Ei.

3 Method

To start, we would like to answer the following question:

Are all MDPs generated by uniform randomization equally useful for training?

We consider the LunarLander-v2 environment, where the agent’s task is to ground a lander in
a designated zone and reward is based on the quality of landing (fuel used, impact velocity, etc).
LunarLander-v2 has one main axis of randomization that we vary: the main engine strength (MES).

We aim to determine if certain environment instances (different values of the MES) are more
informative - more efficient than others - in terms of aiding generalization. We set the to-
tal range of variation for the MES to be [8, 20]2 and find through empirical tests that lower
engine strengths generate harder MDPs to solve. Under this assumption, we show the ef-
fects of focused DR by editing the range that the MES parameter is uniformly sampled from.

Figure 2: Agent generalization, expressed as perfor-
mance across different engine strength settings in Lu-
narLander. We compare the following approaches:
Baseline (default environment dynamics); Uniform Do-
main Randomization (UDR); Active Domain Random-
ization (ADR, our approach); and Oracle (a handpicked
randomization range of MES [8, 11]). ADR achieves
for near-expert levels of generalization, while both Base-
line and UDR fail to solve lower MES tasks.

We train multiple agents on different ran-
domization ranges for MES, which define
what types of environments the agent is ex-
posed to during training. Figure 2 shows
the final generalization performance of each
agent by sampling randomly from the entire
randomization range of [8, 20] and rolling
out the policy in the generated environ-
ments. We see that, in this case, focusing
on harder MDPs improves generalization as
compared to uniformly sampling the whole
space, even when the evaluation environ-
ment is outside of the training distribution.

3.1 Problem Formulation

The experiment in the previous section
shows that preferential training on more
informative environments provides tangible
benefits in terms of agent generalization.
However, in general, finding these informa-
tive environments is difficult because: (1)
It is rare that such intuitively hard MDP
instances or parameter ranges are known

beforehand and (2) DR is used mostly when the space of randomized parameters is high-dimensional
1The effects of DR on action space A are usually implicit or are carried out on the simulation side.
2Default MES is 13; MES ≤ 7.5 is unsolvable when all other parameters remain constant.

3

or noninterpretable. As a result, we propose an algorithm for finding environment instances that
maximize utility, or provide the most improvement (in terms of generalization) to our agent policy
when used for training.

3.2 Active Domain Randomization

Drawing analogies with Bayesian Optimization (BO) literature, one can consider the randomization
space as a search space. Traditionally, in BO, the search for where to evaluate an objective is
informed by acquisition functions, which trade off exploitation of the objective with exploration in
the uncertain regions of the space [7]. However, unlike the stationary objectives seen in BO, training
the agent policy renders our optimization non-stationary: the environment with highest utility at
time t is likely not the same as the maximum utility environment at time t+ 1. This requires us to
redefine the notion of an acquisition function while simultaneously dealing with BO’s deficiencies
with higher-dimensional inputs [8].

Algorithm 1 Active Domain Randomization

1: Input: Ξ: Randomization space, S: Simulator, ξref :
reference parameters

2: Initialize πθ: agent policy, µφ: SVPG particles, Dψ:
discriminator, Eref ← S(ξref): reference environment

3: while not max timesteps do
4: for each particle µφ do
5: rollout ξi ∼ µφ(·)
6: end for
7: for each ξi do
8: // Generate, rollout in randomized env.
9: Ei ← S(ξi)

10: rollout τi ∼ πθ(·;Ei), τref ∼ πθ(·;Eref)
11: Trand ← Trand ∪ τi; Tref ← Tref ∪ τref
12: end for
13: // Calculate reward for each proposed environment
14: for each τi ∈ Trand do
15: Calculate ri for ξi / Ei (Eq. (3))
16: end for
17: // Gradient Updates
18: with Trand update:
19: θ ← θ + ν∇θJ(πθ)
20: Update particles using Eq. (2)
21: Update Dψ with τi and τref using SGD.
22: end while

To this end, we propose ADR,
summarized in Algorithm 1 and
Figure 13. ADR provides a
framework for manipulating a
more general analog of an ac-
quisition function, selecting the
most informative MDPs for the
agent within the randomization
space. By formulating the search
as an RL problem, ADR learns
a policy µφ where states are pro-
posed randomization configura-
tions ξ ∈ Ξ and actions are con-
tinuous changes to those param-
eters.

We learn a discriminator-based
reward for µφ, similar the reward
seen in Eysenbach et al. [9]:

rD = logDψ(y|τi ∼ π(·;Ei))
(3)

where y is a boolean variable
denoting the discriminator’s pre-
diction of which type of envi-
ronment (a randomized environ-
ment Ei or reference environ-
ment Eref) the trajectory τi was

generated from. We assume that the Eref = S(ξref) is provided with the original task definition.

Intuitively, we reward the policy µφ for finding regions of the randomization space that produce
environment instances where the same agent policy π acts differently than in the reference envi-
ronment. The agent policy π sees and trains only on the randomized environments (as it would in
traditional DR), using the environment’s task-specific reward for updates. As the agent improves on
the proposed, problematic environments, it becomes more difficult to differentiate whether any given
state transition was generated from the reference or randomized environment. Thus, ADR can find
what parts of the randomization space the agent is currently performing poorly on, and can actively
update its sampling strategy throughout the training process.

4 Results

4.1 Experiment Details

To test ADR, we experiment on OpenAI Gym environments [10] across various tasks, both simulated
and real: (a) LunarLander-v2, a 2 degrees of freedom (DoF) environment where the agent has to

3We provide a detailed walkthrough of the algorithm in Appendix A.

4

softly land a spacecraft, implemented in Box2D (detailed in Section 3.2), (b) Pusher-3DOF-v0, a 3
DoF arm from Haarnoja et al. [11] that has to push a puck to a target, implemented in Mujoco [12],
and (c) ErgoReacher-v0, a 4 DoF arm from Golemo et al. [13] which has to touch a goal with its
end effector, implemented in the Bullet Physics Engine [14]. For sim2real experiments, we recreate
this environment setup on a real Poppy Ergo Jr. robot [15] shown in Figure3 (a) and (b), and also
create (d) ErgoPusher-v0 an environment similar to Pusher-3DOF-v0 with a real robot analog
seen in Figure 3 (c) and (d). We provide a detailed account of the randomized parameters in each
environment in Table 1 in Appendix F.

All simulated experiments are run with five seeds each with five random resets, totaling 25 inde-
pendent trials per evaluation point. All experimental results are plotted mean-averaged with one
standard deviation shown. Detailed experiment information can be found in Appendix H.

(a) (b) (c) (d)

Figure 3: Along with simulated environments, we display ADR on zero-shot transfer tasks onto real robots.

4.2 Toy Experiments

To investigate whether ADR’s learned sampling strategy provides a tangible benefit for agent general-
ization, we start by comparing it against traditional DR (labeled as UDR) on LunarLander-v2 and
vary only the main engine strength (MES). In Figure 2, we see that ADR approaches expert-levels of
generalization whereas UDR fails to generalize on lower MES ranges.

We compare the learning progress for the different methods on the hard environment instances
(ξMES ∼ U [8, 11]) in Figure 4(a). ADR significantly outperforms both the baseline (trained only
on MES of 13) and the UDR agent (trained seeing environments with ξMES ∼ U [8, 20]) in terms of
performance.

Figures 4(b) and 4(c) showcase the adaptability of ADR by showing generalization and sampling
distributions at various stages of training. ADR samples approximately uniformly for the first 650K
steps, but then finds a deficiency in the policy on higher ranges of the MES. As those areas become
more frequently sampled between 650K-800K steps, the agent learns to solve all of the higher-MES
environments, as shown by the generalization curve for 800K steps. As a result, the discriminator is
no longer able to differentiate reference and randomized trajectories from the higher MES regions,
and starts to reward environment instances generated in the lower end of the MES range, which
improves generalization towards the completion of training.

4.3 Randomization in High Dimensions

If the intuitions that drive ADR are correct, we should see increased benefit of a learned sampling
strategy with larger Nrand due to the increasing sparsity of informative environments when sampling
uniformly. We first explore ADR’s performance on Pusher3Dof-v0, an environment whereNrand =
2. Both randomization dimensions (puck damping, puck friction loss) affect whether or not the puck
retains momentum and continues to slide after making contact with the agent’s end effector. Lowering
the values of these parameters simultaneously creates an intuitively-harder environment, where the
puck continues to slide after being hit. In the reference environment, the puck retains no momentum
and must be continuously pushed in order to move. We qualitatively visualize the effect of these
parameters on puck sliding in Figure 5(a).

From Figure 5(b), we see ADR’s improved robustness to extrapolation - or when the target domain
lies outside the training region. We train two agents, one using ADR and one using UDR, and show
them only the training regions encapsulated by the dark, outlined box in the top-right of Figure 5(a).

5

(a) (b) (c)

Figure 4: Learning curves over time in LunarLander. Higher is better. (a) Performance on particularly difficult
settings - our approach outperforms both the policy trained on a single simulator instance (”baseline”) and
the UDR approach. (b) Agent generalization in LunarLander over time during training when using ADR.
(c) Adaptive sampling visualized. ADR, seen in (b) and (c), adapts to where the agent is struggling the most,
improving generalization performance by end of training.

(a) (b)

Figure 5: In Pusher-3Dof, the environment dynamics are characterized by friction and damping of the sliding
puck, where sliding correlates with the difficulty of the task (as highlighted by cyan, purple, and pink - from
easy to hard). (a) During training, the algorithm only had access to a limited, easier range of dynamics (black
outlined box in the upper right). (b) Performance measured by distance to target, lower is better.

Qualitatively, only 25% of the environments have dynamics which cause the puck to slide, which are
the hardest environments to solve in the training region. We see that from the sampling histogram
overlaid on Figure 5(a) that ADR prioritizes the single, harder purple region more than the light blue
regions, allowing for better generalization to the unseen test domains, as shown in Figure 5(b). ADR
outperforms UDR in all but one test region and produces policies with less variance than their UDR
counterparts.

4.4 Randomization in Uninterpretable Dimensions

We further show the significance of ADR over UDR on ErgoReacher-v0, where Nrand = 8. It is
now impossible to infer intuitively which environments are hard due to the complex interactions
between the eight randomization parameters (gains and maximum torques for each joint). For demon-
stration purposes, we test extrapolation by creating a held-out target environment with extremely low
values for torque and gain, which causes certain states in the environment to lead to catastrophic
failure - gravity pulls the robot end effector down, and the robot is not strong enough to pull itself
back up. We show an example of an agent getting trapped in a catastrophic failure state in Figure 11,
Appendix F.1.

To generalize effectively, the sampling policy should prioritize environments with lower torque and
gain values in order for the agent to operate in such states precisely. However, since the hard evaluation
environment is not seen during training, ADR must learn to prioritize the hardest environments that it
can see, while still learning behaviors that can operate well across the entire training region.

6

(a)

(b)

Figure 6: Learning curves over time in (a)
Pusher3Dof-v0 and (b) ErgoReacher on
held-out, difficult environment settings. Our
approach outperforms both the policy trained
with the UDR approach both in terms of per-
formance and variance.

From Figure 6(a) (learning curves for
Pusher3Dof-v0 on the unseen, hard environ-
ment - the pink square in Figure 5) and 6(b) (learning
curves for ErgoReacher-v0 on unseen, hard
environment), we observe the detrimental effects
of uniform sampling. In Pusher3Dof-v0, we see
that UDR unlearns the good behaviors it acquired
in the beginning of training. When training neural
networks in both supervised and reinforcement
learning settings, this phenomenon has been dubbed
as catastrophic forgetting [16]. ADR seems to exhibit
this slightly (leading to ”hills” in the curve), but
due to the adaptive nature the algorithm, it is able to
adjust quickly and retain better performance across
all environments.

UDR’s high variance on ErgoReacher-v0 highlights
another issue: by continuously training on a random
mix of hard and easy MDP instances, both beneficial
and detrimental agent behaviors can be learned and
unlearned throughout training. This mixing can lead
to high-variance, inconsistent, and unpredictable be-
havior upon transfer. By focusing on those harder
environments and allowing the definition of hard to
adapt over time, ADR shows more consistent perfor-
mance and better overall generalization than UDR in
all environments tested.

4.5 Sim2Real Transfer Experiments

In sim2real (simulation to reality) transfer, many poli-
cies fail due to unmodeled dynamics within the sim-
ulators, as policies may have overfit to or exploited
simulation-specific details of their training environ-
ments. While the deficiencies and high variance of
UDR are clear even in simulated environments, one
of the most impressive results of domain randomization was zero-shot transfer out of simulation onto
robots. However, we find that the same issues of unpredictable performance apply to UDR-trained
policies in the real world as well.

We take each method’s (ADR and UDR) five independent simulation-trained policies on both
ErgoReacher-v0 and ErgoPusher-v0 and transfer them without fine tuning onto the real robot. We
rollout only the final policy on the robot, and show performance in Figure 7. To evaluate generaliza-
tion, we alter the environment manually: on ErgoReacher-v0, we change the values of the torques
(higher torque means the arm moves at higher speed and accelerates faster); on ErgoPusher-v0, we
change the friction of the sliding puck (slippery or rough). For each environment, we evaluate each of
the policies with 25 random goals (125 independent evaluations per method per environment setting).

Even in zero-shot transfer tasks onto real robots, ADR policies obtain overall better or similar
performance than UDR policies trained in the same conditions. More importantly, ADR policies
are more consistent and display lower spread across all environments, which is crucial when safely
evaluating reinforcement learning policies on real-world robots.

5 Related Work

5.1 Dynamic and Adversarial Simulators

Simulators have played a crucial role in transferring learned policies onto real robots, and many
different strategies have been proposed. Randomizing simulation parameters for better generalization
or transfer performance is a well-established idea in evolutionary robotics [17, 18], but recently has
emerged as an effective way to perform zero-shot transfer of deep reinforcement learning policies in
difficult tasks [2, 1, 19, 20].

7

(a)

(b)

Figure 7: Zero-shot transfer onto real
robots (a) ErgoReacher and (b) Ergo-
Pusher. In both environments, we as-
sess generalization by manually chang-
ing torque strength and puck friction
respectively.

Learnable simulations are also an effective way to adapt
a simulation to a particular target environment. Chebo-
tar et al. [21] and Ruiz et al. [22] use RL for effective
transfer by learning parameters of a simulation that accu-
rately describes the target domain, but require the target
domain for reward calculation, which can lead to overfit-
ting. In contrast, our approach requires no target domain,
but rather only a reference domain (the default simulation
parameters) and a general range for each parameter. ADR
encourages diversity, and as a result gives the agent a wider
variety of experience. In addition, unlike Chebotar et al.
[21], our method does not requires carefully-tuned (co-
)variances or task-specific cost functions. Concurrently,
Khirodkar et al. [23] also showed the advantages of learn-
ing adversarial simulations and disadvantages of purely
uniform randomization distributions in object detection
tasks.

To improve policy robustness, Robust Adversarial Rein-
forcement Learning (RARL) Pinto et al. [24] jointly trains
both an agent and an adversary who applies environment
forces that disrupt the agent’s task progress. ADR removes
the zero-sum game dynamics, which have been known
to decrease training stability [25]. More importantly, our
method’s final outputs - the SVPG-based sampling strategy
and discriminator - are reusable and can be used to train
new agents as shown in Appendix D, whereas a trained
RARL adversary would overpower any new agent and im-
pede learning progress.

5.2 Active Learning and Informative Samples

Active learning methods in supervised learning try to con-
struct a representative, sometimes time-variant, dataset
from a large pool of unlabelled data by proposing elements

to be labeled. The chosen samples are labelled by an oracle and sent back to the model for use.
Similarly, ADR searches for what environments may be most useful to the agent at any given time.
Active learners, like BO methods discussed in Section 3, often require an acquisition function (derived
from a notion of model uncertainty) to chose the next sample. Since ADR handles this decision
through the explore-exploit framework of RL and the α in SVPG, ADR sidesteps the well-known
scalability issues of both active learning and BO [26].

Recently, Toneva et al. [27] showed that certain examples in popular computer vision datasets are
harder to learn, and that some examples are forgotten much quicker than others. We explore the
same phenomenon in the space of MDPs defined by our randomization ranges, and try to find the
”examples” that cause our agent the most trouble. Unlike in active learning or Toneva et al. [27], we
have no oracle or supervisory loss signal in RL, and instead attempt to learn a proxy signal for ADR
via a discriminator.

6 Conclusion

In this work, we highlight failure cases of traditional domain randomization, and propose active
domain randomization (ADR), a general method capable of finding the most informative parts of
the randomization parameter space for a reinforcement learning agent to train on. ADR does this
by posing the search as a reinforcement learning problem, and optimizes for the most informative
environments using a learned reward and multiple policies. We show on a wide variety of simulated
environments that this method efficiently trains agents with better generalization than traditional
domain randomization, extends well to high dimensional parameter spaces, and produces more robust
policies when transferring to the real world.

8

Acknowledgements
The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of
Canada (NSERC), the Fonds de Recherche Nature et Technologies Quebec (FQRNT) and the Open
Philanthropy Project for supporting this work. In addition, the authors would like to thank Kyle
Kastner and members of the REAL Lab for their helpful comments, as well as Nvidia for donating a
DGX-1 used for this research. BM would like to thank IVADO.

References
[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for

transferring deep neural networks from simulation to the real world. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017.

[2] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

[3] Y. Liu, P. Ramachandran, Q. Liu, and J. Peng. Stein variational policy gradient, 2017.

[4] R. S. Sutton and A. G. Barto. Reinforcement Learning: An introduction. MIT Press, 2018.

[5] B. D. Ziebart. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal
Entropy. PhD thesis, CMU, 2010.

[6] Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems 29. 2016.

[7] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010. URL http://arxiv.org/abs/1012.2599.

[8] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian optimization in high
dimensions via random embeddings. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI ’13, 2013.

[9] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[11] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep reinforce-
ment learning for robotic manipulation. arXiv preprint arXiv:1803.06773, 2018.

[12] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IROS.
IEEE, 2012.

[13] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer. Sim-to-real transfer with neural-
augmented robot simulation. In Conference on Robot Learning, 2018.

[14] E. Coumans. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses, SIGGRAPH ’15,
New York, NY, USA, 2015. ACM.

[15] M. Lapeyre. Poppy: open-source, 3D printed and fully-modular robotic platform for science,
art and education. Theses, Université de Bordeaux, Nov. 2014. URL https://hal.inria.
fr/tel-01104641.

[16] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. CoRR, abs/1612.00796,
2016. URL http://arxiv.org/abs/1612.00796.

[17] J. C. Zagal, J. Ruiz-del Solar, and P. Vallejos. Back to reality: Crossing the reality gap in
evolutionary robotics. IFAC Proceedings Volumes, 37(8), 2004.

9

http://arxiv.org/abs/1012.2599
https://hal.inria.fr/tel-01104641
https://hal.inria.fr/tel-01104641
http://arxiv.org/abs/1612.00796

[18] J. Bongard and H. Lipson. Once more unto the breach: Co-evolving a robot and its simulator.
In Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living
Systems (ALIFE9), 2004.

[19] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. 2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018.

[20] F. Sadeghi and S. Levine. (cad)$ˆ2$rl: Real single-image flight without a single real image.
CoRR, abs/1611.04201, 2016. URL http://arxiv.org/abs/1611.04201.

[21] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox. Closing
the sim-to-real loop: Adapting simulation randomization with real world experience. arXiv
preprint arXiv:1810.05687, 2018.

[22] N. Ruiz, S. Schulter, and M. Chandraker. Learning to simulate, 2018.

[23] R. Khirodkar, D. Yoo, and K. M. Kitani. Vadra: Visual adversarial domain randomization and
augmentation. arXiv preprint arXiv:1812.00491, 2018.

[24] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning,
2017.

[25] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for GANs do actually
converge? In International Conference on Machine Learning, 2018.

[26] S. Tong. Active Learning: Theory and Applications. PhD thesis, 2001. AAI3028187.

[27] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J. Gordon. An
empirical study of example forgetting during deep neural network learning. arXiv preprint
arXiv:1812.05159, 2018.

[28] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.

[30] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, 2018.

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on
Machine Learning, pages 1928–1937, 2016.

[32] T. Gangwani, Q. Liu, and J. Peng. Learning self-imitating diverse policies. In International
Conference on Learning Representations, 2019.

10

http://arxiv.org/abs/1611.04201

Appendix A Architecture Walkthrough

In this section, we walk through the diagram shown in Figure 1. All line references refer to Algorithm
1.

A.0.1 SVPG Sampler

To encourage sufficient exploration in high dimensional randomization spaces, we parameterize µφ
with SVPG. Since each particle proposes its own environment settings ξi (lines 4-6, Figure 1h), all
of which are passed to the agent for training, the agent policy benefits from the same environment
variety seen in UDR. However, unlike UDR, µφ can use the learned reward to focus on problematic
MDP instances while still being efficiently parallelizable.

A.0.2 Simulator

After receiving each particle’s proposed parameter settings ξi, we generate randomized environments
Ei = S(ξi) (line 9, Figure 1b).

A.0.3 Generating Trajectories

We proceed to train the agent policy π on the randomized instances Ei, just as in UDR. We roll
out π on each randomized instance Ei and store each trajectory τi. For every randomized trajectory
generated, we use the same policy to collect and store a reference trajectory τref by rolling out π in
the default environment Eref (lines 10-12, Figure 1a, c). We store all trajectories (lines 11-12) as we
will use them to score each parameter setting ξi and update the discriminator.

The agent policy is a black box: although in our experiments we train π with Deep Deterministic Policy
Gradients [28], the policy can be trained with any other on or off-policy algorithm by introducing
only minor changes to Algorithm 1 (lines 13-17, Figure 1d).

A.0.4 Scoring Environments

We now generate a score for each environment (lines 20-22) using each stored randomized trajectory
τi by passing them through the discriminator Dψ , which predicts the type of environment (reference
or randomized) each trajectory was generated from. We use this score as a reward to update each
SVPG particle using Equation 2 (lines 24-26, Figure 1f).

After scoring each ξi according to Equation 3, we use the randomized and reference trajectories to
train the discriminator (lines 28-30, Figure 1e).

Appendix B Learning Curves for Reference Environments

For space concerns, we show only the hard generalization curves for all environments in the main
document. For completeness, we include learning curves on the reference environment here.

(a) (b) (c)

Figure 8: Learning curves over time reference environments. (a) LunarLander (b) Pusher-3Dof (c) ErgoReacher.

11

Figure 9: Sampling frequency across engine strengths when varying the randomization ranges. The updated,
red distribution shows a much milder unevenness in the distribution, while still learning to focus on the harder
instances.

Appendix C Interpretability Benefits of ADR

One of the secondary benefits of ADR is its insight into incompatibilities between the task and
randomization ranges. We demonstrate the simple effects of this phenomenon in a one-dimensional
LunarLander-v2, where we only randomize the main engine strength. Our initial experiments
varied this parameter between 6 and 20, which lead to ADR learning degenerate agent policies by
learning to propose the lopsided blue distribution in Figure 9. Upon inspection of the simulation,
we see that when the parameter has a value of less than approximately 8, the task becomes almost
impossible to solve due to the other environment factors (in this case the lander always hits the ground
too fast, which it is penalized for).

After adjusting the parameter ranges to more sensible values, we see a better sampled distribution
in pink, which still gives more preference to the hard environments in the lower engine strength
range. Most importantly, ADR allows for analysis that is both focused - we know exactly what part
of the simulation is causing trouble - and pre-transfer, i.e. done before a more expensive experiment
such as real robot transfer has taken place. With UDR, the agents would be equally trained on these
degenerate environments, leading to policies with potentially undefined behavior (or, as seen in
Section 4.4, unlearn good behaviors) in these truly out-of-distribution simulations.

Appendix D Bootstrapping Training of New Agents

Unlike DR, ADR’s learned sampling strategy and discriminator can be reused to train new agents
from scratch. To test the transferability of the sampling strategy, we first train an instance of ADR on
LunarLander-v2, and then extract the SVPG particles and discriminator. We then replace the agent
policy with an random network initialization, and once again train according the the details in Section
4.1. From Figure 10(a), it can be seen that the bootstrapped agent generalization is even better than
the one learned with ADR from scratch. However, its training speed on the default environment
(ξMES = 13) is relatively lower.

Appendix E Uniform Domain Randomization

Here we review the algorithm for Uniform Domain Randomization (UDR), first proposed in [1],
shown in Algorithm 2.

Appendix F Environment Details

Please see Table 1.

12

(a) (b)

Figure 10: Generalization and default environment learning progression on LunarLander-v2 when using ADR
to bootstrap a new policy. Higher is better.

Algorithm 2 Uniform Sampling Domain Randomization

1: Input: Ξ: Randomization space, S: Simulator
2: Initialize πθ: agent policy
3: for each episode do
4: // Uniformly sample parameters
5: for i = 1 to Nrand do
6: ξ(i) ∼ U

[
ξ
(i)
low, ξ

(i)
high

]
7: end for
8: // Generate, rollout in randomized env.
9: Ei ← S(ξi)

10: rollout τi ∼ πθ(·;Ei)
11: Trand ← Trand ∪ τi
12: for each gradient step do
13: // Agent policy update
14: with Trand update:
15: θ ← θ + ν∇θJ(πθ)
16: end for
17: end for

F.1 Catastrophic Failure States in ErgoReacher

In Figure 11, we show an example progression to a catastrophic failure state in the held-out, simulated
target environment of ErgoReacher-v0, with extremely low torque and gain values.

Figure 11: An example progression (left to right) of an agent moving to a catastrophic failure state (Panel 4) in
the hard ErgoReacher-v0 environment.

13

Environment Nrand Types of Randomizations Train Ranges Test Ranges

LunarLander-v2 1 Main Engine Strength [8, 20] [8, 11]

Pusher-3DOF-v0 2 Puck Friction Loss & Puck Joint Damping [0.67, 1.0]× default [0.5, 0.67]× default
ErgoPusher-v0 2 Puck Friction Loss & Puck Joint Damping [0.67, 1.0]× default [0.5, 0.67]× default

ErgoReacher-v0 8 Joint Damping [0.3, 2.0]× default 0.2× default
Joint Max Torque [1.0, 4.0]× default default

Table 1: We summarize the environments used, as well as characteristics about the randomizations performed in
each environment.

Appendix G Untruncated Plots for Lunar Lander

Figure 12: Generalization on LunarLander-v2 for an expert interval selection, ADR, and UDR. Higher is
better.

All policies on Lunar Lander described in our paper receive a Solved score when the engine strengths
are above 12, which is why truncated plots are shown in the main document. For clarity, we show the
full, untruncated plot in Figure 12.

Appendix H Network Architectures and Experimental Hyperparameters

All experiments can be reproduced using our Github repository4.

All of our experiments use the same network architectures and experiment hyperparameters, except
for the number of particles N . For any experiment with LunarLander-v2, we use N = 10. For both
other environments, we use N = 15. All other hyperparameters and network architectures remain
constant, which we detail below. All networks use the Adam optimizer [29].

We run Algorithm 1 until 1 million agent timesteps are reached - i.e. the agent policy takes 1M steps
in the randomized environments. We also cap each episode off a particular number of timesteps
according to the documentation associated with [10]. In particular, LunarLander-v2 has an episode
time limit of 1000 environment timesteps, whereas both Pusher-3DOF-v0 and ErgoReacher-v0
use an episode time limit of 100 timesteps.

4Code link will be updated after review.

14

For our agent policy, we use an implementation of DDPG (particularly, OurDDPG.py) from the
Github repository associated with [30]. The actor and critic both have two hidden layers of 400 and
300 neurons respectively, and use ReLU activations. Our discriminator-based rewarder is a two-layer
neural network, both layers having 128 neurons. The hidden layers use tanh activation, and the
network outputs a sigmoid for prediction.

The agent particles in SVPG are parameterized by a two-layer actor-critic architecture, both layers in
both networks having 100 neurons. We use Advantage Actor-Critic (A2C) to calculate unbiased and
low variance gradient estimates. All of the hidden layers use tanh activation and are orthogonally
initialized, with a learning rate of 0.0003 and discount factor γ = 0.99. They operate on a RNrand
continuous space, with each axis bounded between [0, 1]. We allow for set the max step length
to be 0.05, and every 50 timesteps, we reset each particle and randomly initialize its state using a
Nrand-dimensional uniform distribution. We use a temperature α = 10 with an RBF-Kernel as was
done in [3]. In our work we use an Radial Basis Function (RBF) kernel with median baseline as
described in Liu et al. [3] and an A2C policy gradient estimator [31], although both the kernel and
estimator could be substituted with alternative methods [32]. To ensure diversity of environments
throughout training, we always roll out the SVPG particles using a non-deterministic sample.

For DDPG, we use a learning rate ν = 0.001, target update coefficient of 0.005, discount factor
γ = 0.99, and batch size of 1000. We let the policy run for 1000 steps before any updates, and clip
the max action of the actor between [−1, 1] as prescribed by each environment.

Our discriminator-based reward generator is a network with two, 128-neuron layers with a learning
rate of .0002 and a binary cross entropy loss (i.e. is this a randomized or reference trajectory). To
calculate the reward for a trajectory for any environment, we split each trajectory into its (st, at, st+1)
constituents, pass each tuple through the discriminator, and average the outputs, which is then set as
the reward for the trajectory. Our batch size is set to be 128, and most importantly, as done in [9], we
calculate the reward for examples before using those same examples to train the discriminator.

15

	Introduction
	Preliminaries
	Reinforcement Learning
	Stein Variational Policy Gradient
	Domain Randomization

	Method
	Problem Formulation
	Active Domain Randomization

	Results
	Experiment Details
	Toy Experiments
	Randomization in High Dimensions
	Randomization in Uninterpretable Dimensions
	Sim2Real Transfer Experiments

	Related Work
	Dynamic and Adversarial Simulators
	Active Learning and Informative Samples

	Conclusion
	Architecture Walkthrough
	SVPG Sampler
	Simulator
	Generating Trajectories
	Scoring Environments

	Learning Curves for Reference Environments
	Interpretability Benefits of ADR
	Bootstrapping Training of New Agents
	Uniform Domain Randomization
	Environment Details
	Catastrophic Failure States in ErgoReacher

	Untruncated Plots for Lunar Lander
	Network Architectures and Experimental Hyperparameters

