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Abstract: Grasping is among the most fundamental and long-lasting problems
in robotics study. This paper studies the problem of 6-DoF(degree of freedom)
grasping by a parallel gripper in a cluttered scene captured using a commodity
depth sensor from a single viewpoint. We address the problem in a learning-based
framework. At the high level, we rely on a single-shot grasp proposal network,
trained with synthetic data and tested in real-world scenarios. Our single-shot
neural network architecture can predict amodal grasp proposal efficiently and ef-
fectively. Our training data synthesis pipeline can generate scenes of complex
object configuration and leverage an innovative gripper contact model to create
dense and high-quality grasp annotations. Experiments in synthetic and real envi-
ronments have demonstrated that the proposed approach can outperform state-of-
the-arts by a large margin.
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1 Introduction

Grasping is among the most fundamental and long-lasting problems in robotics study. While clas-
sical model-based methods using mechanical analysis tools [1, 2, 3] can already grasp objects of
known geometry, it remains an open problem of how to grasp generic objects in complex scenes.

Recently, data-driven approaches have shed light to addressing the generic grasp problem using
machine learning tools [4, 5, 6, 7]. In order to readily generalize to unseen objects and layouts, a
large body of recent works have focused on solving 3/4 DoF(degree of freedom) grasping, where
the gripper is forced to approach objects from above vertically [8, 9]. Although this has greatly
simplified the problem for picking and placing tasks, it has also inevitably restricted ways to interact
with objects. For example, such grasping is unable to grab a horizontally placed plate. Worse still,
top-down grasping often encounters difficulties in cluttered scenes with casually heaped objects,
which requires extra hand freedoms for grasping buried objects. The limitation of 3/4 DoF grippers
thus motivates the study of 6-DoF grippers to approach the object from arbitrary directions. We note
that 6-DoF end-effector is essential to allow dexterous object manipulation tasks [10, 11].

This paper studies the 6-DoF grasping problem in a realistic yet challenging setting, assuming that
a set of household objects from unknown categories are casually scattered on a table. A commodity
depth camera is mounted with a fixed pose to capture this scene from only a single viewpoint, which
gives a partial point cloud of the scene. The grasp is performed by a parallel gripper.

The setting is highly challenging for both perception and planning: First, the scene clutters limit
viable grasp poses and may even fail the motion planning algorithms to achieve certain grasps. This
challenge keeps us from considering 3/4-DoF grasp detection and restricts us to the more powerful
yet sophisticated 6-DoF detection approach. Second, we make no assumptions of object categories.
This open set setting puts us in a different category from existing semantic grasping method, such
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Figure 1: Illustration of the pipeline of Single-Shot SE(3) Grasp Detection (S*G). Taking as input
the view point cloud from the depth sensor, S*G regresses the 6-DoF grasp pose directly and predicts
the grasp quality for each point, which is more robust and effective. A set of high quality grasps are
chosen, from which one grasp is sampled and executed.

as DexNet [12]. We require higher-level of generalizability based on better representation of the
perceived content. Most existing methods can only work in simpler scenarios, by introducing high-
quality and expensive 3D sensors for accurate scene capturing, or sensing the complete environment
with multiple cameras[10], or assuming a scene of only a single object[13]. This challenge demands
that our grasp detection has to be noise-resistant and amodal, i.e., being able to make an educated
guess of the viable grasp from only a partial point cloud.

We address the challenges in a learning-based framework. At the high level, we rely on a single-
shot grasp proposal network, trained with synthetic data and tested in real-world scenarios. Our
design involves (1) a single-shot neural network architecture for amodal grasp proposal; and (2) a
scene-level training data synthesis pipeline leveraging an innovative gripper contact model.

By its single-shot nature, our grasp proposal network enjoys better efficiency and accuracy compared
with existing deep networks in the 6-DoF grasping literature. Existing work, such as [10], samples
grasp candidates from SE(3) following some heuristics and assess their quality using networks.
However, the running time goes up quickly as the number of sampled grasps increases, which makes
the grasp optimization too slow. Unlike these approaches, we propose to directly regress 6-DoF
grasps from the entire scene point cloud in one pass. Specifically, We are the first to propose a
per-point scoring and pose regression method for 6-DoF grasp.

3D data from low-cost commercial depth sensors are partial, noisy and corrupted. To handle the
imperfection of input 3D data, S*G is trained by hallucinated point clouds of similar patterns, and it
learns to extract robust features for grasp prediction from the corrupted data. We propose a simple
yet effective gripper contact model to generate good grasps and associate these grasps to the point
cloud. At inference time, we select high quality grasps based on the proposals of the network. Note
that we are the first to generate a synthetic scene of many objects, rather than a single object, in the
6-DoF grasping literature.

The core novel insight of our S*G is that we learn to propose possible grasps in this space by
regression. We believe learning to regress grasp proposals would be the trend: For another problem
of similar setting, object detection, the community has evolved from sliding windows to learning to
generate object proposals. A second novelty is that, instead of generating training data by scenes of
only a single object, we include multiple objects in the scene, with grasp proposals analyzed using
a gripper contact model that considers touching area shape and size.

2 Related work

Deep Learning based Grasping Methods Caldera et al. [14] gave a thorough survey of deep
learning methods for robotic grasping, which demonstrates the effectiveness of deep learning on
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Figure 2: Flowchart of scene grasp dataset generation.

this task. In our paper, we focus on the problem of 6-DoF grasp proposal. Collet et al. [15], Zeng
et al. [16], Mousavian et al. [17] tackled this problem by fitting the object model to the scan point
cloud to retrieve the 6-DoF pose. Although it has shown promising results in industrial applica-
tions, the feasibility is limited in generic robotic application scenarios, e.g. house-holding robots,
where the exact 3D models of numerous objects are not accessible. ten Pas et al. [10] proposed to
generate grasp hypotheses only based on local geometry prior and attained better generalizability
on novel objects, which was further extended by Liang et al. [18] by replacing multi-view projec-
tion features with direct point cloud representation. Because potential viable 6-DoF grasp poses
are infinite, these methods guide the sampling process by constructing a Darboux frame aligned
with the estimated surface normal and principal curvature and searching in its 6D neighbourhood.
However, they may fail finding feasible grasps for thin structures, such as plates or bowls, where
computing normals analytically from partial and noisy observation is challenging. In contrast to
these sampling approaches, our framework is a single-shot grasp proposal framework [19, 14]-a
direct regression approach for predicting viable grasp frames—which could handle flawed input well
due to the network’s knowledge. Moreover, by jointly analyzing local and global geometry infor-
mation, our method not only considers the object of interest, but also its surroundings, which allows
the generation of collision-free grasps in dense clutters.

Training Data Synthesis for Grasping Deep learning methods require an enormous volume of
labelled data for the training process [9], however manually annotating 6-DoF grasp poses is not
practical. Therefore, analytic grasp synthesis [20] is indispensable for ground truth data genera-
tion. These advanced models have provided guaranteed measurements of grasp properties with the
availability of complete and precise geometric models of objects. In practice, the observation from
sensors are partial and noisy, which undermines the metric accuracy. In the service of our single-
shot grasp detection framework, we first use analytic methods to generate viable grasps for each
single object, and reject unfeasible grasps in densely clutter scenes. To the best of our knowledge,
the dataset we generated is the first large-scale synthetic 6-DoF grasp dataset for dense clutters.

Deep Learning on 3D Data Qi et al. [21, 22] proposed PointNet and PointNet++, a novel 3D deep
learning network architecture capable of extracting useful representations from 3D point clouds.
Compared with other architectures [23, 24], PointNets are robust to varying sampling densities,
which is important to real robotic applications. In this paper, we utilize PointNet++ as the backbone
of our single-shot grasp detection and demonstrate its effectiveness.

3 Problem Setting

We denote the single-view point cloud by P and the gripper description by G. A parallel gripper can
be parameterized by the frame whose origin lies at the middle of the line segment connecting two
figure tips and orientation aligns with the gripper axes. We therefore denote a grasp configuration as
¢ = (h, sn), where h € SE(3) and s, € R is a score measuring the quality of h.



4 Training Data Generation

To train our S*G, a large scale dataset capturing cluttered scenes, with viable grasps and quality
scores as groundtruth, is indispensable. Fig. 2 illustrates the training data generation pipeline. We
use the YCB object dataset [25] for our data generation. Since S*G directly takes a single-view
point cloud from the depth sensor as input and outputs collision-free grasps in a densely-cluttered
environment, we need to generate such scenario with complete scene point cloud and corresponding
partially observed point cloud. Each point in the point cloud is assigned with serval grasps which
will be introduced in Sec 4.3 and each ground truth grasp has a SE(3) pose, an antipodal score, a
collision score, an occupancy score, and a robustness score, which we will introduce later. On the
other hand, the scene point cloud does not interact with the network explicitly, but it serves as a
reference to evaluate grasps in the point cloud.

4.1 Gripper Contact Model

Vast literature exists to find regions suitable to grasp by an-
alyzing the 3D geometry [26]. Among these methods, force
closure has been widely used to synthesize grasps and can be
reduced into calculating angles between face normals, known
as antipodal grasp [27, 28]. Here we introduce our gripper
contact model based on force closure analysis to find feasible
grasps.
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y A;signed Point
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To be more specific, we first detect all possible contact pairs 3
with high antipodal score s§, = cos(a1)cos(as), where «; is M
the angle between the outward normal and the line connecting - e
two contact points. As illustrated in Fig. 3, for each contact i
pair (p;, p;), the normal n; at point p; is smoothed with ra-
dius rmm. Note that this step is important to grasp objects of
rugged surface with high-frequency normal variation. How-
ever, we do not directly use a ball query to query its neighbors,
which will lead to undesirable results at corners and edges. In-
stead, we remove the neighbors which has a distance along the normal direction ( calculated as
r* = |(p¥ —p;) - m |) larger than 3mm in the query ball of radius r for normal calculation, where

Figure 3: Illustration of Gripper
Contact Model

p¥ is the k-th neighbor of point 4.

These two hyper-parameters have definite physical meaning, which is distinct from the approach to
obtain the gripper contact model hyper-parameters in GPD [10] through extensive parameter tuning.
As shown in Fig. 3, our gripper will only interact with the object by its soft rubber pad, which allows
deformation within 3mm. And the normal smoothing radius is set as the gripper width » = 23mm.

In fact, our gripper model has clear advantage over Darboux frame based methods, especially at
rugged surfaces and flat surfaces. For rugged surfaces, there is no principled way to decide the radius
for normal smoothing, since the radius is not only relevant to the gripper, but also to the object to
grasp. For flat surfaces, the principal curvature directions are under-determined. In practice, we do
observe issues for these cases. For example, for plates and mugs, Darboux frame based method will
likely to fail in generating a successful grasp pose for the thin wall.

Besides the direction of contact force, we also consider the stability of the grasp. The occupancy
score s{,, which represents the volume of object within the gripper closing region R(c), is calculated
by

sp = min{ln(|Pclose|)7 6}7 Pclose = R(C) np, (D

where Pcjose is the number of points within closing region. If sp is small, the gripper contact
analysis will be unreliable. To make sure that the point cloud occupancy can correctly represent the
volume, we down-sample the point cloud using voxel grid filter with a leaf size of 5mm.

4.2 Physically-plausible Scene Synthesis from Objects

Since our network is trained on synthesis data and directly applied to real world scenarios, it is
necessary to generate training data closer to reality both physically and visually.
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Figure 4: Architecture of Single-Shot Grasp Proposal Network based on PointNet++ [22]. Given the
scene point cloud, our network first extracts hierarchical point set features by progressively encoding
points in larger local regions; then the network propagates the point set features to all the original
points using inverse distance interpolation and skip links; finally it predicts one 6-DoF grasp pose
h;, and one grasp quality score sy, of every point.

We need physically-plausible layouts of various scenes where each object should be in equilibrium
under gravity and contact force. Therefore, we adopt MuJoCo engine [29] and V-HACD[30] to
generate scenes where each object is in equilibrium. Objects initialized with random elevation and
poses fall onto a table in the simulator and converge to static equilibrium due to friction. We record
the poses and positions of objects and reconstruct the 3D scene.(Fig. 2)

Beside scene point cloud, we also need to generate viewed point clouds that will feed into the neural
network. To simulate the noise of depth sensor, we apply a noise model on the distance from camera
optical center to each point as D, , = (1 + N(0,0?))D,,, where D, , is the noiseless distance

captured by a ray tracer and l~)o,p is the distance used to generate viewed point clouds. We employ
o = 0.003 in this paper.

4.3 Robustness Grasp Generation by Scene Analysis

Given the scene point cloud, we can do collision detection for each grasp configurations. Collision
score sy, is a scene-specific boolean mask indicating the occurrence of collision between the pro-
posed gripper pose and the complete scene. As shown in our experiment, our network can better
predict collision with invisible parts.

It is a common case that robot end-effector can not move precisely to a given pose due to sensor
noise, hand-eye calibration error and mechanical-transmission noise. To perform a successful grasp
under imperfect condition, the proposal grasp should be robust enough against gripper’s pose uncer-
tainty. In this paper, we add a small perturbation to the SE(3) grasp pose and evaluate the antipodal
score, occupancy score and collision score for the perturbed pose. The final scalar score of each
grasp can be derived as:

Sh = mjin[sﬁj $h,5h,l,  hj =exp(&)h, (2)
where é € se(3) is the pose perturbation and exp is the exponential mapping. The final viewed
point cloud with ground truth grasps and scores will serve as training data for our S*G.

5 Single-Shot Grasp Generation

5.1 PointNet++ based Grasp Proposal

We design the single-shot grasp proposal network based on the segmentation version of PointNet++,
which has demonstrated state-of-the-art accuracy and strong robustness over clutter, corruption, non-
uniform point density [22], and adversarial attacks [31].

Figure. 4 demonstrates the architecture of S*G, which takes the single-view point cloud as input, and
assigns each point two attributes. The first attribute is a good grasp (if exists) associated to the point
by inverse indexing, and the second attribute is the quality score of the stored grasp. The generation
of the grasp and quality score can be found in Sec. 4.3.

The hierarchical architecture not only allows us to extract local features and predict reasonable local
frames when the observation is partial and noisy, but also combines local and global features to
effectively infer the geometry relationship between objects in the scene.



Compared with sampling and grasp classification [10, 18], the single-shot 6-DoF grasp direct regres-
sion task is more challenging for networks to learn, because widely adopted rotation representations
such as quaternions and Euler angles are discontinuous. In this paper, we use a 6D representation
of the 3D rotation matrix because of its continuity [32]: for every R € SO(3), it is represented by
a = [a],ay], a;,az € R3, such that the mapping f : a — R is

R: [b17b23b3]

b1 = N(al) (3)
b2 =N (a — <a2,b1> bl)

b3 = b1 X bg,

where N () denotes the normalization function. Because the gripper is symmetric with respect to
rotation around the x axis, we use a loss function which handles the ambiguity by considering both
correct rotation matrices as ground truth options. Given the groundtruth rotation matrix Rgr, we
define the rotation loss function L,.,; as

Lot = min |/ (@prea) = R |I?

i€{0,1

] 1 0 0 “)
R(é)T = Rgr lO cos(mi) 0 1
0 0 cos(mi)

The prediction of translation vectors is treated as a regression task and the Lo loss is applied. By
dividing the groundtruth score into multiple levels, the grasp quality score prediction is treated as a
multi-class classification task, and a weighted cross-entropy loss is applied to handle the unbalance
between positive and negative data. We only supervise the pose prediction for those points assigned
with viable grasps and the total loss is defined as:

L:Z(ATOt'LTOt—’_)\t'Lt)—’_Z()\S'LS)v (5)
P, P.

where P,,, P, represent the point set with viable grasps and the whole scene point cloud, respec-
tively. Ao, A, As are set to 5.0, 20.0, 1.0 in experiments.

5.2 Non-maximum Suppression and Grasp Sampling

Algorithm. 1 describes the strategy to choose one grasp execution h from the network prediction C.

Because the network generates one grasp for
each point, there are numerous similar grasps
in each grasp’s neighborhood and we use non-

Algorithm 1: NMS and Grasp sampling

maximum suppression (NMS) to select grasps Input: Prediction C: {(hs, sn,)}
h with local maximum sp, to generate exe- Export: Grasp Execution: /
cutable grasp set H. Then weighted random Executable Grasps H = {}

Sort {(h;, sn, } by sn,
1=0
while Length(H) < N do
if (Collision == False) and

sampling is applied to sample one grasp to exe-
cute according to its grasp quality score.

6 Experiments hy, € Hdist(h;,hi) > e then
Add (h7;7 Shj) to H
6.1 Implementation Details end if
i=1+1

The input point cloud is first preprocessed, in- end while
cluding workspace ﬁltering, outliers ’re:moval, Dr = I\m)  forhy € H
and voxel grid down-sampling. For training and Z g(sn,)

1

validation, we sample %N points from the point

set with viable grasps, %N from the remaining
point set, and integrate them as the input of the
network. For evaluation, we sample N points at
random from the preprocessed point cloud. N
is set to 25600 in our experiments. We imple-
ment our network in PyTorch, and train it using
Adam [33] as the optimizer for 100 epochs with the initial learning rate 0.001, which is decreased
by 2 every 20 epochs.

while Motion planning fails do
Sample h according to {px}
end while




6.2 Superiority of SE(3) grasp

We first evaluated the grasp quality performance of our proposed network on simulated data. To
demonstrate the superiority of SE(3) grasp over 3/4 DoF grasp, here we give a quantitative analysis
over 6k scene with around 2.6M generated grasps (Fig. 5). In our experiments, grasps are uniformly
divided into 6 groups according to the angle between the approach vector and vertical direction
in the range of (0°,90°). We use the recall rate as metric which are defined as the percentage of
objects that can be grasped using grasps between vertical and certain angle. We evaluate the recall
rate at scenes of three different densities: simple (1-5 objects presented in the scene), semi-dense
(6-10 objects) and dense (11-15) objects. The overall recall rate is the weighted average of the three
scenes. We find that only 63.38% objects can be grasped by nearly vertical grasps (0°, 15°). With
the increase of scene complexity, the advantage of SE(3) grasp becomes more remarkable.

6.3 Simulation Experiments

GPD [10] and PointNetGPD [18] adopt Darboux frame
analysis to sample grasp poses and train a classifier to
evaluate their quality, which achieved state-of-the-art per-
formance in 6D grasp detection. We choose GPD(3 chan-
nels), GPD(12 channels), and PointGPD as our baseline
methods. For training baseline methods, we adopt their
grasp sampling strategy to generate grasp candidates for
each scene until we get 300 collision-free grasps. We
generate grasps over 6.5k scenes and get more than 2M
grasps, which is larger than the 300K grasps in the orig-
inal paper. Note that the scene used to generate train-
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For evaluation of baseline methods, we first sample 1000 jment on the recall rate of different

points at random from the point cloud and calculate the grasp. The X-axis is the angle between
Darboux frame for grasp candidates, which are then clas- (e approach vector and vertical direc-
sified and ranked. The top 10 grasps are evaluated for (jon. The angle of absolute 3/4 DoF
both baseline methods and our methods. grasp is 0°

To evaluate our method in finding collision-free grasps,

we compare two metrics that affect the final grasping success rate: (1) antipodal score, which de-
scribes the force closure property of grasps, (2) probability of collision with other objects not ob-
servable to the depth sensor. The evaluation is performed in simulator with 2 settings: (1) No noise,
where the point cloud from the depth sensor simulator aligns with the complete point cloud per-
fectly; (2) With noise, where the noise of the depth simulator is proportional to the depth. Please
note that for noise setting and real-world experiment, both baselines and our method is trained on
noisy data. Table. 1 shows the comparison results. Since the 6-DoF grasp pose is regressed by our
S*G instead of being computed from local normals and curvatures, it is less sensitive to partial and
noisy depth observations; also, our S*G is able to generate more collision-free grasps by inferring
from local and global geometry information jointly.

6.4 Robotic Experiments

We validate the effectiveness and reliability of our methods in real robotic experiments. We carried
out all the experiments on Kinova MOVO, a mobile manipulator with a Jaco2 arm attached with a
2-finger gripper (Fig. 1 (a)). In order to be close to real domestic robot application scenarios, we

w/o Noise w/ Noise
Antipodal Score  Collision-free | Antipodal Score  Collision-free
GPD (3 channels) 0.5947 47.07 % 0.5802 40.00%
GPD (12 channels) 0.5883 45.27% 0.5946 40.44%
PointNetGPD 0.5718 42.41% 0.6376 41.17%
Ours 0.7364 47.02% 0.7354 53.32%

Table 1: Comparison of grasp quality on simulation data.
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Grasp quality Time-efficiency
Success rate  Completion rate | Processing Inference Total
GPD (3 channels) 40.0% 60.0% 24106 ms 1.50ms 24108 ms
GPD (12 channels) 33.3% 50.0% 27195ms 1.70ms 27197ms
PointNetGPD 40.0% 60.0% 17694ms 2.86ms 17697ms
Ours 77.1% 92.5% 5804ms 12.60ms 5817 ms

Table 2: Results of robotic experiments on dense clutters. Success rate and completion rate are used
as the evaluation metrics, which represent the accuracy and completeness respectively.

use one KinectV2 depth sensor that is mounted on the head of the manipulator, which makes the
observation heavily occluded and raises the difficulty of experiments. 30 objects of various shapes
and weight (see Supplymentary Materials) are used, which are absent in the training dataset.

The experiment procedure is as follows: (1) Choose 10 out of the 30 objects at random and put them
on the table to form a cluttered scene; (2) The robot attempts multiple grasps, until all objects are
grasped or 15 grasps have been attempted; (3) Step (1) and (2) are repeated for 4 times for each
method. More details are presented in the supplementary material. Note that all the objects selected
in real robot experiments are out of the training data.

As illustrated in Table 2, our method outperforms baseline methods in terms of success rate, comple-
tion rate, and time efficiency, which suggests that the single-shot regressed 6-DoF grasps have better
force closure quality than sampled grasps from baselines, as demonstrated in Fig. 6. Not needed by
us, the baseline methods also need to detect collision and extract local geometry for every sampled
grasp, which takes around 20 seconds, so they are much more time-consuming than our method.

Our experiment setting is much more challenging than the baseline papers. In the original paper,
GPD uses two depth sensors at both sides of the arena to capture the nearly complete point cloud
in the original paper, but in our experiments, only one depth sensor is used. In both baselines,
grasps are sampled in the neighbourhood of Darboux frame. It performs well on convex objects
(box and ball) but poorly on non-convex or thin-structure objects, such as mug and bowl as in our
experiments, because their heuristic sampling method requires accurate normals and curvatures but
estimating those surface normals from noisy point cloud is challenging. On the contrary, Point-
Net++ has been demonstrated to be robust against adversarial changes to the input data [31], which
can better capture the geometric structure under noise.

7 Conclusion

We studied the problem of 6-DoF grasping by a parallel gripper in a cluttered scene captured using a
commodity depth sensor from a single viewpoint. Our learning based approach trained in a synthetic
scene can work well in real-world scenarios, with improved speed and success rate compared with
state-of-the-arts. The success shows that our design choices, including a single-shot grasp proposal
and a novel gripper contact model, are effective.

Viewed point cloud GPD (3channels) GPD (12channels) PointNetGPD Ours

Figure 6: Comparison between sampled grasps chosen by baseline methods with high-score and
regressed grasps by our method.
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A Supplementary Material

A.1 Network Details

We use 3 point set abstract layers, each of which is a 3-layer MLP, containing (128,128, 256),
(256, 256,512), (512,512, 1024) units, respectively. ReLU is used as the activation function. Far-
thest Point Sampling(FPS) is adopted for better and more uniform coverage, where a subset of points
are chosen from the input point set such that each point in the subset is the most distant point from
points in the set. Compared with random sampling, FPS has better coverage of the entire point set.
It is performed iteratively to get the centroids for grouping from the former stage.

A.2 Robotics Experiments Dataset

Figure. 7 shows the 30 objects used in our experiments. This dataset is collected from daily objects
and different from the YCB[25] dataset we used to generate training data.

25 26 27 28 29

Figure 7: The 30 objects used in our experiments.

A.3 Robotics Experiments Grasp Proposal

Figure. 8, 9 show the viewed point cloud and proposed high quality grasp set in robotic experiments.
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Figure 8: Viewed point cloud from the depth sensor and high quality grasp set in robotic experi-
ments.

12



Back View Top View Left View

Figure 9: More viewed point cloud from the depth sensor and high quality grasp set in robotic
experiments.
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