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A Policies on Real Robots

We include a video for our example of policies generalizing to a real robot on our website.. The video
shows our results from training a curvature-based visual-target navigation policy on a simulated
Turlebot2. We then then tested the trained policy (not fine-tuned) on a real Turtlebot2. The video
shows that the robot is able to successfully navigate to the correct cube, even in the presence of
several distracting boxes which were not present during training1.

Figure 1: Turtlebot2 navigating to the hallway through a cluttered environment. Agents trained using
mid-level vision in simulation successfully navigate in cluttered real-world environments without fine-tuning.
The agent’s only input is the RGB frame shown in the top right. See the included video for more.

B Sample Complexity

As described in the main paper, we measure sample complexity with respect to the number of train-
ing frames and the number of sample clusters (buildings).

Performance by Number of Training Frames Our methods are able to reach a similar performance
as other methods in much fewer samples, as seen in Fig. 2.
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Figure 2: Sample Complexity (Number of Frames). Plots show average rewards relative to blind in the test
environment with varying amounts of training data for both features and scratch. Feature-based policies learn
faster and achieve higher final performance.

Performance by Number of Sample Clusters (buildings) In Fig. 3, we show that feature-based
agents can achieve higher reward even when training with fewer buildings compared to agents

1We thank Gene Lewis for providing the video.
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trained from scratch. Performance continues to improve with more clusters (buildings). Note that
scratch is unable to improve performance with additional buildings, demonstrating that it has overfit
to the training buildings.
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Figure 3: Sample Complexity Agents with mid-level vision need fewer buildings to learn useful behaviors
compared to scratch and blind agents.

C Universality Experiments

C.1 Universality in Additional Buildings (Gibson)

In order to rule out that our test environment was in some way anomalous, we repeated our testing
in 9 additional environments. Figure 4 shows that the rewards in our main test are extremely highly
correlated with the rewards in the alternate test environments. The feature rankings are extremely
strongly correlated between the main test environment and the alternate test environments with a
Spearman’s ρ of 0.93 (Navigation) and 0.85 (Exploration).
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Figure 4: Correlation between main Gibson test environment and alternates. The reward in the main
Gibson test environment (x-axis) and the reward averaged over 9 other test environments (y-axis). Each point
marks the reward in both environments for a single feature (averaged over several seeds). Results are presented
for both visual-target navigation (left) and visual exploration (right).

C.2 Universality in Additional Simulators

To evaluate whether our findings are an artifact of any specific environment, we tested in an ad-
ditional environment by implementing navigation and exploration in other 3D simulators, Viz-
Doom [1] and Habitat. We found that features which perform well in Gibson also tend to perform
well in other simulators. We also replicated our rank reversal findings (with high confidence), includ-
ing the geometric/semantic distinction for exploration/navigation and the lack of a universal feature.
Here, too, maximizing the combined score requires choosing the third- or fourth-best feature for any
given task.
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D Experimental Setup

D.1 Architectures
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Figure 5: Architecture.
Representation followed by
Policy

Our architecture is defined by representation followed by policy, de-
picted in Figure 5.

D.1.1 Representation

The methods we use for representation have the following networks:

• Pretrained Feature encoder: For all tasks, we modified a
ResNet-50 encoder with no average-pooling and replace the last
stride 2 convolution with stride 1. This gives us an output shape
of 16× 16× 2048. we use a 3× 3 convolution to transform the
output of shape 16 × 16 × 8. Note we share pretrained feature
weights across all frames.

• Feature readout network: The feature readout network maps
the feature encoding to a final representation. It consists of one
convolutional (Conv) layer and two fully-connected (FC) lay-
ers:

1. Conv, 32 channel, 4x4 kernel, stride 4
2. FC, ouptut size = 1024
3. FC, ouptut size = 512

• Atari-net network: The atari-net network consists of three
convolutional layers:

1. Conv, 32 channel, 8x8 kernel, stride 4
2. Conv, 64 channel, 4x4 kernel, stride 2
3. Conv, 32 channel, 3x3 kernel, stride 1
4. FC, output size = 512

Putting it together

Our mid-level approach computes representation by first obtaining features via the pretrained feature
encoder then passing it through the feature readout network.

The tabula rasa approach downsamples the image to 84× 84 then feeds the input through the Atari-
net network.

We also run ablation studies on the aforementioned networks.

Incorporating Additional Task-Specific Information

For Visual Exploration, we incorporate the occupancy grid by feeding it through a separate Atari-
Net and concatenate its intermediate representation (before the FC layers) with the intermediate
representation from pixels before flattening and forwarding to the FC layers.

For Local Planning, we incorporate the target vector by expanding each element to an (H × W)
”image”, and append this to the intermediate representation from pixels in the channel dimension
before the last convolutional layer.

D.1.2 Policy

The representation lies in R512. We compute the value by applying a linear layer to the representa-
tion. We compute the action probabilities the same way.

D.2 Environment-Specific Task Details

Here, we provide environment specific information about all of the tasks.
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D.2.1 Gibson

Local Planning: The reward for reaching the goal is +20. The reward for progressing to the goal
is 0.1 ∗ (dt−1 − dt), where dt is the distance to the goal at timestep t. The penalty for living is
−0.05 and penalty for obstacle collision (−0.25). The goal is sampled from a Gaussian distribution,
N (µ = 5 meters, σ2 = 2 meters).

Visual Exploration: The agent receives a reward of +0.1 for each cell unlocked. The episode lasts
for 1000 agent steps.

Visual Navigation: The agent has to navigate to a wooden crate. The agent gets a reward of +10
for hitting the target and a reward of −0.025 at each timestep for living.

D.2.2 Habitat

Local Planning The reward for reaching the goal is +10. The reward for progressing to the goal
is 0.1 ∗ (dt−1 − dt), where dt is the distance to the goal at timestep t. The penalty for living is
−0.01 and there is no penalty for obstacle collision. The goals in both training and validation split
are curated by Manolis Savva* and Batra [2] and we refer the reader there for more details.

Visual Exploration: The agent receives a reward of +0.1 for each cell unlocked. The episode lasts
for 1000 agent steps.

D.2.3 Doom

Visual Exploration: The agent receives a reward of +1 for each cell unlocked. The episode lasts
for 1000 agent steps.

Visual Navigation: The agent must navigate to a green torch. The agent gets a reward of +100 for
hitting the target and a reward of −1 for living.

D.3 Train/Test Splits

The tasks are realized in the simulations Habitat, Gibson, and VizDoom. The train and test splits are
shown below.

D.3.1 Habitat Train/Test Split

Figure 6: Sample Frame from Local Planning in Habitat. [Left] The agent observes this rgb image. [Mid-
dle] Top-down view of the map with boundary information. This map is not provided to the agent and used
purely for visualization purposes [Right] From target coordinates provided at every timestep, we can reconstruct
a visitation map which we provide the agent.

We use the split used in the CVPR 2019 Habitat Challenge. A sample frame is shown in Figure 6.
We train on 72 buildings and test on 14 unseen buildings. The list of building names are provided
on the challenge page and are also listed directly below:

Train: Rancocas, Cooperstown, Hominy, Placida, Arkansaw, Delton, Capistrano, Mesic, Roeville, Angiola,
Mobridge, Nuevo, Oyens, Quantico, Colebrook, Sawpit, Hometown, Sasakwa, Stokes, Soldier, Rosser, Supe-
rior, Nemacolin, Pleasant, Eagerville, Sanctuary, Hainesburg, Avonia, Crandon, Spotswood, Roane, Dunmor,
Spencerville, Goffs, Silas, Applewold, Nicut, Shelbiana, Azusa, Reyno, Dryville, Haxtun, Ballou, Adrian,
Stanleyville, Monson, Stilwell, Seward, Hambleton, Micanopy, Parole, Nimmons, Pettigrew, Bolton, Sumas,
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Sodaville, Mosinee, Maryhill, Woonsocket, Springhill, Annawan, Albertville, Anaheim, Roxboro, Beach,
Bowlus, Convoy, Hillsdale, Kerrtown, Mif flintown, Andover, Brevort

Test: Denmark, Greigsville, Eudora, Pablo, Elmira, Mosquito, Sands, Swormville, Sisters, Scioto, Eastville,
Edgemere, Cantwell, Ribera

For our generalization experiments in which we vary the number of training buildings to N ∈
{1, 2, 4, 8, 16} buildings, we use the first N train buildings in the list above. When we limit training
to trajectories in which the target is at most k meters away, we still use all the train buildings from
above.

D.3.2 Gibson Train/Test Split

Figure 7: Sample Frame from Local Planning in Gibson. [Left] The agent observes this rgb image. [Middle]
Top-down view of the map with boundary information. This map not provided to the agent and used purely for
visualization purposes [Right] Visualization of a mid-level feature (surface normals).

In Gibson, we train in one building for both tasks (Beechwood, which is a medium-sized house)
and evaluate the policies in 10 test environments given in the table below. The environments were
selected for diversity. For exploration, large layouts on ground floors were selected (since the agent
was trained on the ground floor). For navigation, generally open spaces were selected so the agent
would need not have to take winding, complicated paths to the goal aside from very local (less than
3 m) obstacle avoidance (again, the reason for this choice being that the agent was trained in such a
space). A sample frame is shown in Figure 7.

Task Train Env. Test Envs.
Ancor
Aloha
Corder
Duarte

Navigation Beechwood Eagan
Globe

Kemblesville
Martinville

Vails
Area 1 (2D3DS)

Aloha
Duarte
Eagan
Globe

Hanson
Exploration Beechwood Hatfield

Kemblesville
Martinville
Sweatman
Wiconisco

Figure 8: Train/Test Split (Gibson). Environments chosen for train and test split in Gibson. Area 1 is from
the Stanford 2D-3D-S dataset. [3]
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D.3.3 Doom Texture Split

Please see the files texture split/doom train textures.txt for a list of train textures
and texture split/doom test textures.txt for a list of the test textures. A sample
frame is shown in Figure 9.

Figure 9: Sample Frame from Visual-Target Navigation in Doom. [Left] The agent observes this rgb
image. The goal is to navigate to the green torch indicated in a green box while avoiding distractors like the
one indicated in a red box. [Right] Top-down view of the map with boundary information. This map is not
provided to the agent and used purely for visualization purposes.

D.4 Action Space

We assume a low-level controller for robot actuation, enabling a high-level action space of

A = {turn left, turn right, move forward}.
The forward action is a translation in the direction of the robot’s heading of 0.25 m in Habitat and 0.1
m in Gibson. The turn actions represent in-place rotations of ±0.10 degrees in Habitat and ±0.24
radians (about 14 degrees) in Gibson. The actions in Doom are similar to those in Gibson, and are
defined by the VizDoom simulator.

D.5 Hyperparameters

A complete list of hyperparameters can be found in the folder ./hyperparameters and
./configs. For each task, we conducted a grid search for the best hyperparameters for “scratch”.
We then used these hyperparameters for all features.

For Habitat local planning, we use the following hyperparameters: learning rate of 1e − 4, entropy
regularization coefficient of 1e − 4, value loss coefficient of 1e − 3, discount factor γ of 0.99,
maximum gradient norm of 0.5, PPO clip parameter of 0.1, GAE τ of 0.95, replay buffer size
of 3000 with each rollout being 1000 steps. We use Adam [4] optimizer and stack 4 frames per
observation. Curiosity has curiosity reward coefficient of 0.1, forward loss coefficient of 0.2, and
inverse loss coefficient of 0.8. SLAM uses a map size of 12m.

For Habitat exploration, the hyperparameters are the same as Habitat local planning except for the
following: learning rate of 1e− 3.

D.6 Code

We provide our code for reproducing our experiments on our website.

E Full Train/Test curves

For completion, we present the training and test curves from our experiments for all tasks, for all
features and baselines, and all random seeds. See Figures 10, 11, 12, 13, 14, 15, 16, and 17.
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Habitat Local Planning Train/Test Raw Reward
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Figure 10: Full Learning Curves (Habitat Local Planning). Full train and test curves for all features and
baselines in the navigation task in the Habitat environment.
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Habitat Local Planning Train/Test Raw Reward (cont.)
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Figure 11: Full Learning Curves (Habitat Local Planning Cont.). Full train and test curves for all features
and baselines in the navigation task in the Habitat environment.
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Habitat Visual-Exploration Train/Test Raw Reward
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Figure 12: Full Learning Curves (Habitat Exploration). Full train and test curves for all features and
baselines in the navigation task in the Habitat environment.
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Gibson Visual-Target Navigation Train/Test Raw Reward
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Figure 13: Full Learning Curves (Gibson Navigation). Full train and test curves for all features and base-
lines in the navigation task in the Gibson environment.
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Figure 14: Full Learning Curves (Gibson Exploration). Full train and test curves for all features and
baselines in the exploration task in the Gibson environment.

13



Gibson Local Planning Train/Test Raw Reward

0 200 400 600 800
Update Number 

0

5

10

15

20 Autoencoder

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Object Classification

test
train

0 200 400 600
Update Number 

0

5

10

15

20 3D Keypoints

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Denoising

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 2D Edges

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Occ. Edges

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 In-painting

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Jigsaw

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 2D Keypoints
test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Reshading

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Z-Depth

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Distance

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Room Layout

test
train

0 200 400 600
Update Number 

0

5

10

15

20 2.5D Segmentation

test
train

0 200 400 600
Update Number 

0

5

10

15

20 2D Segmentation

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Semantic Segmentation

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Vanishing Points

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Scratch

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Pixels-as-state

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Blind

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Surface Normals

test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Random Projection
test
train

0 200 400 600 800
Update Number 

0

5

10

15

20 Scene Classification

test
train

0 200 400 600
Update Number 

0

5

10

15

20 Curvature

test
train

Figure 15: Full Learning Curves (Gibson Local Planning). Full train and test curves for all features and
baselines in the planning task in the Gibson environment.
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Figure 16: Full Learning Curves (Doom Navigation). Full train and test curves for all features and baselines
in the navigation task in the ViZDoom environment.
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Figure 17: Full Learning Curves (Doom Exploration). Full train and test curves for all features and base-
lines in the exploration task in the ViZDoom environment.
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