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Abstract:While manipulation skills such as picking, inserting and placing were
hard coded in classical setups, it is now widely understood that this leads to
poor flexibility and that more general skill formulations are required to ensure
re-usability in new scenarios. We thus adopt a skill-centric approach where each
skill is learned independently under various scenarios but not attached to any spe-
cific task. Afterwards, complex manipulation tasks can be achieved by compos-
ing these skills in sequence or parallel. One essential challenge there is to op-
timize the parameters of each skill such that the success rate of the whole task
is maximized. Common approaches require first a discretization of the state or
action space to generate such parameters and second a precise simulator to eval-
uate the performances under different parameters. Instead, we propose to learn
task-parameterized models of each skill directly from few human demonstrations.
Such models allow us to infer the success rate of executing a skill within a new
scenario conveniently, via computing a novel measure of execution confidence.
This measure encapsulates both the robot state and the workspace configuration.
Furthermore, we introduce task-parameterized transition skills that change the ob-
ject poses of interest via translation and rotation. We show that such skills can be
extremely useful for changing skill parameters and thus potentially improving the
success rate of a given task. The proposed scheme optimizes skill parameters
in the continuous domain without the need for simulators. We demonstrate the
proposed approach on a 7 DoF robot arm solving various manipulation tasks.

Keywords: Learning by Demonstration, Task Parametrized Skills, Hidden Semi-
Markov Models, Motion and Task Planning.

1 Introduction

Deploying service robots in daily household environments or in highly flexible manufacturing sites
is promising, but also highly challenging as stated in [1]. To begin with, it is impossible for robot
manufacturers to pre-program all robot capabilities (referred to as skills) that final users may po-
tentially require from the robot. To avoid inquiring engineers whenever a new skill is needed, it is
crucial to provide an easy and efficient method with which laymen can teach the robot new skills.
Simply recording and replaying a demonstrated trajectory is often insufficient, because changes in
the environment, such as varying robot and/or object poses, would render any attempt unsuccessful.
In other words, the robot needs to recognize and encode the intentions behind these demonstrations
and, more importantly, to generalize over unforeseen situations. Many learning-from-demonstration
(LfD) frameworks have shown great improvements in this aspect. Compared to hard-coded alterna-
tives, they embed extracted knowledge into probabilistic models. Examples are probabilistic motion
primitives (ProMPs) by [2] and Task-Parameterized Gaussian Mixture Models (TP-GMMs) by [3].

Complex manipulation tasks can be achieved by composing these skills in sequence or parallel. Thus
it is desirable that these skills are learned in a general way such that they can be re-used in different
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tasks. However, a direct execution of the sequence as it is given would often be unsuccessful due
to mainly two reasons: unseen scenarios and incompatible skills. For instance, the task “grasp the
coffee pot, pour coffee into the mug, grasp the mug, and pass the mug” would fail if the pot is too
far away, or if the mug is grasped badly to pass it properly. Most of the existing optimization of task
performance such as success rate and cost have been relying on statistics of numerous executions ei-
ther in simulation or directly on the robots (see [4, 5, 6]). This not only requires the access to precise
simulators that can model physical interactions, but also imposes great computational complexity
on the planning and control cycle.

On the other hand, transition skills such as translating and rotating an object are used extensively by
humans to ease the transition from one motion to another, e.g., pull the pot closer, and grasp the mug
by its handle, for the previous example. However, their application to robotic manipulation tasks has
been quite limited. Several works treat them in the same way as other skills or merge them manually
into the execution sequence, see [7, 6]. This limits the re-usability of transition skills as they are
inherently different from other skills, i.e., the final system configuration after executing is not fixed
but rather a design choice. This choice is normally not optimized but hard-coded for specific tasks,
which thus can not be applied to general manipulation tasks.

The contributions of this work are as follows. First, we extend the well-known TP-GMMs frame-
work for learning-from-demonstration (LfD) by introducing so-called free task parameters, which
are not directly attached to a physical object but can be freely chosen. Free task parameters are an
important step towards integrating a representation of movable objects in the LfD setting. Second,
we introduce task-parameterized models of pre-conditions and effects for general skills, which can
be used to close the existing gap between trajectory planning and symbolic planning. Third, based
on these probabilistic models, we introduce a measure of execution confidence for both a single skill
and a skill sequence given a new scenario. A novelty of the proposed measure is that it computes
purely from the learned models, without relying on any simulator. Fourth, we propose an algorithm
that maximizes the execution confidence by optimizing the free task parameters in the continuous
domain. This approach enables robots to autonomously decide how to use auxiliary transition skills
to improve the success rate of a complete sequence of skills. The proposed formalism directly
combines LfD and planning with continuous object poses into one formal framework, and therefore
enables more flexible usage of learned skills in complex manipulation tasks. Finally, we demonstrate
the real-world relevance of the approach in several experiments with a 7-DoF robot.

2 Related Work

LfD is an intuitive and natural way to transfer human skills to robots, which recently gained much
attention [8, 9, 10]. Gaussian Mixture Models (GMMs) provide an elegant probabilistic represen-
tation of motion skills. For instance, the work by [8] or [10] show how to use them to extract
important features from only few human demonstrations, see [11, 10, 12]. Furthermore, TP-GMMs
reviewed in [3] provide a powerful extension to GMMs by incorporating observations from differ-
ent perspectives. This allows automatic adaptation to new situations in [13], and has shown reliable
performance in numerous applications, e.g. human-robot collaboration [14], robot bimanual sweep-
ing [15] and service robot [3]. In this work, we build on skills that are learned from demonstrations
and sequence them in an optimal way to accomplish more complex manipulation tasks.

Planning for a sequence of manipulation skills is closely related to the area of task and motion
planning. On the task planning side, many work such as [5] has been focusing on constructing
symbolic representations of skills such as preconditions and effects, which is used for high-level
task planning, e.g., using standard languages like PDDL [16] and STRIPS [17]. This high-level
abstract decision-making greatly accelerates the planning process, thus highly desirable. On the
motion planning side, as a fundamental problem of robotics, many methods have been proposed
as reviewed in [18] and [19], e.g., sampling-based methods such as PRM from [20] and RRTs
from [19]; dynamic programming approaches such as LQG from [21] and MPC from [22]. This low-
level sensing and control is unavoidable for the ultimate success of any task. On the other hand, the
area of task and motion planning attempts to improve the synergies between high-level task planning
and low-level motion planning. One direct challenge that arises is that geometric constraints and
state abstractions are difficult to capture symbolically and more so automatically. Early work in [7,
23] combines a finite sampling of continuous actions and hierarchical task networks (HTNs). Recent
work in [4] develops efficient search heuristics for the symbolic planning that reflects the geometric
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(I)

(II)

Figure 1: Two situations where transition skills are useful: (I) the peg is too far away for skill
grasp top, and transition skill translate grasps the peg by side and pulls it closer; (II) the peg is
blocked by a platform thus unsafe for skill grasp side, and transition skill translate grasps the
peg by top and places it on the platform, to facilitate grasp side.

constraints in the motion planning process, for the specific task of pick-place-move. A more general
framework is proposed in [6] that combines symbolic logic reasoning with stable interaction modes,
for sequential manipulation and tool-use planning, with a strong emphasis on the underlying physical
interactions. Spatial conditions and effects for skills are learned in [24] as random forests and in [25]
as neural networks. Similar ideas are adopted in the domain of hierarchical reinforcement learning as
proposed in [26, 27, 28], for domains that involve long-term reasoning but under spare and delayed
rewards. However, the availability of accurate simulators is essential for all the aforementioned work
to generate enormous amount of training data without running the actual robot. In this work, we
remove this necessity but relying on only probabilistic models learned from human demonstrations.

Transition skills can be of many forms. Recent work by [29] uses in-hand manipulation to change the
grasp on objects so to facilitate subsequent tasks, while tool-use skills such as hitting and hooking
are proposed in [6]. Navigation can be seen as a special transition skill for mobile manipulators as
shown in [5, 7], i.e., by moving directly the base to a more favorable position for grasping. In this
work, we focus on a more specific form of transition skills that are learned from demonstrations.

3 Problem Description

Consider a multi-DoF robotic arm, of which the end-effector has state ξ P Mξ, where Mξ is
the robot operation manifold. For instance, Mξ could contain its 3D Cartesian position, ori-
entation in quaternion and gripper state. We assume that the robot operates within a static and
known workspace. Also, within the reach of the robot, there are objects of interest denoted by
O “ to1, o2, ¨ ¨ ¨ , oJu. Without loss of generality, we assume that the state of all objects p P Mp

lies in the object configuration manifold Mp. For instance, Mp could contain its 3D Cartesian
position and orientation in quaternion.

Moreover, there is a set of core manipulation skills that enable the robot to manipulate these objects,
denoted by A “ ta1, a2, ¨ ¨ ¨ , aHu. For each skill, a human user performs several kinesthetic demon-
strations on the robot. Particularly, for skill a P A, the set of objects involved is given by Oa Ď O
and the set of demonstrations is given by Da “ tD1, ¨ ¨ ¨ ,DMau, where each demonstration Dm is
a sequence of states s that consists of the robot end-effector state ξ within the manifold Mξ, and
object states tpo, o P Oau each within the manifold Mp, i.e.,

Dm “
“

st
‰Tm

t“1
“
“`

ξt, tpt,o, o P Oau
˘‰Tm

t“1
. (1)

Via a combination of these skills, the objects can be manipulated to reach a desired final state.

In addition, there is a special type of skills called transition skills, which are general skills used
to change the states of movable objects, such as position and rotation. They can be demonstrated
in the same way as the aforementioned skills, with a key difference that the final states of these
demonstrations are freely chosen.

Now consider a new scenario with the robot and objects at different states, where the robot is given
a sequence of manipulation skills to perform (denoted by a). The problem we tackle is to evaluate
whether, where and how transition skills should be in inserted in a to improve the success rate of
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the whole task. Some motivating examples are shown in Fig. 1. The transition skill translate is
used to improve the execution of both grasp top and grasp side within different scenarios.

4 Object-Centric and Task-Parameterized Models for Skills

In this section, we expand the classic framework from [3] such that the skill model now contains two
parts: (I) the trajectory model that encodes spatio-temporal features of the demonstrations; (II) the
precondition and effect models for the skill execution, which is proposed for the first time. These
models are essential for the definition and optimization of skill confidence later.

4.1 Learning Trajectory Model

We use the task-parameterized hidden semi-Markov Models (TP-HSMMs), which extend TP-
GMMs to encode spatio-temporal features of the demonstrated trajectories, as proposed in [3]. Task
parameters are essential for the flexibility and generalization of the learned model. Here we mainly
discuss how to design the task parameters for both the core manipulation skills and transition skills.

Task parameters are usually attached to the objects relevant to the skill and constructed from their
poses. Constructing a task parameter from an object pose p P Mp is straightforward, see [30].
However, for transition skills there are relevant frames which are not related to a physical object.
For example, the destination pose of the skill translate is freely chosen during the demonstration.
Such a free task parameter can not be perceived and should be set explicitly by the user or a planning
algorithm. Clearly, the choice of such free task parameters would directly influence the outcome of
skill execution. Thus, for any skill a, the set of task parameters (denoted by TPa) can be chosen
among the following parts: the set of relevant objects Oa, the set of free task parameters (denoted by
Fa), and the robot arm initial pose (denoted by r). Different choices of task parameters can result in
significant changes in the performance. As rule of thumb, attaching frames to all parts covers many
cases, i.e., TPa “ Oa Y Fa Y tru. In the supplementary material, we discuss why this is not always
a good choice and an iterative method could be applied to choose the best task parameters.

Once the task parameters are chosen, the associated TP-HSMMs can be derived from the procedures
described in [3], which involves the iterative Expectation-Maximization (EM) algorithm. Very gen-
erally speaking, TP-HSMMs consist of the following parameters

θa “
!

takhu
K
h“1, pµ

D
k , σ

D
k q, tπk, tpµ

ppq
k ,Σ

ppq
k qupPTPau

)K

k“1
, (2)

where akh is the transition probability from state k to h; pµDk , σ
D
k q describe the Gaussian distribu-

tions for the duration of state k, i.e., the probability of staying in state k for a certain number of
steps; tπk, tpµ

ppq
k ,Σ

ppq
k qupPTPau

K
k“1 contains the K TP-GMMs for all task parameters in TPa.

4.2 Learning Precondition and Effect Models

The precondition of a skill refers to the relative relations between the robot arm and the relevant
objects, which should be satisfied initially for the skill execution to be successful. The effect of a
skill refers to how the skill execution would change the state. In this part, we describe how to learn
these models purely from the available demonstrations.

4.2.1 Task Parameterized Model

The trajectory model θa does not incorporate how the objects or robot arm are located w.r.t each
other when the skill execution starts and finishes. The proposed idea is to learn task-parameterized
Gaussians (TP-Gs) for each object to fit its pose from demonstrations. The precondition model is:

γ1,aps, pFq fi

!

pµ
ppq
1,o, Σ

ppq
1,oq, @p P TPaztou

)

oPOaYFa

, (3)

where pµppq1,o, Σ
ppq
1,oq is the Gaussian distribution of object o’s initial pose at time 1 from the perspec-

tive of object p’s initial pose at initial time 1. Thus it is also called the “initial-to-initial” precondition
model. Similarly, the effect model of a skill is defined by:

γT,aps, pFq fi

!

pµ
ppq
T,o, Σ

ppq
T,oq, @p P TPa

)

oPOa

, (4)
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where pµppqT,o, Σ
ppq
T,oq is the Gaussian distribution of object o’s final pose at time T from the perspec-

tive of object p’s initial pose. Thus it is also called the “initial-to-final” effect model. Note that both
models are computed within the object pose manifold Mp. Low variance in the learned models
indicate a consistent geometric relation in the demonstrations, e.g., the precondition of skill insert
is that the object is grasped by arm initially, while the effect of skill translate is that the object is
put at the destination. Derivation details for (3) and (4) can be found in the supplementary file.

4.2.2 Evaluation of Precondition

Given a new system state s and a choice of free task parameters pF, we can evaluate how much
the precondition of a skill is satisfied using the learned models. In particular, we can compute the
product of the observation probability for the robot arm and each object, or equivalently the logsum:

caps, pFq fi log

˜

K
ÿ

k“1

πkN pξ | µ̂k, Σ̂kq

¸

`
ÿ

oPOaYFa

log
´

N ppo | µ̂1,o, Σ̂1,oq

¯

, (5)

where tpµ̂k, Σ̂kqu are the combined Gaussians of initial robot arm pose in the global frame from the
learned trajectory model θa; tpµ̂1,o, Σ̂1,oqu are the combined Gaussians of object o’s initial pose in
the global frame from the learned precondition model γ1,a. The computation of these components
involves transforming Gaussians from local frames to the global frame and then computing their
product. No closed analytical forms exist for general Riemannian manifolds, see [30]. Note that
the measure above is not a probability, but computation over probability densities. It provides a
continuous value that evaluates how similar the current situation is to the demonstrations.

4.2.3 Prediction of Effect

The effect includes the poses of both robot arm and objects after executing the skill. First, the final
pose of the robot arm follows the learned trajectory model θa, i.e., ξT | ps0,pFq „ N

`

µ̂K , Σ̂K

˘

,
where

`

µ̂K , Σ̂K

˘

is directly the K-th combined Gaussian the global frame. Second, the final poses
of all objects follow the learned effect model γT,a, i.e., pT,o | ps0,pFq „ N

`

µ̂T,o, Σ̂T,o

˘

, where
pµ̂T,o, Σ̂T,oq is the combined Gaussian of object o in the global frame. Thus, the estimated final
state ŝT after executing skill a is given by:

ŝT fi Ωaps0,pFq fi

´

ξT | ps0, pFq, tpT,o | ps0, pFq, o P Oau

¯

, (6)

where the mean of the corresponding Gaussians can be directly used as the most likely prediction.
Different from the symbolic representations for planning from [31], the precondition and effect
models learned in (5) and (6) are continuous and adaptive to the actual scenario during execution.

5 Confidence Optimization for Skill Sequence

In the previous section, we describe the task-parameterized trajectory, precondition and effect mod-
els of a single skill. In this section, we first define the execution confidence of a sequence of skills
within a new scenario. Then, we show how to compute and further optimize this confidence measure.

5.1 Confidence Measure for Skill Sequence

Typically, regardless of the way being implemented, a manipulation skill can only be executed suc-
cessfully within a limited set of scenarios and robot configurations. A measure of confidence is
used in this work to indicate how likely it is to perform the skill successfully within a new scenario.
For instance, the success rate of a “grasping” skill varies greatly given different orientations and
locations of the targeted object. As mentioned in Sec. 2, most related work computes this measure
via simulating this execution in an accurate simulator numerous times and then averaging over the
outcome. However, in this work, we rely on only the available demonstrations.

To begin with, it is worth pointing out that to learn the exact distribution of the success rate over the
high dimensional space of all possible scenarios is extremely difficult. For instance, a manipulation
skill that involves two objects has task parameters of dimension 2 dimpMpq`dimpMξq, i.e., 22 for
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Algorithm 1: Optimizing Sequences of Probabilistic Skills Learned from Demonstration
Input: Set of skills A; demonstration Da for each a P A; skill sequence a.

1 for each a P A do // During training
2 Choose task parameters TPa. // Sec.4.1
3 Train TP-HSMM model θa, given TPa and Da.
4 Learn the precondition model γ1,a and effect model γT,a, given TPT,a and Da.

// Sec.4.2

5 Observe the initial system state s0. // Sec.5.2
6 Determine p‹F by solving (9). // Optimization
7 for each ah P a do // On-line execution
8 Observe the current system state sh; Set free TPs of ah according to p‹F.
9 Compute the most-likely sequence k‹ of states in θah . // see Calinon [3]

10 Generate reference trajectory ξ‹ based on k‹; Track ξ‹ by motion control till the end.

the 7 DoF robot arm described in our experiment. Since only a few demonstrations are available for
each skill (rather than thousands), our idea is that scenarios which are similar to the demonstrations
are more likely to lead to a successful execution, than those that are quite different.

Design of the confidence measure for a sequence a are guided by two requirements: (a) the confi-
dence of each single skill within a should have influence on the overall confidence; (b) the confidence
of a can not be increased by appending additional skills. The first requirement is due to intuition
and the second due to causality. In particular, consider a given sequence a “ a1a2 . . . aH . The
confidence measure of a at state s0 with the chosen free parameters pF is defined as

caps0, pFq fi ´ log

˜

H
ÿ

h“1

expp´cah
`

ŝh, pF
˘

q

¸

, (7)

ŝh`1 fi Ωahpŝh, pFq, ŝ1 fi s0, (8)

where (7) computes the non-logarithmic reciprocal sum of the confidence measure of each single
skill from (5); and (8) predicts the initial state ŝh of each skill ah P a based on (6). When the
sequence contains only one skill, (7) falls back to cap¨q in (5). First, it can be verified that the
above definition satisfies both requirements mentioned above. Second, the predicted initial state ŝh
is essential for computing the correct confidence, as executing earlier skills changes the system
state st and thus the associated task parameters for later skills. Due to this, simply computing the
confidence cahpŝh, pFq of each skill ah by setting ŝh “ s0 would yield a quite bad estimate of the
actual confidence. Lastly, this measure is not a probability, but a relative measure over probability
densities, which can not directly tell the exact success rate given a new scenario.

5.2 Confidence Optimization

In this section, we show how to set pF such that the overall confidence cap¨q in (7) is maximized.
More precisely, we solve the following optimization:

p‹F “ arg max
pF

tcaps0, pFqu , (9)

where remind that pF “ tpo, o P Fau consists of the poses of all free task parameters. There are
commonly as many free task parameters as the number of transition skills within a. Note that the
confidence measure cahp¨q for each intermediate skill ah requires an iterative algorithm to determine
the Gaussian products on the robot and object manifolds, as shown in (5). This renders computing
the gradients of caps0, pFq w.r.t pF directly intractable. We tackle this difficulty via two means:
first we reduce the problem dimensionality by optimizing several free task parameters in sequence
instead of simultaneously; then we rely on gradient-free direct-search optimization methods such as
Nelder-Mead Simplex algorithm from [32]. The first aspect stems from the insight that the signif-
icance of each dimension of pF is encoded in its variance in the demonstrations, i.e., we optimize
first in the directions that have the largest variations demonstrated.

Last but not least, for many manipulation tasks, we provide a fast-to-compute rough estimate of
the optimum p‹F. Consider the skill sequence ahah`1 ¨ ¨ ¨ where ah is a transition skill. If the
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A Skill Ma Ka Oa Fa TPa Ttrain (s)

agt grasp top 9 8 tou H to, ru 3.5
ags grasp side 7 14 tou H to, ru 9.4
atl translate 15 18 tou tdu td, ru 3.7
ais insert 9 10 to, b1u H tb1, ru 6.1
adp drop 6 10 to, b2u H tb2, ru 6.3

Figure 2: Left figure: the experiment set-up and snapshots of the kinesthetic teaching for skills
ags, ais, adp; Right table: demonstrated skills A, number of componentsKa and demonstrationsMa,
involved objects Oa, free TPs Fa, choice of TPs TPa, and the training time.

free task parameter d is the destination where object o is moved to, and skill ah`1 changes po
during execution, then the optimum is very close to the mean of the initial pose of object o in the
demonstrations of skill ah`1, i.e., p‹d “ µ̂1,o. This rough estimate can be either directly used if the
resulting confidence is sufficient, or used as the initial guess for the optimization algorithm.

5.3 Execution of Skill Sequence

The complete procedure is summarized in Algorithm 1. The training is done off-line for each skill
between Line 2´4. Before the execution starts, the optimal TPs p‹F is computed in Line 6 after
observing the initial state s0. Then, each skill is executed as described in Lines 8´10. Real-time
execution relies on external modules such as perception and and low-level motion control.

6 Experiments

In this section, we describe the experiment setup on a 7-DoF robotic manipulator. The manipulation
task we consider is the typical assembly task with various picking and placing skills. We demonstrate
how transition skills can be used to optimize the execution of such tasks within different scenarios.
The algorithm is implemented in Python and its communication with other modules are through
ROS. More details and experiment videos attached as supplementary files.

6.1 Setup and Manipulation Tasks

The Franka Emika Panda robot [33] has 7-DoF and is equipped with a two-finger gripper, as shown
in Fig. 2. It provides a mode to intuitively perform kinesthetic teaching, during which the trajectory
of the end-effector and the gripper can be fetched directly from the on-board control manager. The
manipulated object is a cardboard cube of approximately 6ˆ 4ˆ 2 cm3. To record trajectories
also from other frames, the task parameters associated with the objects of interest in the scene
are estimated based on the ArUco fiducial marker library from [34], which provides a 6D pose
estimation with around 1 cm accuracy. Moreover, an impedance control module based on Hogan
[35] is used to track a reference trajectory with the end-effector. Demonstrations are recorded at
50 Hz, while impedance controller runs at 1 kHz. Collision avoidance with unknown obstacles in
the workspace is not considered. We adopt quaternions S3 Ď R4 for orientation representation,
which leads to the observation space Mξ “ R3 ˆ S3 ˆ R representing position, orientation and
gripper width in that order. The poses of involved objects lie within Mp “ R3 ˆ S3.

Within the range of the manipulation, there is an object o, two containers b1 and b2 where the object
fits in. As shown in Fig. 2, we demonstrated the following five skills to the robot: grasp top
where the robot grasp o via the top (denoted by agt); grasp side where the robot grasp o from
the side (ags); translate where the robot translate o from one pose to the virtual destination d
(by atl); insert where the robot inserts o into the container b1 (by ais); drop where the robot
drops o into the container b2 (by adp). Snapshots, number of demonstrations and involved objects
are summarized in Fig. 2. Due to kinematic constraints and the object size, there are very limited
regions where the robot could grasp o via the side without colliding with the table. Thus a platform
of 5 cm is added to facilitate skill ags. We consider two pick-and-place assembly tasks: (a) grasp
o by its top and drop it in b1, denoted by a1 “ agtadp. Alternatively, the translation skill can be
added in the beginning, i.e., a11 “ agtatlagtadp. (b) grasp o by its side and insert it in b2, denoted
by a2 “ agsais. Or with the translation skill, i.e., a12 “ agtatlagsais. The objective is to choose the
appropriate sequence for different tasks under different scenarios.
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pbox ca2 ca1
2

p‹d Topt (s) ca1 ca1
1

p‹d Topt (s)

(0.5, 0.0, 0.03) -580 37 (0.36, 0.27, 0.07) 13.6 38 37 (0.42, 0.12, 0.03) 21.7
(0.6, 0.1, 0.03) -800 32 (0.37, 0.28, 0.07) 16.5 32 31 (0.40, 0.12, 0.03) 15.2

(0.3, -0.08, 0.03) -197 20 (0.36, 0.19, 0.07) 16.5 -1.2 19 (0.40, 0.1, 0.03) 12.2
(0.4, 0.3, 0.07) 41 34 (0.36, 0.28, 0.07) 16.7 31 31 (0.41, 0.13, 0.03) 22.2
(0.3, 0.4, 0.07) 28 32 (0.36, 0.30, 0.07) 24.6 30 31 (0.42, 0.13, 0.03) 20.6

Table 1: Comparison of the confidence measure at different initial object poses, for both tasks with
(i.e., a11 and a12) and without transition skills (i.e., a1 and a2).
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Figure 3: Heatmap of relative improvement over the workspace (X, Y-axis inm) when comparing a1
and a11 (Left), and a2 and a12 (Middle). The area within the black lines is elevated by the platform.
Right: one execution trajectory for task a12 “ agtatsagsais. Boxes in shaded magenta are the
predicted intermediate poses during execution, while box in solid black is the initial pose.

6.2 Confidence Optimization

First, we present the learning results for each skill described above. The procedure in Line 2´4
of Algorithm 1 is followed for each skill. The resulting models such as number of components
and optimal choice of TPs are summarized in Fig. 2. All skills have been demonstrated within a
wide range of scenarios, e.g., different robot arm state, different object poses for grasping skills
and different destinations for the translation skill. The training time is around 6.1 s for each skill,
which includes the TP-HSMM model θa and the precondition/effect models γ1,a, γT,a. Detailed
visualization of demonstrations and learned models are provided in the supplementary files.

After learning the skill models above, given desired sequence a and the observed scenario s0, the
confidence cap¨q can be maximized if it contains the transition skill atl. The criterion to choose a1
or a11 is as follows: a11 is chosen if the relative improvement (RI) by pca1

1
´mintcmin, ca1uq{α ą 1,

where cmin is a predefined confidence lower bound (set to ´10) and α is the scale (set to 10).
The same rule applies to the choice of a2 and a12. A comparison of confidences for a selection of
initial object poses is shown in Table 1, where the optimal choice for the free TP “destination” d
is also shown along with the computation time. The distribution of IR over the whole workspace is
shown in Figure 3. It can be seen that: (I) for tasks a1 and a11, the difference in their confidences is
mostly negligible as skill grasp top has quite high confidence across the workspace. However, it
is worth noticing that close to top-left corner, a11 is preferred over a1 because skill drop has never
been demonstrated around that area, thus it is beneficial to translate the box to the center area where
skill drop is more confident. (II) for tasks a2 and a12, it is almost always beneficial to translate
the object onto the platform first when the object is initially on the table, while this translation is
unnecessary if the object is already on the platform. The main reason is that skill grasp side is
unsafe for the robot when close to the table due to potential collision, thus only demonstrated on the
platform. Given the optimal choice p‹d, the skill sequence a11 is reproduced following Lines 8´10 of
Algorithm 1. One actual execution trajectory of task a12 is shown in Fig. 3. Experiment videos are
attached as supplementary files.

7 Conclusions and Future Work

We presented in this work a general framework to optimize manipulation skills that are learned
purely from human demonstrations. The learned models are object-centric and thus flexible to
changing scenarios. Transition skills are introduced to improve the overall success rate of com-
plex manipulation tasks. Future work includes the interplay between the skill-level optimization
proposed here and existing high-level task planning techniques.
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