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Abstract: We consider the problem of finding distributed controllers for large
networks of mobile robots with interacting dynamics and sparsely available com-
munications. Our approach is to learn local controllers that require only local in-
formation and communications at test time by imitating the policy of centralized
controllers using global information at training time. By extending aggregation
graph neural networks to time varying signals and time varying network support,
we learn a single common local controller which exploits information from distant
teammates using only local communication interchanges. We apply this approach
to the problem of flocking to demonstrate performance on communication graphs
that change as the robots move. We examine how a decreasing communication
radius and faster velocities increase the value of multi-hop information.
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1 Introduction

Large scale swarms are composed of multiple agents that collaborate to accomplish a task. In the
future, these systems could be deployed to, for example, provide on-demand wireless networks
[1], perform rapid environmental mapping [2, 3], search after natural disasters [4, 5], or enable
sensor coverage in cluttered and communications denied environments [6]. For as long as scale is
moderate, the group can be controlled as a whole from a central agent. However, as we reach for
larger number of agents, decentralized control becomes a necessity. Individual agents must decide
on control actions that are conducive to accomplishing a collective task from their local observations
and communication with nearby peers. It has long been known that finding optimal controllers in
these distributed settings is challenging [7]. This motivates the use of heuristics in general and, in
particular and as we advocate in this paper, the use of learned heuristics.

We emphasize that the challenge in decentralized control stems from the local information structure
generated by the unavoidable restriction to communicate with only nearby agents. Building on this
observation, we propose the use of imitation learning to train policies that respect the local informa-
tion structure of a distributed system, while attempting to mimic the global policy of a clairvoyant
expert (Section 2). The value of imitation learning has been demonstrated in single agent robotics
problems such as autonomous driving [8] and quadrotor navigation [9]. When designing multi-agent
systems, we must contend with the dimensionality growth of the system as new agents are added.
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Both of these problems can be overcome if we use a Graph Neural Networks [10, 11, 12, 13, 14].
In particular, aggregation graph neural networks (aggregation GNNs) [13] are especially suited to
teams of agents operating over a physical network because the architecture operates in an entirely
local fashion involving only communication between nearby neighbors. In small-size multi-agent
problems [15], it is shown that explicitly learning the graph of agent relationships aids in distilling
decentralized agent policies from expert policies trained using Actor-Critic methods. In contrast,
we leverage known relationships and connectivity between agents in order to extract features with
graph convolutions, following the approach of [13]. Exploiting the known network structure allows
us to consider teams an order of magnitude larger and highlights the value of using information from
multi-hop neighbors.

Related work in multiagent learning for control in imitation [16] and reinforcement [17] settings
address varying neighbor relationships in communication but provide no mechanism for multi-hop
information flow. Explicit multi-hop message passing between all team members allows offline [18]
and incremental [19] training for group inference but incurs a superlinear growth in communications
with team size. Scalable online training is achieved in [20] by viewing the team as a distributed
neural network, but training and inference must cease once agents move and the network changes.

We examine flocking tasks to highlight the ability of our approach to handle dynamic communication
networks. Flocking has natural extensions to transportation and platooning of autonomous vehicles
where agents rely on local observations to align their velocities and regulate their spacing [21].
Previous work focuses on developing local controllers which incorporate only observations from
immediate neighbors [22, 23, 24]. We show that a global controller inspired by [24] outperforms
such local controllers, but global approaches are not practical for real deployments. The novelty of
our approach to flocking is to aggregate from multi-hop neighbors; this ability allows us to approach
the performance of global solutions while respecting realistic communication constraints. Prior
to this work, there has been no principled approach for augmenting the communication between
neighbors to pass on information aggregated from multi-hop neighbors.

Notation. For a matrix A with entries ai j we use [A]i j = ai j to represent its (i, j)th entry and
[A]i = [ai1, . . . ,aiN ] to represent its ith row. For matrices X and Y we use [X,Y] to represent its block
column concatenation and [X;Y] for its block row stacking.

2 Control of Networked Systems

We consider a team of N agents distributed in space and tasked with controlling some large scale
dynamical process. We characterize this dynamical process by the collection of state values xi(t) ∈
Rp observed at the locations of each agent i at time t, as well as the control actions ui(t) ∈ Rq that
agents take. Grouping local states into the joint system state matrix x(t) = [xT1 (t); . . . ;xTN(t)]∈RN×p,
and local actions into the overall system action u(t) = [uT

1 (t); . . . ;uT
N(t)] ∈ RN×q, we can write the

evolution of the dynamical process through a differential equation of the form, ẋ(t) = f (x(t),u(t)).

In order to design a controller for this dynamical system we operate in discrete time by introducing
a sampling time Ts and a discrete time index n. We define xn = x(nTs) as the discrete time state and
un as the control action held from time nTs until time (n+ 1)Ts. Solving the differential equation
between times nTs and (n+1)Ts, we end up with the discrete dynamical system

xn+1 =
∫ (n+1)Ts

nTs

f (x(t),un) dt +xn, with x(nTs) = xn. (1)

At each point in (discrete) time, we consider a cost function c(xn,un). The objective of the control
system is to choose actions un that reduce the accumulated cost ∑

∞
n=0 c(xn,un). When the collec-

tion of state observations xn = [xT1n; . . . ;xT
Nn] is available at a central location it is possible for us to

consider centralized policies π that choose control actions un = π(xn) that depend on global infor-
mation. In such case the optimal policy is the one that minimizes the expected long term cost. If the
dynamics in f (x(t),u(t)) and the costs c

(
xn,π(xn)

)
are known, as we assume here, there are several

techniques to find the optimal policy π∗ [25, 26]. In this paper we are interested in decentralized
controllers that operate without access to global information and interpret the optimal controller as
a benchmark that decentralized controllers are trying to imitate.

The agent network is described by the presence of an edge (i, j)∈ En which indicates that j may send
data to i at time n. When this happens we say that j is a neighbor of i and define the neighborhood
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of i at time n as the collection of all its neighbors, Nin = { j : (i, j) ∈ En}. We can also define multi-
hop neighborhoods of a node. We first define the 0-hop neighborhood of i to be the node itself,
N 0

in = {i}. The 1-hop neighborhood of i is defined as simply the neighborhood of i, N 1
in =Nin We

can now define the k-hop neighborhood of i as the set of nodes that can reach node i in exactly k
hops. The k-hop neighbors of i are the nodes that are (k− 1)-hop neighbors at time n− 1 of the
neighbors of i at time n. This recursive neighborhood definition characterizes the information that
is available to node i at time n. This information includes the local state xin that can be directly
observed by node i at time n as well as the value of the state x j(n−1) at time (n− 1) for all nodes j
that are 1-hop neighbors of i at time n since this information can be communicated to node i. Node i
can also learn the state x j(n−2) of 2-hop neighbors at time n−2 since that information can be relayed
from neighbors. In general, Eqn. 2 defines the information history Hin of node i at time n as the
collection of state observations out to a maximal history depth K.

N k
in =

{
j′ ∈N k−1

j(n−1) : j ∈Nin

}
, Hin =

K−1⋃
k=0

{
x j(n−k) : j ∈N k

in

}
(2)

The decentralized control problem consists on finding a policy that minimizes the long term cost
∑

∞
n=0 c(xn,un) restricted to the information structure in (2). This leads to problems in which finding

optimal controllers is famously difficult to solve [7] except in some particularly simple scenarios
[27]. This complexity motivates the introduction of a method that learns to mimic the global con-
troller. Formally, we introduce a parameterized policy π(Hin,H) that maps local information histo-
riesHin to local actions uin = π(Hin,H) as well as a loss functionL(π,π∗) to measure the difference
between the optimal centralized policy π∗ and a system where all agents (locally) execute the (local)
policy π(Hin,H). Our goal is to find the tensor of parameter H that solves the optimization problem

H∗ = argmin
H

Eπ∗
[
L
(

π
(
Hin,H

)
,π∗(xn)

)]
, (3)

where we use the notation Eπ∗ to emphasize that the distribution of observed states xn over which
we compare the policies π

(
Hin,H

)
and π∗(xn) is that of a system that follows the optimal policy

π∗. The formulation in (3) is one in which we want to learn a policy π
(
Hin,H

)
that mimics π∗ to

the extent that this is possible with the information that is available to each individual node. The
success of this effort depends on the appropriate choice of the parameterization that determines the
family of policies π(Hin,H) that can be represented by different choices of parameters, H. In this
work, we advocate the use of an aggregation graph neural network (Section 3) and demonstrate its
applications to the problem of flocking with collision avoidance (Section 4).

3 Delayed Aggregation Graph Neural Networks

Aggregation graph neural networks (aggregation GNNs) are information processing architectures
that operate on network data in a completely local and decentralized way, harnessing all the useful
information by repeated exchanges with their neighbors [13]. This makes them suitable choices for
parameterizing the decentralized policy π(Hin,H) in (3). However, aggregation GNNs operate on
fixed graph signals defined over a fixed graph support, so in what follows, we extend aggregation
GNNs to operate on time-varying graph processes defined over a time-varying graph support.

The graph support Gn is conveniently described by a graph shift operator Sn ∈ RN×N which is a
matrix whose element [Sn]i j can be nonzero only if ( j, i) ∈ En or if i = j, respecting the sparsity of
the graph [28, 29, 30]. It follows that Sn defines linear, local operations since multiplications with
Sn can be computed only with neighboring exchanges. More precisely, recall that [x(n−1)] j = xTj(n−1)
denotes the state observed by node j at time n−1 and further distribute the product Snxn−1 so that
[Snxn−1]i is associated with node i. Since [Sn]i j 6= 0 only if ( j, i) ∈ En or if i = j we can write[

Snxn−1

]
i
= ∑

j=i, j∈Nin

[
Sn

]
i j

[
xn−1

]
j
. (4)

Thus, node i can carry its part of the multiplication operation by receiving information from neigh-
boring nodes. Examples of valid shift operators include weighted and unweighted adjacency ma-
trices as well as weighted, unweighted, or normalized Laplacians. Aggregation GNNs leverage the
locality of (4) to build a sequence of recursive k-hop neighborhood [Eq. (2)] aggregations to which
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a neural network can be applied. More precisely, consider a sequence of signals ykn ∈RN×p that we
define through the recursion

ykn = Sny(k−1)(n−1), (5)
with the initialization y0n = xn. If we fix the time n and consider increasing values of k, the recursion
in (5) produces a sequence of signals where the first element is y0n = xn, the second element is
y1n = Sny0(n−1) = Snxn−1, and, in general, the kth element is ykn = (SnSn−1 . . .Sn−k+1)xn−k. Thus,
(5) is modeling the diffusion of the state xn−k through the sequence of time varying networks Sn−k+1
through Sn. This diffusion can be alternatively interpreted as an aggregation; at node i we can define
an aggregation sequence of K elements as

zin =
[[

y0n
]

i ;
[
y1n
]

i ; . . . ;
[
y(K−1)n

]
i

]
. (6)

The first element of this sequence is [y0n]i = [xn]i = xTin which represents the local state of node i.
The second element of this sequence is [y1n]i = [Snxn−1]i which aggregates the states x j(n−1) of 1-
hop neighboring nodes j ∈N 1

in observed at time n−1 with a weighted average. In fact, this element
is precisely the outcome of the local average shown in (4). If we now focus on the third element we
see that [y2n]i = [SnSn−1xn−2]i is an average of the states x j(n−2) of 2-hop neighbors j ∈N 2

in at time
n−2. In general, the k+1st element of zin is [ykn]i = [SnSn−1 . . .Sn−k+1xn−k]i which is an average
of the states x j(n−k) of k-hop neighbors j ∈ N k

in observed at time n− k. From this explanation we
conclude that the sequence zin is constructed with state information that is part of the local history
Hin defined in (2) and therefore a valid basis for a decentralized controller. We highlight in equations
(4) and (5) that agents forward the aggregation of their neighbors’ information, rather than a list of
neighbors’ states, further along to multi-hop neighbors.

An important property of the aggregation sequence zin is that it exhibits a regular temporal struc-
ture as it is made up of nested aggregation neighborhoods. This regular structure allows for the
application of a regular convolutional neural network (CNN) [13] of depth L, where for each layer
`= 1, . . . ,L, we have

z(`)in = σ
(`)(H(`)z(`−1)

in ) (7)

with σ (`) a pointwise nonlinearity and H(`) a bank of small-support filters containing the learnable
parameters. For each node i, we set z(0)in = zin and collect the output z(L)in = uin to be the decentralized
control action at node i, at time n. We note that the filters H(`) are shared across all nodes. We refer
the reader to Section 7.1 in the supplementary materials for further details on aggregation GNNs.

The aggregation GNN architecture, described in equations (5)-(7), constitutes a local parameter-
ization of the policy π(Hin,H) that exploits the network structure and involves communication
exchanges only with neighboring nodes. To learn the parameters for H, we use a training set T
consisting of sample trajectories (xn,π

∗(xn)) obtained from the global controller u∗n = π∗(xn). We
thus minimize the loss function over this training set, Eq. (3), where un collects the output uin = z(L)in
of (7) at each node i:

H∗ = argmin
H

∑
(xn,π∗(xn))∈T

L
(

un,u∗n
)

(8)

We note that the policy learned from (8) can be extended to any network since the filters H(`) can
be applied independently of Sn, facilitating transfer learning. This transfer is enabled by sharing the
filter weights H among nodes at training time. The learned aggregation GNN models are, therefore,
network and node independent. Graph covariance is an advantage for the applications examined in
this work, but may not be a suitable assumption in all problems [31].

4 Methods: Learning to Flock

We evaluate the proposed methodology by learning a local controller for flocking with collision
avoidance [24]. Consider then a team of N agents in which ri denotes the position of agent i and
vi = ṙi denotes its velocity. We assume that accelerations are fully controllable and therefore attempt
to design control inputs ui so that the change in velocity of agent i is v̇i = ui. Further denote as
ri j := r j− ri the relative position of agent j with respect to agent i and introduce a constant ρ > 1
to define the collision avoidance potential

U(ri,r j) =
∥∥ri j

∥∥2 − log
∥∥ri j

∥∥2 if
∥∥ri j

∥∥< ρ; 1/ρ
2− log(ρ2) otherwise. (9)

4



Since in addition to avoid collisions we want all agents to coordinate on their velocities we propose
the controller

u∗i =−
N

∑
j=1

(vi−v j)−
N

∑
j=1

∇riU(ri,r j). (10)

The combination of the collision avoidance potential with the velocity agreement term vi − v j
pushes the agents to coordinate their velocities while avoiding collisions. Observe that the potential
U(ri,r j) diverges at ‖ri j‖= 0, has a minimum when the distance between agents is ‖ri j‖= 1 and is
indifferent when ‖ri j‖> ρ . It therefore pushes agents to either be at distance ‖ri j‖= 1 of each other
or at distance ‖ri j‖> ρ of each other.

The controller in (10) requires access to all agent velocities and all agent positions. In the parlance
of Section 2, it is a clairvoyant centralized controller. In practice, agents can have access to local
information only as they can only sense and communicate with agents within distance ‖ri j‖< R of
each other. A controller that respects the locality of sensing and communication is

u†
i =− ∑

j∈Ni

(vi−v j)− ∑
j∈Ni

∇riU(ri,r j). (11)

The controller in (11) differs from the centralized controller in (10) in that the sums are over agents
j ∈ Ni defined as those whose distance to agent i is ‖ri j‖ < R for some communication radius R.
For both the centralized and decentralized controllers, we have chosen R = ρ . It follows that the
controller in (11) is decentralized as it can be implemented by accessing local information only. The
controllers in (10) and (11) have the same stationary points but (11) may – indeed, it most often does
– take longer to coordinate agent velocities. In the next section we use an aggregation GNN to learn
a local controller that mimics (10). We will show that this learned controller outperforms (11) and
achieves a performance that is similar to (10).

The global and local controllers are both non-linear in the states of the agents. The classical aggre-
gation GNN approach does not allow for non-linear operations prior to aggregation, so we cannot
use the position and velocity vectors alone to imitate the global controller. Rather than directly using
the state [ri,vi] of each node i for aggregation, we design the relevant features needed to replicate
the non-linear controller using only a linear aggregation operation, where [xn]i ∈ R6:

[xn]i =

[
∑

j∈Ni

(vi,n−v j,n), ∑
j∈Ni

ri j,n∥∥ri j,n
∥∥4 , ∑

j∈Ni

ri j,n∥∥ri j,n
∥∥2

]
(12)

This observation vector is then used during aggregation as described in (5)-(6). The local controller
also requires the computation of (12), so we are not giving the GNN an unfair advantage by pro-
viding the instantaneous measurements of neighbors’ states. We quantify the cost of a trajectory by
the variance in velocities, where T is the number of time steps in the trajectory. The variance in
velocities measures how far the system is from consensus in velocities [32]:

C =
1
N

T

∑
n=1

N

∑
j=1

∥∥∥∥∥v j,n−
1
N

[ N

∑
i=1

vi,n

]∥∥∥∥∥
2

. (13)

For our baseline scenario we consider a flock of N = 100 agents with a communication radius of
R = ρ = 1.0 m and a discretization time period of Ts = 0.01 s. The flock locations were initialized
uniformly on the disc with radius

√
N to normalize the density of agents for changing flock sizes.

Initial agent velocities are controlled by a parameter vinit = 3.0 m/s: agent velocities are sampled
uniformly from the interval [−vinit ,+vinit ] and then a bias for the whole flock is added, also sampled
from [−vinit ,+vinit ]. To eliminate unsolvable cases, configurations are resampled if any agent fails
to have at least two neighbors or if agents begin closer than 0.1 m. Finally, acceleration commands
are saturated to the range [−100,100] m/s2 to improve the numerical stability of training.

To obtain an estimate of the action to take, each agent operates an aggregation GNN architecture,
as described in Section III, with input features given by (12). The aggregated vectors zin in Eq. (6)
are built from K−1 neighbor exchanges, and then fed into a fully connected neural network as per
Eq. (7), with two hidden layers of 32 neurons each and a Tanh activation function. The network
was implemented in PyTorch and trained over a MSE cost function, using the Adam optimizer with
learning rate 5 · 10−5 and forgetting factors β1 = 0.9 and β2 = 0.999. Each model was trained
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(d) Flock positions using the local controller

Figure 1. The GNN (K = 3) maintains a cohesive flock, while the local controller allows the flock to scatter.

using 400 trajectories, each of length 200 steps total. For testing, 20 trajectories of length 200 were
observed by using the learned controller only.

In practice, following the optimal policy to collect training data results in a distribution of states
that is not representative of those seen at test time. To resolve this we use the Dataset Aggregation
(DAgger) algorithm and follow the learner’s policy instead of the expert’s with probability 1−β

when collecting training trajectories [33]. The probability β of choosing the expert action while
training is decayed by a factor of 0.993 after each trajectory to a minimum of 0.5.

5 Results

We report results comparing (11) and (10) for point masses with fully controllable accelerations in
Section 5.1. This simple setting allows for an exploration of the effect of different system parameters
such as initial velocity or communication radius, to determine experimentally the scenarios on which
the aggregation GNN offers good performance. In Section 5.2 we study the case of transfer learning,
where we train the model in one network but test it in another (for example, with different number
of agents), and also by exporting the trained architecture to other physical models beyond the point-
mass model, as shown in the AirSim simulator (Sec. 7.2).

5.1 Learning to flock with point masses

First, we compare the performance of the GNN controller with K = 3 to the local controller u†
i

(11). Figure 1a depicts the magnitude of velocity differences between agents over the course of a
trajectory in terms of the population mean and standard devision. The GNN converges much more
rapidly and, unlike the local controller, approaches a perfect velocity consensus. Part of the reason
for this is explained in Figure 1b, which plots agents’ minimum distance to any neighbor over
time. The GNN control approaches a uniform flock spacing, but the local controller fails to stop
agents from dispersing quickly enough. Soon the local controller’s network has become completely
disconnected as agent distances exceed their communication range of R = 1. One flock trajectory is
depicted for the GNN controller in Fig. 1c and the local controller in Fig. 1d. Each diagram shows
the initial agent positions and velocities at time n = 0 and then at n = 300, qualitatively illustrating
the stable flocking of the GNN and failure of the local controller.
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Figure 2. The flock’s maximum initial velocities, communication radius, and the number of agents are key
parameters affecting the control cost. The GNN architecture uses 2 hidden layers with 32 neurons each.

Next, we study the performance of the GNN controller (for different values of K) compared to both
the local controller u†

i and the global controller u∗i [eq. (10)] under different flocking scenarios;
namely, different initial velocities (Fig. 2a), communication radius (Fig. 2b), and number of agents
(Fig. 2c). Then, we also consider different aggregation GNN architecture hyperparameters (Fig. 2d.
We recall that the performance is measured by the cost metric defined in (13). In general, we observe
that the GNN cost is bounded by the global controller as a best-case baseline, and the the local
controller as the worst-case baseline, as expected, showing, in many cases, a marked improvement
over the local controller u†

i .

More specifically, in Fig. 2a, we fix the communication radius R = 1.0 m for N = 100 agents. The
K = 1 controller, which uses the same data as the local controller, performs an order of magnitude
worse than K = 2 to K = 4, whose performance is comparable. At the highest initial velocity of
vinit = 4.5 m/s, the K = 4 GNN performs slightly better than the rest. Fig. 2b shows that the flocking
problem becomes more challenging as the communication radius decreases, for fixed maximum
initial velocities, vinit = 3.0 m/s, and N = 100 agents. The difference between the GNNs is most
dramatic at R = 1.0 m, where the K = 3 and 4 controllers perform much better than all but the global
controller. It is interesting to note that the cost of the local controller dips below the GNN controllers
for large communication radii such as R = 4.0 m. This may be due to the lack of truncation of the
GNN features in (12). In Fig. 2c, we observe that the flocking cost per agent, computed by (13),
decreases in value and variance as the flock size increases, with fixed R = 1.0 m and vmax = 3.0
m/s. The GNN approach generalizes easily to 150 agents, with no penalties on larger flocks. In Fig.
2d, we observe that the GNN architecture resulting in the lowest control cost uses 1-2 hidden layers
and 32-64 neurons, for fixed vinit = 3.0, N = 100, R = 1.0 m. For smaller architectures, we observe
under-fitting.

5.2 Transfer to Leader Following

Next, we investigate a new application of flocking in the presence of leader agents, with which
the rest of the flock must align velocities. This application is extremely relevant for human-robot
interaction for control of large swarms, and has not been previously explored by [24]. In the previous
section, the flock positions and velocities are initialized at random. This induces a symmetry in the
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(d) Grid of agents with radial velocities

Figure 3. The trained GNN is transferred to new challenging scenarios with large numbers of agents.

configuration - the distribution of velocities in an agent’s 1-hop neighborhood is the same as in its
2-hop or 3-hop neighborhood. Now, our goal is to investigate applications in which this symmetry is
not present, to emphasize the capabilities of the aggregation GNN for K = 3 and K = 4. All models
in this experiment were trained for vinit = 3.0 m/s, N = 100, and R = 1.0 m.

We first examine the transfer of the trained controllers to a system with two leader agents that have
equal velocities that remain constant throughout an episode. That is, we train the architecture on
examples of the symmetric network, but we test it on the leader system. Results are shown in Fig.
3c. We can observe that the K = 3 and K = 4 aggregation GNNs provide the best performance
which is in agreement with the intuition that 2-hop and 3-hop aggregations allow the agents to
respond more quickly to a leader agent who may be multiple hops away. In the second scenario,
agents are initialized in a grid, with velocities radially inwards toward the centroid of the flock.
The initial velocities of agents are initialized to be proportional to their distance from the center
of the flock. Results are shown in Fig. 3b. As the number of agents increases, we see the cost
increases exponentially because the initial velocities increase, which is consistent with Fig. 2a. This
scenario is particularly prone to the scattering behavior of Fig. 1d due to the high probability of
near-collisions, but the K = 3 and K = 4 controllers successfully align the agents’ velocities and
promote regular spacing among agents.

6 Conclusion

We have demonstrated the utility of aggregation graph neural networks as a tool for automatically
learning distributed controllers for large teams of agents with coupled state dynamics and sparse
communication links. We envision the use of an Aggregation GNN-based controller in large-scale
drone teams deployed into communication-limited environments to accomplish coverage, surveil-
lance or mapping tasks. In these settings, it is critical for agents to incorporate information from
distant teammates in spite of local communication constraints; we show aggregations GNNs can
be extended to accomplish this even with the time-varying agent states and time-varying commu-
nication networks typical of mobile robots. In experiments, learning decentralized controllers for
flocking and additional applications confirms the value of multi-hop information to performance and
robustness to number of agents and communication radius. In future work, enforcing state or input
constraints could help avoid these failure modes.
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7 Appendix

7.1 Aggregation GNN Evaluation

(a) y0n (b) y1n (c) y2n (d) y3n

CNN
zin uin

(e) Processing at the i-th node

Figure 4. Aggregation graph neural networks perform successive local exchanges between each node and its
neighbors. For each k-hop neighborhood (illustrated by the increasing disks), record ykn (5) to build signal zn
which exhibits a regular structure (6). Figures (a) The value of the state (b) One-hop neighborhood (c) Two-hop
neighborhood (d) Three-hop neighborhood. (e) Once the regular time-structure signal zn is obtained, we take
each row zin, representing the information collected at node i, and we process it through a CNN to obtain the
value of the decentralized controller uin at node i at time n (7).

In this appendix, we present a detailed algorithm to compute the output of Aggregation GNNs, see
Fig. 4. Essentially, each node in the network exchanges information with its neighbors repeatedly,
building sequence zin (6). Since this sequence is a regular sequence (i.e. nearby entries in zin cor-
respond to the information aggregated from neighboring nodes), a traditional CNN can be directly
applied, and an output computed. This CNN is applied locally at each node, with parameters shared
across all nodes.

More specifically, Algorithm 1 summarizes the inference methodology for the aggregation GNN at
a single node of the network. At time n, the agent receive aggregation sequences from its neighbors
z j(n−1). Then, the agent pools this information from neighbors to form the current aggregation vector
zin which is input to the learned controller π(zin,H) to compute the new action uin. Finally, the agent
transmits its aggregation vector zin to its current neighbors Nin.

Algorithm 1 Aggregation Graph Neural Network at Agent i.
1: for n=0,1,. . . , do
2: Receive aggregation sequences from j ∈Nin [eq. (6)]

z j(n−1) =
[[

y0(n−1)
]

j ;
[
y1(n−1)

]
j ; . . . ;

[
y(K−1)(n−1)

]
j

]
3: Update aggregation sequence components [eq. (5) and (4)][

ykn

]
i
=
[

Snyk(n−1)

]
i
= ∑

j=1, j∈Nin

[
Sn

]
i j

[
yk(n−1)

]
j

4: Observe system state xin
5: Update local aggregation sequence [cf. (6)]

zin =
[
xTin ;

[
y1n
]

i ; . . . ;
[
y(K−1)n

]
i

]
6: Compute next local action using the learned controller

uin = π
(
zin,H

)
7: Transmit local aggregation sequence zin to neighbors j ∈Nin
8: end for
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7.2 High order dynamics

The ideal point masses provide a convenient benchmark for testing the effects of system parameters,
but ultimately, we are most interested in flocking for robotic systems. Our goal in this section is
compare several approaches to flocking in large teams of up to 50 quadrotors in simulation. Testing
in the AirSim simulator allows us to test our controllers in the presence of higher order dynamics,
slower control rates, and latency in observations [34].

The first challenge is that the AirSim simulator runs in real time, and produces an order of magnitude
fewer training data points as compared to the point-mass simulation. To speed up training, we
attempt to train on a simulated point mass system that was tuned to the parameters of AirSim. Since,
we were not able to achieve an exact control frequency for the simulation, we instead observed that
commands were issued at a variable time interval, with a mean of 0.12 seconds, and a standard
deviation of 0.018 seconds. Therefore, we adapted the point mass simulation to match the AirSim
simulation by sampling Ts ∼N (0.12,3×10−4) and applying the linear model in (1). The inputs and
outputs of the controllers were scaled by a factor of l = 6 before evaluation of the GNN so that the
optimal spacing dictated by the potential function (9) does not result in collisions. The scaling of the
control actions and features was performed by: xn+1 = f (xn, l ·π(xn/l)), where f is the dynamics
of the system, and l = 6 is the scaling factor.

The second challenge was converting from the desired acceleration values produced by the con-
troller to the desired roll and pitch commands. We follow the approach of [35], which linearizes the
dynamics of the robot about the hover point. In our case, the roll, φ , and pitch, θ , are proportional to
the desired acceleration in the x and y dimensions. For a fixed yaw orientation, we used the approx-
imation: φ = u2/g and θ =−u1/g. The signs are inconsistent with those of [35] due to the AirSim
convention that the +Z dimension is down. This approximation is only valid for small accelerations,
so the acceleration inputs were clipped to a range of [−3.0,3.0] m/s2. Performance of the controllers
was quantified using the variance of velocities in (13). We initialize the flock uniformly spaced in
a grid formation with a distance of about 4.8 m between agents, and with x/y velocities sampled
uniformly on the range [−3.0,3.0] m/s. The communication radius in AirSim was fixed at 9 m.

Fig. 5 compares the performance of controllers trained in simulation against those trained on the
stochastic point mass model. The results of all eight GNN models are framed by the local and
global controller as the upper and lower baselines. The GNN controller with K = 4 trained in
AirSim outperformed all other learned controllers. For K = 1 and K = 2, the controllers trained in
simulation and AirSim had similar performance, but as additional aggregation operations are added,
the benefit of training in AirSim becomes more obvious. We believe that the K = 4 model trained on
point masses has overfit to the ideal dynamics, so the performance degrades. Both in simulation and
in point-mass experiments, we observed a failure mode, in which a small group of agents is moving
too quickly and escapes from the rest of the group. This small sub-flock typically exhibits flocking
behavior among the several agents, but has no ability to re-join the flock, because it is permanently
outside of the communication range of the rest of the agents. This drawback results from the lack of
hard constraints on the connectivity in the system.
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Figure 5. Four models were trained in AirSim and four on the stochastic point masses, and then all models
were tested in AirSim.
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