
Entity Abstraction in Visual Model-Based
Reinforcement Learning

Rishi Veerapaneni∗,1, John D. Co-Reyes∗,1, Michael Chang∗,1, Michael Janner1
Chelsea Finn2, Jiajun Wu3, Joshua Tenenbaum3, Sergey Levine1

Abstract: We present OP3, a framework for model-based reinforcement learning
that acquires object representations from raw visual observations without supervi-
sion and uses them to predict and plan. To ground these abstract representations
of entities to actual objects in the world, we formulate an interactive inference
algorithm which incorporates dynamic information in the scene. Our model can
handle a variable number of entities by symmetrically processing each object rep-
resentation with the same locally-scoped function. On block-stacking tasks, OP3
can generalize to novel block configurations and more objects than seen during
training, outperforming both a model that assumes access to object supervision and
a state-of-the-art video prediction model.

Keywords: model-based reinforcement learning, objects, compositionality

1 Introduction

Figure 1: OP3 infers a set of entity vari-
ables H(t)

1:K from an observation xt and
predicts their future states given a se-
quence of actions a(t:T). We evaluate
rollouts during planning by scoring these
predicted states against inferred goal hid-
den states h(G)

k .

A powerful tool for modeling the complexity of the physical
world is to frame this complexity as the composition of sim-
pler entities and processes. For example, the study of classical
mechanics in terms of macroscopic objects and a small set of
laws governing their motion has enabled not only an explana-
tion of natural phenomena like apples falling from trees but
the invention of structures that never before existed in human
history, such as skyscrapers. Paradoxically, the creative varia-
tion of such physical constructions in human society is due in
part to the uniformity with which human models of physical
laws apply to the literal building blocks that comprise such
structures – the reuse of the same simpler models that apply to
primitive entities and their relations in different ways obviates
the need, and cost, of designing custom solutions from scratch
for each construction instance.

The challenge of scaling the generalization abilities of learning
robots follow a similar characteristic to the challenges of mod-
eling physical phenomena: the complexity of the task space
may scale combinatorially with the configurations and number
of objects, but if all scene instances share the same set of objects that follow the same physical laws,
then transforming the problem of modeling scenes into a problem of modeling objects and the local
physical processes that govern their interactions may provide a significant benefit in generalizing to
solving novel physical tasks the learner has not encountered before.

That is the central hypothesis of this paper, which we test by defining models for perceiving and
predicting raw observations that are themselves compositions of simpler functions that operate locally
on entities rather than globally on scenes. Importantly, the symmetry that all objects follow the same
physical laws enables us to define these learnable entity-centric functions to take as input argument

* Equal contribution.
1University of California Berkeley. 2Stanford University. 3Massachusetts Institute of Technology.

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

Figure 2: Our approach to model-based RL imposes the entity abstraction: (a) The hidden state is factorized
into local entity states, each of which are symmetrically processed with the same function that takes in a generic
entity as an argument. In contrast, prior work do not incorporate symmetric processing of the hidden state. (b)
The hidden state represents the scene globally and is processed with a single function. (c) Different chunks
of the hidden state represent different entities and the entire state is processed with a single function. (d) The
hidden state is factorized into local entity states, each of which are processed with a different function.

a variable that represents a generic entity, the specific instantiations of which are all processed
symmetrically be the same function. We use the term entity abstraction to refer to the abstraction
barrier that isolates the abstract variable, which the entity-centric function is defined with respect to,
from its concrete instantiation, which contains information about the appearance and dynamics of an
object that modulates the function’s behavior.

Defining the observation and dynamic models of a model-based reinforcement learner as neural
network functions of abstract entity variables allows for symbolic computation in the space of entities,
but the key challenge for realizing this is to ground the values of these variables in the world from
raw visual observations. Fortunately, the language of partially observable Markov decision processes
(POMDP) enables us to represent these entity variables as latent random state variables in a state-
factorized POMDP, thereby transforming the variable binding problem into an inference problem with
which we can build upon state-of-the-art techniques in amortized iterative variational inference [1–3]
to use temporal continuity and interactive feedback to infer the posterior distribution of the entity
variables given a sequence of observations and actions.

We present a framework for object-centric perception, prediction, and planning (OP3), a model-based
reinforcement learner that predicts and plans over entity variables inferred via an interactive inference
algorithm from raw visual observations. Empirically OP3 learns to discover and bind information
about actual objects in the environment to these entity variables without any supervision on what
these variables should correspond to. As all computation within the entity-centric function is local in
scope with respect to its input entity, the process of modeling the dynamics or appearance of each
object is protected from the computations involved in modeling other objects, which allows OP3 to
generalize to modeling a variable number of objects in a variety of contexts with no re-training.

Contributions: Our conceptual contribution is the use of entity abstraction to integrate graphical
models, symbolic computation, and neural networks in a model-based RL agent. This is enabled
by our technical contribution: defining models as the composition of locally-scoped entity-centric
functions and the interactive inference algorithm for grounding the abstract entity variables in raw
visual observations without any supervision on object identity. Empirically, we find that OP3 achieves
about three times greater accuracy than state of the art video prediction models solving novel single
and multi-step block stacking tasks.

2 Related Work
Representation learning for visual model-based reinforcement learning: Prior works have pro-
posed learning video prediction models [4–7] to improve exploration [8] and planning [9] in rein-
forcement learning. However, such works and others [10–13] that represent the scene with a single
representation vector may be susceptible to the binding problem [14, 15] and must rely on data
to learn that the same object in two different contexts can be modeled similarly. But processing a
disentangled latent state with a single function [16–20] or processing each disentangled factor with a
different function [6, 21] (1) assumes a fixed number of entities that cannot be dynamically adjusted
for generalizing to more objects than in training and (2) has no constraints to enforce that multiple
instances of the same entity in the scene be modeled in the same way. For generalization, often the
particular arrangement of objects in a scene does not matter so much as what is constant across scenes
– properties of individual objects and inter-object relationships – which the inductive biases of these
prior works do not capture. The entity abstraction in OP3 enforces symmetric processing of entity
representations, thereby overcoming the limitations of these prior works.

Unsupervised grounding of abstract entity variables in concrete objects: Prior works that model
entities and their interactions often pre-specify the identity of the entities [22–28], provide additional

2

supervision [29–32], or provide additional specification such as segmentations [33], crops [34], or a
simulator [35, 36]. Those that do not assume such additional information often factorize the entire
scene into pixel-level entities [37–39], which do not model objects as coherent wholes. None of
these works solve the problem of grounding the entities in raw observation, which is crucial for
autonomous learning and interaction. OP3 builds upon recently proposed ideas in grounding entity
representations via inference on a symmetrically factorized generative model of static [3, 14, 40]
and dynamic [41] scenes, whose advantage over other methods for grounding [42–45] is the ability
to refine the grounding with new information. In contrast to other methods for binding in neural
networks [46–49], formulating inference as a mechanism for variable binding allows us to model
uncertainty in the value of the variables.

3 Problem Formulation
Let x∗ denote a physical scene and h∗1:K denote the objects in the scene. Let X and A be random
variables for the image observation of the scene x∗ and the agent’s actions respectively. In contrast
to prior works [10] that use a single latent variable to represent the state of the scene, we use a set
of latent random variables H1:K to represent the state of the objects h∗1:K . We use the term object
to refer to h∗k, which is part of the physical world, and the term entity to refer to Hk, which is part
of our model of the physical world. The generative distribution of observations X(0:T) and latent
entities H(0:T)

1:K from taking T actions a(0:T−1) is modeled as:
p
(
X(0:T), H

(0:T)
1:K

∣∣∣ a(0:T−1)
)
= p

(
H

(0)
1:K

) T∏
t=1

p
(
H

(t)
1:K

∣∣∣ H(t−1)
1:K , a(t−1)

) T∏
t=0

p
(
X(t)

∣∣∣ H(t)
1:K

)
(1)

where p(X(t) |H(t)
1:K) and p(H(t)

1:K |H
(t−1)
1:K , A(t−1)) are the observation and dynamics distribution

respectively shared across all timesteps t. Our goal is to build a model that, from simply observing raw
observations of random interactions, can generalize to solve novel compositional object manipulation
problems that the learner was never trained to do, such as building various block towers during test
time from only training to predict how blocks fall during training time.

When all tasks follow the same dynamics we can achieve such generalization with a planning al-
gorithm if given a sequence of actions we could compute p(X(T+1:T+d) |X(0:T), A(0:T+d−1)),
the posterior predictive distribution of observations d steps into the future. Approximat-
ing this predictive distribution can be cast as a variational inference problem (Appdx. 6.2)
for learning the parameters of an approximate observation distribution G(X(t) |H(t)

1:K), dy-
namics distribution D(H

(t)
1:K |H

(t−1)
1:K , A(t−1)), and a time-factorized recognition distribution

Q(H
(t)
1:K |H

(t−1)
1:K , X(t), A(t−1)) that maximize the evidence lower bound (ELBO), given by L =∑T

t=0 L
(t)
r − L(t)

c , where
Ltr = E

ht
1:K
∼q(Ht

1:K
|h0:t−1

1:K
,x1:t,a0:t−1)

[
logG

(
xt |ht1:K

)]
Ltc = E

ht−1
1:K
∼q(Ht−1

1:K
|h1:t−2

1:K
,x1:t−1,a0:t−2)

[
DKL

(
Q
(
Ht

1:K |ht−1
1:K , x

t, at−1) ||D (Ht
1:K |ht−1

1:K , a
t−1))] .

The ELBO pushes Q to produce states of the entities H1:K that contain information useful for not
only reconstructing the observations via G in L(t)

r but also for predicting the entities’ future states via
D in L(t)

c . Sec. 4 will next offer our method for incorporating entity abstraction into modeling the
generative distribution and optimizing the ELBO.

4 Object-Centric Perception, Prediction, and Planning (OP3)
The entity abstraction is derived from an assumption about symmetry: that the problem of modeling
a dynamic scene of multiple entities can be reduced to the problem of (1) modeling a single entity
and its interactions with an entity-centric function and (2) applying this function to every entity in the
scene. Our choice to represent a scene as a set of entities exposes an avenue for directly encoding such
a prior about symmetry that would otherwise not be straightforward with a global state representation.

As shown in Fig. 2, a function F that respects the entity abstraction requires two ingredients. The first
ingredient (Sec. 4.1) is that F (H1:K) is expressed in part as the higher-order operation map(f,H1:K)
that broadcasts the same entity-centric function f(Hk) to every entity variable Hk. This yields
the benefit of automatically transferring learned knowledge for modeling an individual entity to all
entities in the scene rather than learn such symmetry from data. As f is a function that takes in a
single generic entity variable Hk as argument, the second ingredient (Sec. 4.2) is a mechanism that
binds information from the raw observation X about a particular object h∗k to the variable Hk.

3

Figure 4: The dynamics model D models the time evolution of every object by symmetrically applying the
function d to each object. For a given object, d models the individual dynamics of that object (do), embeds the
action vector (da), computes the action’s effect on that object (dao), computes each of the other objects’ effect
on that object (doo), and aggregates these effects together (dcomb).

4.1 Entity Abstraction in the Observation and Dynamics Models

The functions of interest in model-based RL are the observation and dynamics models G and D with
which we seek to approximate the data-generating distribution in equation 1.

Figure 3: (a) The observation model G models an
observation image as a composition of sub-images
weighted by segmentation masks. The shades of
gray in the masks indicate the depth δ from the
camera of the object that the sub-image depicts.
(b) The graphical model of the generative model
of observations, where k indexes the entity, and
i, j indexes the pixel. Z is the indicator variable
that signifies whether an object’s depth at a pixel
is the closest to the camera.

Observation Model: The observation model
G(X |H1:K) approximates the distribution
p(X |H1:K), which models how the observation X
is caused by the combination of entities H1:K . We
enforce the entity abstraction in G by applying the
same entity-centric function g(X |Hk) to each entity
Hk, which we can implement using a mixture model
at each pixel (i, j):

p
(
X(ij)

∣∣H1:K

)
=

K∑
k=1

m(ij) (Hk) · g
(
X(ij) |Hk

)
,

(2)
where g computes the mixture components that
model how each individual entity Hk is indepen-
dently generated, combined via mixture weights m
that model the entities’ relative depth from the cam-
era, the derivation of which is in Appdx. 6.1.1.

Dynamics Model: The dynamics model
D(H ′1:K |H1:K , A) approximates the distribu-
tion p(H ′1:K |H1:K , A), which models how an
action A intervenes on the entities H1:K to produce
their future values H ′1:K . We enforce the entity
abstraction in D by applying the same entity-centric
function d(H ′k |Hk, H[6=k], A) to each entity Hk,
which reduces the problem of modeling how an action affects a scene with a combinatorially large
space of object configurations to the problem of simply modeling how an action affects a single
generic entity Hk and its interactions with the list of other entities H[6=k]. Modeling the action as an
finer-grained intervention on a single entity rather than the entire scene is a benefit of using local
representations of entities rather than global representations of scenes.

However, at this point we still have to model the combinatorially large space of interactions that
a single entity could participate in. Therefore, we can further enforce the entity abstraction on d
by applying the same pairwise function doo(Hk, Hi) to each entity pair (Hk, Hi), for i ∈ [6= k].
Omitting the action to reduce clutter (the full form is written in Appdx. 6.1.2), the structure of the D
therefore follows this form:

D
(
H ′1:K

∣∣H1:K

)
=

K∏
k=1

d
(
H ′k

∣∣∣Hk, H interact
k

)
, where H interact

k =

K∑
i 6=k

doo (Hi, Hk) . (3)

The entity abstraction therefore provides the flexibility to scale to modeling a variable number of
objects by solely learning a function d that operates on a single generic entity and a function doo that
operates on a single generic entity pair, both of which can be re-used for across all entity instances.
4.2 Interactive Inference for Binding Object Properties to Latent Variables
For the observation and dynamics models to operate from raw pixels hinges on the ability to bind the
properties of specific physical objects h∗1:K to the entity variables H1:K . For latent variable models,

4

we frame this variable binding problem as an inference problem: binding information about h∗1:K to
H1:K can be cast as a problem of inferring the parameters of p(H(0:T) |x(0:T), a(0:T−1)), the posterior
distribution ofH1:K given a sequence of interactions. Maximizing the ELBO in Sec. 3 offers a method
for learning the parameters of the observation and dynamics models while simultaneously learning
an approximation to the posterior q(H(0:T) |x(0:T), a(0:T−1)) =

∏T
t=0 Q(H

(t)
1:K |H

(t−1)
1:K , x(t), a(t)),

which we have chosen to factorize into a per-timestep recognition distribution Q shared across
timesteps. We also choose to enforce the entity abstraction on the process that computes the
recognition distribution Q by decomposing it into a recognition distribution q applied to each entity:

Q
(
H

(t)
1:K |h

(t−1)
1:K , x(t), a(t)

)
=

K∏
k=1

q
(
H

(t)
k |h

(t−1)
k , x(t), a(t)

)
. (4)

Whereas a neural network encoder is often used to approximate the posterior [10, 19, 50], a forward
pass that computes q in parallel for each entity is insufficient to break the symmetry for dividing
responsibility of modeling different objects among the entity variables [51] because the entities do
not have the opportunity to communicate about which part of the scene they are representing.

We therefore adopt an iterative inference approach [1] to compute the recognition distribution Q,
which has been shown to break symmetry among modeling objects in static scenes [3]. Iterative
inference computes the recognition distribution via a procedure, rather than a single forward pass
of an encoder, that iteratively refines an initial guess for the posterior parameters λ1:K by using
gradients from how well the generative model is able to predict the observation based on the current
posterior estimate. The initial guess provides the noise to break the symmetry.

For scenes where position and color are enough for disambiguating objects, a static image may
be sufficient for inferring q. However, in interactive environments disambiguating objects is more
underconstrained because what constitutes an object depends on the goals of the agent. We therefore
incorporate actions into the amortized varitional filtering framework [2] to develop an interactive
inference algorithm (Appdx. 6.3.1 and Fig. 5) that uses temporal continuity and interactive feedback
to disambiguate objects. Another benefit of enforcing entity abstraction is that preserving temporal
consistency on entities comes for free: information about each object remains bound to its respective
Hk through time, mixing with information about other entities only through explicitly defined avenues,
such as in the dynamics model.

4.3 Training at Different Timescales

The variational parameters λ1:K are the interface through which the neural networks fg, fd, fq
that output the distribution parameters of G, D, and Q communicate. For a particular dynamic
scene, the execution of interactive inference optimizes the variational parameters λ1:K . Across
scene instances, we train the weights of fg, fd, fq by backpropagating the ELBO through the entire
inference procedure, spanning multiple timesteps. OP3 thus learns at three different timescales: the
variational parameters learn (1) across M steps of inference within a single timestep and (2) across T
timesteps within a scene instance, and the network weights learn (3) across different scene instances.

Beyond next-step prediction, we can directly train to compute the posterior predictive distribu-
tion p(X(T+1:T+d) |x(0:T), a(0:T+d)) by sampling from the approximate posterior of H(T)

1:K with
Q, rolling out the dynamics model D in latent space from these samples with a sequence of d
actions, and predicting the observation X(T+d) with the observation model G. This approach to
action-conditioned video prediction predicts future raw observations directly from raw observations
and actions, but with a bottleneck of K time-persistent entity-variables with which the dynamics
model D performs symbolic relational computation.

4.4 Object-Centric Planning

OP3 rollouts, computed as the posterior predictive distribution, can be integrated into the standard
visual model-predictive control [9] framework. Since interactive inference grounds the entities H1:K

in the actual objects h∗1:K depicted in the raw observation, this grounding essentially gives OP3
access to a pointer to each object, enabling the rollouts to be in the space of entities and their relations.
These pointers enable OP3 to not merely predict in the space of entities, but give OP3 access to
an object-centric action space: for example, instead of being restricted to the standard (pick xy,
place xy) action space common to many manipulation tasks, which often requires biased picking
with a scripted policy [52, 53], these pointers enable us to compute a mapping (Appdx. 6.5.2) between

5

Figure 5: Amortized interactive inference alternates between refinement (pink) and dynamics (orange) steps,
iteratively updating the belief of λ1:K over time. λ̂ corresponds to the output of the dynamics network, which
serves as the initial estimate of λ that is subsequently refined by fG and fQ . O denotes the feedback used in the
refinement process, which includes gradient information and auxiliary inputs (Appdx. 6.3.1).

entity id and pick xy, allowing OP3 to automatically use a (entity id, place xy) action
space without needing a scripted policy.

4.5 Generalization to Various Tasks
We consider tasks defined in the same environment with the same physical laws that govern appearance
and dynamics. Tasks are differentiated by goals, in particular goal configurations of objects. Building
good cost functions for real world tasks is generally difficult [54] because the underlying state of
the environment is always unobserved and can only be modeled through modeling observations.
However, by representing the environment state as the state of its entities, we may obtain finer-grained
goal-specification without the need for manual annotations [55]. Having rolled out OP3 to a particular
timestep, we construct a cost function to compare the predicted entity states H(P)

1:K with the entity
states H(G)

1:K inferred from a goal image by considering pairwise distances between the entities,
another example of enforcing the entity abstraction. Letting S′ and S denote the set of goal and
predicted entities, we define the form of the cost function via a composition of the task specific
distance function c operating on entity-pairs:

C
(
H

(G)
1:K , H

(P)
1:K

)
=
∑
a∈S′

min
b∈S

c
(
H(G)
a , H

(P)
b

)
, (5)

in which we pair each goal entity with the closest predicted entity and sum over the costs of these
pairs. Assuming a single action suffices to move an object to its desired goal position, we can greedily
plan each timestep by defining the cost to be mina∈S′,b∈S c(H

(G)
a , H

(P)
b), the pair with minimum

distance, and removing the corresponding goal entity from further consideration for future planning.

5 Experiments

Our experiments aim to study the various ways in which entity abstraction improves generalization,
planning, and modeling. Sec. 5.1 shows that from only training to predict how objects fall, OP3
generalizes to solve various novel block stacking tasks with three times better accuracy than a state-
of-the-art video prediction model. Sec. 5.2 shows that OP3 can plan for multiple steps in a difficult
multi-object environment. Sec. 5.3 shows that OP3 learns to ground its abstract entities in objects
from real world videos.

5.1 Combinatorial Generalization without Object Supervision

We first investigate how well OP3 can learn object-based representations without additional ob-
ject supervision, as well as how well OP3’s factorized representation can enable combinatorial
generalization for scenes with many objects.
Domain: In the MuJoCo [56] block stacking task introduced by Janner et al. [33] for the O2P2
model, a block is raised in the air and the model must predict the steady-state effects of dropping the
block on a surface with multiple objects, which implicitly requires modeling the effects of gravity and
collisions. The agent is never trained to stack blocks, but is tested on a suite of tasks where it must
construct block tower specified by a goal image. Janner et al. [33] showed that an object-centric model
with access to ground truth object segmentations can solve these tasks with about 76% accuracy. We
now consider whether OP3 can do better, but without any supervision on object identity.

6

Figure 6: Respective results of our method in compari-
son to prior work. OP3 outperforms O2P2 even though
it does not have access to any object segmentations.

SAVP O2P2 OP3 (ours)

24% 76% 82%

Table 1: Accuracy (%) of block tower builds by the
SAVP baseline, the O2P2 oracle, and our approach.
O2P2 uses image segmentations whereas OP3 uses
only raw images as input.

Blocks SAVP OP3 (xy) OP3 (entity)

1 54% 73% 91%
2 28% 55% 80%
3 28% 41% 55%

Table 2: Accuracy (%) of multi-step planning for build-
ing block towers. (xy) means (pick xy, place xy)
action space while (entity) means (entity id,
place xy) action space.

Setup: We train OP3 on the same dataset and evaluate on the same goal images as Janner et al.
[33]. While the training set contains up to five objects, the test set contains up to nine objects, which
are placed in specific structures (bridge, pyramid, etc.) not seen during training. The actions are
optimized using the cross-entropy method (CEM) [57], with each sampled action evaluated by the
greedy cost function described in Sec. 4.5. Accuracy is evaluated using the metric defined by Janner
et al. [33], which checks that all blocks are within some threshold error of the goal.
Results: The two baselines, SAVP [6] and O2P2, represent the state-of-the-art in video prediction
and symmetric object-centric planning methods, respectively. SAVP models objects with a fixed
number of convolutional filters and does not process entities symmetrically. O2P2 does process
entities symmetrically but has access to ground truth object segmentations. As shown in Table 1, OP3
achieves better accuracy than O2P2, even without any ground truth supervision on object identity.
OP3 achieves three times the accuracy of SAVP, which suggests that symmetric modeling of entities
is enables the flexibility to transfer knowledge of dynamics of a single object to novel scenes with
different configurations heights, color combinations, and numbers of objects than those from the
training distribution. Fig. 11 and Fig. 10 in the Appendix show that, by grounding its entities in
objects of the scene through inference, OP3’s predictions isolates only one object at a time without
affecting the predictions of other objects.

5.2 Multi-Step Planning

The goal of our second experiment is to understand how well OP3 can perform multi-step planning.
The task in the previous section can be performed with a greedy planning algorithm: each block
placement can be selected to maximally reduce the difference between the current and goal scene. In
this next experiment, we modify the block stacking to require our model to reason over temporally
extended action sequences on objects already present in the scene, by changing the action space to
represent a picking and dropping location.

Goals are specified with a goal image, and the initial scene contains all of the blocks needed to build
the desired structure. This task is more difficult because the agent may have to move blocks out of
the way before placing other ones which would require multi-step planning. Furthermore, an action
only successfully picks up a block if it intersects with the block’s outline, which makes searching
through the combinatorial space of plans a challenge. As stated in Sec. 4.4, having a pointer to
each object enables OP3 to plan in the space of entities. We compare two different action spaces
(pick xy, place xy) and (entity id, place xy) to understand how automatically filtering
for pick locations at actual locations of objects enables better efficiency and performance in planning.
Details for determining the pick xy from entity id are in the appendix.
Results: We compare with SAVP, which uses the (pick xy, place xy) action space. With this
standard action space (Table 2) OP3 achieves between 1.5-2 times the accuracy of SAVP. This
performance gap increases to 2-3 times the accuracy when OP3 uses the (entity id, place xy)
action space. The low performance of SAVP with only two blocks highlights the difficulty of such
combinatorial tasks for model-based RL methods, and highlights the both the generalization and
localization benefits of a model with entity abstraction. Fig. 7 shows that with the same number
of planning steps, SAVP is unable to find good enough plans to construct the goal configuration,
whereas OP3 is able to plan more efficiently, suggesting that OP3 may be a more effective model

7

than SAVP in modeling combinatorial scenes. Fig. 8 shows the execution of interactive inference
during training, where OP3 alternates between four refinement steps and one prediction step. Notice
that OP3 infers entity representations that decompose the scene into coherent objects and that entities
that do not model objects model the background. Notice also in the last column (t = 2) that OP3
predicts the appearance of the green block even though the green block was partially occluded in the
previous timestep, which is expected because the latent entity variables in OP3 persist through time.

Figure 7: End result of multi-step planning.
Figure 8: Visualization of multi-step planning. Blue
boxes correspond to refinement steps within the same
timestep while orange boxes correspond to predicting
the future timestep.

5.3 Real World Evaluation

Figure 9: Qualitative results on learning object representations on
real world data, showing learned object masks for IODINE and our
method. OP3 initially segments the arm and object in the same
mask (a), then separates them out after incorporating actions (b).
IODINE initially segments multiple objects with the same mask (c)
and also does not have temporal consistency (d).

The previous tasks used simulated en-
vironments with monochromatic ob-
jects. Now we study how well OP3
scales to real world data with cluttered
scenes, object ambiguity, and occlu-
sions. We evaluate OP3 on the dataset
from Ebert et al. [58] which contains
videos of a robotic arm moving cloths
and other deformable and multipart
objects with varying textures.

We evaluate qualitative performance
by visualizing the object segmenta-
tions and compare against vanilla IO-
DINE, which does not incorporate
a interaction-based dynamics model
into the inference process. Fig. 9 high-
lights the strength of OP3 in preserv-
ing temporal continuity and disambiguating objects in real world scenes. While IODINE can
disambiguate monochromatic objects in static images, we observe that it struggles to do more than
just color segmentation on more complicated images where movement is required to disambiguate
objects. In contrast, whereas OP3 also initially performed color segmentation by grouping the towel,
arm, and dark container edges together, by observing the effects of moving the arm it separates these
entities into different groups.

6 Discussion
In the physical world, objects can be viewed as variables that are symmetrically processed by the
same physical laws. Modeling such entities as an abstraction on the state is a modeling choice, in the
same way that rewards are an abstraction on the state that indicates performance, that actions are an
abstraction on the state that indicates avenues for intervention. As we have shown with the various
generalization, planning, and modeling benefits of OP3 in various novel compositional multi-object
tasks, abstraction may provide benefit in grouping shared structure in ways that can be modeled
generically rather specifically for each instance. What often makes abstraction difficult, especially
that which enables symbolic computation like the relational computation OP3 performs, is not so
much the lossiness of abstraction but the inability to continuously update the abstract representation
with more raw data. Framing abstract variables as random variables in a graphical model whose
posterior can be inferred and refined over time from raw data using neural networks, as OP3 does,
can provide a potential bridge between the symbolic world and the noisy high dimensional physical
world, opening a path to scaling robotic learning to more combinatorially complex tasks.

8

Acknowledgments

The authors would like to thank the anonymous workshop reviewers for their helpful feedback and
comments. The authors would also like to thank Sjoerd van Steenkiste, Nalini Singh and Marvin
Zhang for helpful discussions on the graphical model, Klaus Greff for help in implementing IODINE,
Tom Griffiths, Karl Persch, and Oleg Rybkin for feedback on earlier drafts, Joe Marino for discussions
on iterative inference, and Sam Toyer, Anirudh Goyal, and Peter Battaglia for insightful discussions.
This research was supported in part by the National Science Foundation under IIS-1651843, IIS-
1700697, and IIS-1700696, the Office of Naval Research, ARL DCIST CRA W911NF-17-2-0181,
DARPA, Berkeley DeepDrive, Google, Amazon, and NVIDIA.

References
[1] J. Marino, Y. Yue, and S. Mandt. Iterative amortized inference. arXiv:1807.09356, 2018.
[2] J. Marino, M. Cvitkovic, and Y. Yue. A general method for amortizing variational filtering. In Advances in Neural Information Processing

Systems, pages 7857–7868, 2018.
[3] K. Greff, R. L. Kaufmann, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey, M. Botvinick, and A. Lerchner. Multi-object

representation learning with iterative variational inference. arXiv:1903.00450, 2019.
[4] N. Wichers, R. Villegas, D. Erhan, and H. Lee. Hierarchical long-term video prediction without supervision. arXiv:1806.04768, 2018.
[5] E. L. Denton et al. Unsupervised learning of disentangled representations from video. In Advances in neural information processing

systems, pages 4414–4423, 2017.
[6] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine. Stochastic adversarial video prediction. arXiv:1804.01523, 2018.
[7] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In Advances in neural

information processing systems, pages 64–72, 2016.
[8] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction using deep networks in atari games. In Advances

in neural information processing systems, pages 2863–2871, 2015.
[9] C. Finn and S. Levine. Deep visual foresight for planning robot motion. In Robotics and Automation (ICRA), 2017 IEEE International

Conference on, pages 2786–2793. IEEE, 2017.
[10] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent dynamics for planning from pixels.

arXiv:1811.04551, 2018.
[11] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine. Solar: Deep structured latent representations for model-based

reinforcement learning. arXiv:1808.09105, 2018.
[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

[13] J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and action in minecraft. arXiv:1605.09128, 2016.
[14] K. Greff, R. K. Srivastava, and J. Schmidhuber. Binding via reconstruction clustering. arXiv:1511.06418, 2015.
[15] F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical report, CORNELL AERONAU-

TICAL LAB INC BUFFALO NY, 1961.
[16] W. F. Whitney, M. Chang, T. Kulkarni, and J. B. Tenenbaum. Understanding visual concepts with continuation learning.

arXiv:1602.06822, 2016.
[17] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable representation learning by information

maximizing generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2172–2180, 2016.
[18] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics network. In Advances in Neural

Information Processing Systems, pages 2539–2547, 2015.
[19] T. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and V. Mnih. Unsupervised learning of object keypoints

for perception and control. arXiv:1906.11883, 2019.
[20] V. Goel, J. Weng, and P. Poupart. Unsupervised video object segmentation for deep reinforcement learning. arXiv:1805.07780, 2018.
[21] Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Unsupervised discovery of parts, structure, and dynamics.

arXiv:1903.05136, 2019.
[22] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based approach to learning physical dynamics.

arXiv:1612.00341, 2016.
[23] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for learning about objects, relations and physics. In Advances

in Neural Information Processing Systems, pages 4502–4510, 2016.
[24] J. B. Hamrick, A. J. Ballard, R. Pascanu, O. Vinyals, N. Heess, and P. W. Battaglia. Metacontrol for adaptive imagination-based

optimization. arXiv:1705.02670, 2017.
[25] M. Janner, K. Narasimhan, and R. Barzilay. Representation learning for grounded spatial reasoning. Transactions of the Association for

Computational Linguistics, 6:49–61, 2018.
[26] K. Narasimhan, R. Barzilay, and T. Jaakkola. Grounding language for transfer in deep reinforcement learning. Journal of Artificial

Intelligence Research, 63:849–874, 2018.
[27] V. Bapst, A. Sanchez-Gonzalez, C. Doersch, K. L. Stachenfeld, P. Kohli, P. W. Battaglia, and J. B. Hamrick. Structured agents for

physical construction. arXiv:1904.03177, 2010.
[28] A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez, and L. P. Kaelbling. Combining physical simulators and object-

based networks for control. arXiv:1904.06580, 2019.
[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.
[30] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision,

pages 2961–2969, 2017.
[31] D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell. Deep object centric policies for autonomous driving. arXiv:1811.05432, 2018.

9

[32] W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi. Visual semantic navigation using scene priors. arXiv:1810.06543, 2018.
[33] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu. Reasoning about physical interactions with object-oriented

prediction and planning. arXiv:1812.10972, 2018.
[34] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of physics for playing billiards. arXiv:1511.07404,

2015.
[35] J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum. Learning to see physics via visual de-animation. In Advances in Neural

Information Processing Systems, pages 153–164, 2017.
[36] K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou, N. Dorfman, S. Sidor, S. Phoenix, and D. George. Schema

networks: Zero-shot transfer with a generative causal model of intuitive physics. arXiv:1706.04317, 2017.
[37] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap. A simple neural network module for

relational reasoning. arXiv:1706.01427, 2017.
[38] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart, et al. Deep

reinforcement learning with relational inductive biases. 2018.
[39] Y. Du and K. Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning. arXiv:1905.04819, 2019.
[40] K. Greff, S. van Steenkiste, and J. Schmidhuber. Neural expectation maximization. 2017.
[41] S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber. Relational neural expectation maximization: Unsupervised discovery of

objects and their interactions. arXiv:1802.10353, 2018.
[42] G. Zhu, J. Wang, Z. Ren, and C. Zhang. Object-oriented dynamics learning through multi-level abstraction. arXiv:1904.07482, 2019.
[43] S. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, G. E. Hinton, et al. Attend, infer, repeat: Fast scene understanding with

generative models. In Advances in Neural Information Processing Systems, pages 3225–3233, 2016.
[44] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerchner. Monet: Unsupervised scene decomposition

and representation. arXiv:1901.11390, 2019.
[45] A. R. Kosiorek, H. Kim, I. Posner, and Y. W. Teh. Sequential attend, infer, repeat: Generative modelling of moving objects.

arXiv:1806.01794, 2018.
[46] S. D. Levy and R. Gayler. Vector symbolic architectures: A new building material for artificial general intelligence. In Conference on

Artificial General Intelligence, 2008.
[47] P. Kanerva. Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random

vectors. Cognitive computation, 2009.
[48] P. Smolensky. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artificial intelli-

gence, 46(1-2):159–216, 1990.
[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In

Advances in neural information processing systems, pages 5998–6008, 2017.
[50] Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Modeling parts, structure, and system dynamics via

predictive learning. 2018.
[51] Y. Zhang, J. Hare, and P.-B. Adam. Deep set prediction networks. arXiv:1906.06565, 2019.
[52] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination for robotic grasping with deep learning and

large-scale data collection. The International Journal of Robotics Research, 37(4-5):421–436, 2018.
[53] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt:

Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.
[54] J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events: A general framework for data-driven reward

definition. In Advances in Neural Information Processing Systems, pages 8538–8547, 2018.
[55] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based deep reinforcement learning for vision-based

robotic control. arXiv:1812.00568, 2018.
[56] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.
[57] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method. In Information Science and Statistics, 2004.
[58] F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn. Robustness via retrying: Closed-loop robotic manipulation with self-supervised

learning. arXiv:1810.03043, 2018.
[59] C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.
[60] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.
[61] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. arXiv

preprint arXiv:1401.4082, 2014.
[62] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural computation, 1(2):

270–280, 1989.
[63] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.
[64] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem. ArXiv, abs/1211.5063, 2012.

10

Supplementary Material

6.1 Generative Model

Here we describe in detail the functional form of the observation and dynamics models.

6.1.1 Observation Model

The observation model G models how the objects H1:K cause the image observation X ∈ RN×M .
Each object Hk is rendered independently as the sub-image Ik and the resulting K sub-images are
combined to form the final image observation X . To combine the sub-images, each pixel Ik(ij) in
each sub-image is assigned a depth δk(ij) that specifies the distance of object k from the camera at
coordinate (ij). of the image plane. Thus the pixel X(ij) takes on the value of its corresponding pixel
Ik(ij) in the sub-image Ik if object k is closest to the camera than the other objects, such that

X(ij) =

K∑
k=1

Zk(ij) · Ik(ij), (6)

where Zk(ij) is the indicator random variable 1[k = argmink∈K δk(ij)], allowing us to intuitively
interpret Zk as segmentation masks and Ik as color maps. In reality we do not directly observe the
depth values, so we must construct a probabilistic model to model our uncertainty:

p (X|H1:K) =

N,M∏
i,j=1

K∑
k=1

m(ij)(Hk) · g
(
X(ij) |Hk

)
, (7)

where every pixel (ij) is modeled through a set of mixture components
g
(
X(ij) |Hk

)
:= p

(
Xij |Zk(ij) = 1, Hk

)
that model how pixels of the individual sub-images Ik are

generated, as well as through the mixture weights mij(Hk) := p
(
Zk(ij) = 1|Hk

)
that model which

point of each object is closest to the camera.

6.1.2 Dynamics Model

The dynamics model D models how each object Hk is affected by action A and the other objects
H[6=k]. It applies the same function d(H ′k |Hk, H[6=k], A) to each state, composed of several functions
illustrated and described in Fig. 4:

H̃k = do(Hk) Ã = da(A
t) H̃act

k = dao(H̃kÃ)

H interact
k =

K∑
i6=k

doo(H̃i
act
, H̃k

act
) H

′
k = dcomb(H̃

act
k , H

interact
k),

where for a given object k, dao(H̃kÃ) := dact-eff(H̃k, Ã) · dact-att(H̃k, Ã) computes how (dact-eff)

and to what degree (dact-att) an action affects the object and doo(H̃i
act
, H̃k

act
) := dobj-eff(H̃

act
i , H̃act

k) ·
dobj-att(H̃

act
i , H̃act

k) computes how (fobj-eff) and to what degree (dobj-att) other objects affect that object.
dobj-eff and dobj-att are shared across all object pairs. The other functions are shared across all objects.

6.2 Problem Formulation

Here we provide a derivation of the evidence lower bound and the posterior predictive distribution for
dynamic latent variable model with multiple latent states.

11

6.2.1 Evidence Lower Bound

We begin with the log probability of the observations X(1:T) conditioned on a sequence of actions
a(0:T−1):

log p
(
X(0:T)

∣∣∣ a(0:T−1)
)
= log

∫
h
(0:T)
1:K

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)
dh

(0:T)
1:K .

= log

∫
h
(0:T)
1:K

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
) q (h(0:T)

1:K

∣∣∣ ·)
q
(
h
(0:T)
1:K

∣∣∣ ·) dh(0:T)
1:K .

= logE
h
(0:T)
1:K

∼q
(
h
(0:T)
1:K

∣∣∣ ·)
p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

h
(0:T)
1:K ∼ q

(
h
(0:T)
1:K

∣∣∣ ·)


≥ E
q
(
h
(0:T)
1:K

∣∣∣ ·) log
p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

q
(
h
(0:T)
1:K

∣∣∣ ·)
 . (8)

We have freedom to choose the approximating distribution q
(
H

(0:T)
1:K

∣∣∣ ·) so we choose it to be
conditioned on the past states and actions, factorized across time:

q
(
H(0:T)

∣∣∣x(0:T), a(0:T)
)
= q

(
H

(0)
1:K |x

(0)
) T∏
t=1

q
(
H

(t)
1:K

∣∣∣H(t−1)
1:K , x(t), a(t−1)

)
With this factorization, we can use linearity of expectation to decouple Equation 8 across timesteps:

Eq(H(0:T) | x(0:T),a(0:T)) log

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

q (H(0:T) |x(0:T), a(0:T))

 =

(t)∑
t=0

L(t)
r − L(t)

c ,

where at the first timestep

L(0)
r = E

h
(0)
1:K
∼q
(
H

(0)
1:K

∣∣∣X(0)
) [log p(X(0)

∣∣∣h(0)
1:K

)]
L(0)

c = DKL
(
q
(
H

(0)
1:K

∣∣∣X(0)
)
|| p
(
H

(0)
1:K

))
and at subsequent timesteps

L(t)
r = E

h
(t)
1:K
∼q
(
H

(t)
1:K
|h(0:t−1)

1:K
,X(0:t),a(0:t−1)

) [log p(X(t)
∣∣∣h(t)

1:K

)]
L(t)

c = E
h
(t−1)
1:K

∼q
(
H

(t−1)
1:K

|h(0:t−2)
1:K

,X(1:t−1),a(0:t−2)
) [DKL (q (H(t)

1:K

∣∣∣h(t−1)
1:K , X(t), a(t−1)

)
|| p
(
H

(t)
1:K

∣∣∣h(t−1)
1:K , a(t−1)

))]
.

By the Markov property, the marginal q(H(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)) is computed recursively as

E
h(t−1)∼q

(
H

(t−1)
1:K

|h(0:t−2)
1:K

,X(0:t−1),a(0:t−2)
) [q (H(t)

1:K

∣∣∣h(t−1)
1:K , X(t), a(t−1)

)]
whose base case is q

(
H(0) |X(0)

)
when t = 0.

Implementation: We approximate observation distribution p(X |H1:K) and the dynamics distri-
bution p(H ′1:K |H1:K , a) by learning the parameters of the observation model G and dynamics
model D respectively as outputs of neural networks. We approximate the recognition distribution
q(H

(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)) via an inference procedure that refines better estimates of the posterior

parameters, computed as an output of a neural network. To compute the expectation in the marginal
q(H

(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)), we follow standard practice in amortized variational inference by

approximating the expectation with a single sample of the sequence h(0:t−1)1:K by sequentially sampling
the latents for one timestep given latents from the previous timestep, and optimizing the ELBO via
stochastic gradient ascent [59–61].

12

6.2.2 Posterior Predictive Distribution

Section 6.2.1 described how we compute the distributions p(X |H1:K), p(H ′1:K |H1:K , a),
q(H

(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)), and q(H(0:T)

1:K |x(1:T), a(1:T)). Here we show that these distributions
can be used to approximate the predictive posterior distribution p(X(T+1:T+d) |x(0:T), a(0:T+d)) by
maximizing the following lower bound:

log p
(
X(T+1:T+d)

∣∣∣x(0:T), a(0:T+d)
)
=

∫
h
(0:T+d)
1:K

p
(
X(T+1:T+d), h

(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
)
dh

(0:T+d)
1:K

=

∫
h
(0:T+d)
1:K

p
(
X(T+1:T+d), h

(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
) q (h(0:T+d)

1:K

∣∣∣ ·)
q
(
h
(0:T+d)
1:K

∣∣∣ ·) dh(0:T+d)
1:K

= logE
h
(0:T+d)
1:K

∼q
(
h
(0:T+d)
1:K

∣∣∣ ·)
p
(
X(T+1:T+d), h

(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
)

q
(
h
(0:T+d)
1:K

∣∣∣ ·)


≥ E
h
(0:T+d)
1:K

∼q
(
h
(0:T+d)
1:K

∣∣∣ ·) log
p
(
X(T+1:T+d), h

(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
)

q
(
h
(0:T+d)
1:K

∣∣∣ ·)
 .

(9)

The numerator p(X(T+1:T+d), h
(0:T+d)
1:K |x(0:T), a(0:T+d)) can be decomposed into two terms, one

of which involving the posterior p(h(0:T+d)
1:K |x(0:T), a(0:T+d)):

p
(
X(T+1:T+d), h

(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
)
= p

(
X(T+1:T+d)

∣∣∣h(0:T+d)
1:K

)
p
(
h
(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
)
,

This allows Equation 9 to be broken up into two terms:

E
h
(0:T+d)
1:K

∼q
(
h
(0:T+d)
1:K

∣∣∣ ·) log p
(
X(T+1:T+d)

∣∣∣h(0:T+d)
1:K

)
−DKL

(
q
(
H

(0:T+d)
1:K

∣∣∣ ·) || p(H(0:T+d)
1:K

∣∣∣x(0:T), a(0:T+d)
))

Maximizing the second term, the negative KL-divergence between the variational distribution
q(h

(0:T+d)
1:K | ·) and the posterior p(h(0:T+d)

1:K |x(0:T), a(0:T+d)) is the same as maximizing the fol-
lowing lower bound:

E
h
(0:T)
1:K

∼q
(
h
(0:T)
1:K

∣∣∣ ·) log p
(
x(0:T)

∣∣∣h(0:T)
1:K , a(0:T−1)

)
−DKL

(
q
(
H

(0:T+d)
1:K

∣∣∣ ·) || p(H(0:T+d)
1:K

∣∣∣ a(0:T+d)
))

(10)
where the first term is due to the conditional independence between X(0:T) and the future states
H

(T+1:T+d)
1:K and actions A(T+1:T+d). Note that Equation 10 is not the same as the ELBO in

Equation 8 because the KL divergence term is with respect to distributions overH(0:T+d)
1:K , not H(0:T)

1:K .

We choose to express q
(
H

(0:T+d)
1:K

∣∣∣ ·) as conditioned on past states and actions, factorized across
time:

q
(
H(0:T+d)

∣∣∣x(0:T+d), a(0:T+d−1)
)
= q

(
H

(0)
1:K |x

(0)
) T+d∏
t=1

q
(
H

(t)
1:K

∣∣∣H(t−1)
1:K , x(t), a(t−1)

)
and thus we can maximize Equation 9 using the same techniques as maximizing Equation 8.

6.2.3 Optimization

Whereas approximating the ELBO in Equation 9 can be implemented by rolling out OP3 to predict
the next observation via teacher forcing [62], approximating the posterior predictive distribution in
Equation 9 can be implemented by rolling out the dynamics model d steps beyond the last observation
and using the observation model to predict the future observations.

6.3 Algorithms

This section provides details for the interactive inference algorithm 6.3.1, the training algorithm, and
the planning algorithm.

13

6.3.1 Interactive Inference

Algorithms 1 and 2 detail M steps of the interactive inference algorithm at timestep 0 and t ∈ [1, T]
respectively. Algorithm 1 is equivalent to the IODINE algorithm described [3]. Recalling that λ1:K
are the parameters for the distribution of the random variablesH1:K , we consider in this paper the case
where this distribution is an isotropic Gaussian (e.g. N (λk) where λk = (µk, σk)), although OP3
need not be restricted to the Gaussian distribution. The refinement network fq produces the parameters
for the distribution q(H

(t)
k |h

(t−1)
k , x(t), a(t)). The dynamics network fd produces the parameters

for the distribution d(H
(t)
k |h

(t−1)
k , h

(t−1)
[6=k] , a

(t)). To implement q, we repurpose the dynamics model

to transform h
(t−1)
k into the initial posterior estimate λ(0)k and then use fq to iteratively update this

parameter estimate. βk indicates the auxiliary inputs into the refinement network used in [3]. We
mark the major areas where the algorithm at timestep t differs from the algorithm at timestep 0 in
blue.

Algorithm 1 Interactive Inference: Timestep 0

1: Input: observation x(0)

2: Initialize: parameters λ(0,0)

3: for i = 0 to M − 1 do
4: Sample h(0,i)

k ∼ N
(
λ
(0,i)
k

)
for each entity k

5: Evaluate L(0,i) ≈ p
(
x(0) |h(0,i)

1:K

)
−DKL

(
N
(
λ
(0,i)
1:K

)
|| N (0, I)

)
6: Calculate∇λkL

(0,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k
8: Update λ(0,i+1)

k ← frefine

(
x(0),∇λL(0,i), λ(0,i), β

(0,i)
k

)
for each entity k

9: end for
10: return λ(0,M)

Algorithm 2 Interactive Inference: Timestep t

1: Input: observation x(t), action a(t), previous entity states h(t−1)
1:K

2: Predict λ(t,0)
k ← fd

(
h
(t−1)
k , h

(t−1)

[6=k] , a
(t)
)

3: for i = 0 to M − 1 do
4: Sample h(t,i)

k ∼ N
(
λ(t,i)

)
for each entity k

5: Evaluate L(t,i) ≈ logG
(
x(t) |h(t)

1:K

)
−DKL

(
N
(
λ
t,(i)
1:K

)
|| N

(
λ
(t,0)
1:K

))
6: Calculate∇λkL

(t,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k
8: Update λ(t,i+1)

k ← fq
(
x(t),∇λkL

(t,i), λ
(t,i)
k , β

(t,i)
k

)
for each entity k

9: end for
10: return λ(t,M)

6.3.2 Training

We can train the entire OP3 system end-to-end by backpropagating through the entire inference
procedure, using the ELBO at every timestep as a training signal for the parameters of G, D, Q in a
similar manner as [41]. However, the interactive inference algorithm can also be naturally be adapted
to predict rollouts by using the dynamics model to propagate the λ1:K for multiple steps, rather than
just the one step for predicting λ(t,0)1:K in line 2 of Algorithm 2. To train OP3 to rollout the dynamics
model for longer timescales, we use a curriculum that increases the prediction horizon throughout
training.

6.3.3 Cost Function

To compute the cost we use a distance function between hidden states, D(Ha, Hb). For the
first environment with single-step planning we use L2 distance of the corresponding subimages.

14

D(Ha, Hb) = L2(I(Ha), I(Hb)) where the masked sub-image of an object is the mask times
the pixel means I(Hk) = m(ij)(Hk) · g(X(ij) |Hk). For the second environment with multi-
step planning we a different distance function since the previous one may care more about if
a shape matches than if the color matches. We instead use a form of intersection over union
but that counts intersection if the mask aligns and pixel color values are close D(Ha, Hb) =

1 −
∑

i,j mij(Ha)>0.01 andmij(Hb)>0.01 and L2(g(Ha)(ij),g(Hb)(ij))<0.1∑
i,j mij(Ha)>0.01 ormij(Hb)>0.01 . We found this version to work

better since it will not give low cost to moving a wrong color block to the position of a different color
goal block.

6.4 Architecture and Hyperparameter Details

We use similar model architectures as in [3] and so have rewritten some details from their appendix
here. Differences include the dynamics model, inclusion of actions, and training procedure over
sequences of data. Like [10], we define our latent distribution of size R to be divided into a
deterministic component of size Rd and stochastic component of size Rs. We found that splitting the
latent state into a deterministic and stochastic component (as opposed to having a fully stocahstic
representation) was helpful for convergence. The posterior distribution p(h|x) is a diagonal Gaussian.
The output distribution p(x|h) is also a diagonal Gaussian with means µ and global scale σ = 0.1.
The decoder outputs the means µ and mask mk.

Training: All models are trained with the ADAM optimizer [63] with default parameters and a
learning rate of 0.0003. We use gradient clipping as in [64] where if the norm of global gradient
exceeds 5.0 then the gradient is scaled down to that norm.

Inputs: For all models, we use the following inputs to the refinement network, where LN means
Layernorm and SG means stop gradients. The following image-sized inputs are concatenated and fed
to the corresponding convolutional network:

Description Formula LN SG Ch.

image x 3
means µ 3
mask mk 1
mask-logits m̂k 1
mask posterior p(mk|x,) 1
gradient of means ∇

k
L X X 3

gradient of mask ∇mk
L X X 1

pixelwise likelihood p(x|h) X X 1
leave-one-out likelih. p(x|hi 6=k) X X 1
coordinate channels 2

total: 17

The posterior parameters h and their gradients are flat vectors, and we concatenate them with the
output of the convolutional part of the refinement network and use the result as input to the refinement
LSTM:

Description Formula LN SG

gradient of posterior ∇hk
L X X

posterior hk

6.4.1 Architecture

All models use the ELU activation function and the convolutional layers use a stride equal to 1 and
padding equal to 2 unless otherwise noted.

15

Observation Model Decoder
Type Size/Ch. Act. Func. Comment

Input: Hi Rs
Broadcast Rs+2 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 Linear RGB + Mask

Refinement Network
Type Size/Ch. Act. Func. Comment

MLP 128 Linear
LSTM 128 Tanh
Concat [Hi,∇Hi

] 2R
MLP 128 ELU
Avg. Pool R
Conv 3× 3 R ELU
Conv 3× 3 32 ELU
Conv 3× 3 32 ELU
Inputs 17

Dynamics Network: The dynamics network takes in a sampled state and outputs the parameters of
the posterior distribution. All models including the final layer uses ELU activations unless otherwise
stated. MLP(N) would denote a multilayer peceptron with a hidden layer of size N .

• fo: MLP(R) with input Ht
i of size R and output H̃i of size R.

• fa: MLP(R) with input at of size A and output ãt of size 32.

• fobj-action-eff: MLP(R) with inputs H̃i and ãt and output of size R.

• fobj-action-att: MLP(R) with inputs H̃i and ãt and output of size 1.

• Multiply outputs of fobj-action-eff and fobj-action-att to get output H̃i.

• fobj-obj-eff: MLP(2R) with inputs H̃i, H̃j each of size R and output H̃ij of size R.

• fobj-obj-att: MLP(2R) with inputs H̃i, H̃j each of size R and output Ãttij of size 1 with
sigmoid applied.

• Let H̃eff =
∑
j 6=i H̃ij ∗ Ãttij .

• fcomb: MLP(2R) with inputs H̃i, H̃eff each of size R and output H̃i of size R.

• fdet: MLP(R) with input H̃i and output Ht+1
det of size Rd.

• fsto,µ: MLP(R) with input H̃i and output Ht+1
sto of size Rs.

• fsto,σ: MLP(R) with input H̃i and output Ht+1
det of size Rs.

6.5 Experiment Details

6.5.1 Single-Step Block-Stacking

The training dataset has 60,000 trajectories each containing before and after images of size 64x64
from [33]. Before images are constructed with actions which consist of choosing a shape (cube,
rectangle, pyramid), color, and an (x, y, z) position and orientation for the block to be dropped. At
each time step, a block is dropped and the simulation runs until the block settles into a stable position.
The model takes in an image containing the block to be dropped and must predict the steady-state
effect. Models were trained on scenes with 1 to 5 blocks with K = 7 slots. CEM begins from a
uniform distribution on the first iteration, uses a population size of 1000 samples per iteration, and
uses 10% of the best samples to fit a Gaussian distribution for each successive iteration.

16

Figure 10: Qualitative results on building a structure. We see how our method is able to accurately and
consistently predict the outcome of the action image, successively capturing the effect of inertial dynamics
(gravity) and interactions with other objects.

Figure 11: We show a demonstration of a rollout. The first four columns show inference iterations on the single
input image, while the last column shows the predicted results using the dynamics module on the learnt hidden
states (top right image is not given as input and shows the true outcome). The bottom 5 rows show I(Hi) at
each iteration, demonstrating how the model is able to capture individual objects, and the dynamics afterwards.

6.5.2 Multi-Step Block-Stacking

The training dataset has 10,000 trajectories each from a separate environment with two different
colored blocks. Each trajectory contains five frames (64x64) of randomly picking and placing blocks.
We bias the dataset such that 30% of actions will pick up a block and place it somewhere randomly,
40% of actions will pick up a block and place it on top of a another random block, and 30% of
actions contain random pick and place locations. Models were trained with K = 4 slots. We optimize
actions using CEM but we optimize over multiple consecutive actions into the future executing the
sequence with lowest cost. For a goal with n blocks we plan n steps into the future, executing n
actions. We repeat this procedure 2n times or until the structure is complete. Accuracy is computed
as # blocks in correct position

goal blocks , where a correct position is based on a threshold of the distance error.

For MPC we use two difference action spaces:

Coordinate Pick Place: The normal action space involves choosing a pick (x,y) and place (x,y)
location.

17

Figure 12: Demonstration of our method on several goals. t=0 denotes the initial scene that must be reconfigured
to match the goal image. t = 1...5 show the executed action.

Entity Pick Place: A concern with the normal action space is that successful pick locations are
sparse (2%) given the current block size. Therefore, the probability of picking n blocks consecutively
becomes 0.02n which becomes improbable very fast if we just sample pick locations uniformly.
However, we create an action spaces that involves choosing one of the latent entities to move and
then a place (x, y) location. This allows us to easily pick blocks consecutively if we can successfully
map a latent entity id of a block to a corresponding successful pick location. In order to determine
the pick (x, y) from an entity id k, we sample coordinates uniformly over the pick (x, y) space
and then average these coordinates weighted by their attention coefficient on that latent:

pick xy|hk =

∑
x′,y′ p(hk|x, y) ∗ pick x’y’∑

x′,y′ p(hk|x′, y′)

where p(hk|x, y) are given by the attention coefficients produced by the dynamics model given hk
and the pick location (x, y) and x′, y′ are sampled from a uniform distribution.

6.5.3 Ablations

We perform ablations on the block stacking task from [33] examining components of our model.
Table 3 shows the effect of non-symmetrical models or cost functions. The ”Unfactorized Model”
and ”No Weight Sharing” follow b) and d) from Figure 2 and are unable to sufficiently generalize.
We additionally see that even with the same OP3 model, the mean-square-error unfactorized cost
function between the composite prediction and goal image significantly under performs our factorized
cost function.

No Weight Sharing Unfactorized Model Unfactorized Cost

0 % 0 % 5%
Table 3: Accuracy of ablations. The no weight sharing model did not converge during training.

18

	Introduction
	Related Work
	Problem Formulation
	Object-Centric Perception, Prediction, and Planning (OP3)
	Entity Abstraction in the Observation and Dynamics Models
	Interactive Inference for Binding Object Properties to Latent Variables
	Training at Different Timescales
	Object-Centric Planning
	Generalization to Various Tasks

	Experiments
	Combinatorial Generalization without Object Supervision
	Multi-Step Planning
	Real World Evaluation

	Discussion
	Generative Model
	Observation Model
	Dynamics Model

	Problem Formulation
	Evidence Lower Bound
	Posterior Predictive Distribution
	Optimization

	Algorithms
	Interactive Inference
	Training
	Cost Function

	Architecture and Hyperparameter Details
	Architecture

	Experiment Details
	Single-Step Block-Stacking
	Multi-Step Block-Stacking
	Ablations

