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Abstract: In order to function in unstructured environments, robots need the ability
to recognize unseen novel objects. We take a step in this direction by tackling the
problem of segmenting unseen object instances in tabletop environments. However,
the type of large-scale real-world dataset required for this task typically does not
exist for most robotic settings, which motivates the use of synthetic data. We
propose a novel method that separately leverages synthetic RGB and synthetic
depth for unseen object instance segmentation. Our method is comprised of two
stages where the first stage operates only on depth to produce rough initial masks,
and the second stage refines these masks with RGB. Surprisingly, our framework is
able to learn from synthetic RGB-D data where the RGB is non-photorealistic. To
train our method, we introduce a large-scale synthetic dataset of random objects on
tabletops. We show that our method, trained on this dataset, can produce sharp and
accurate masks, outperforming state-of-the-art methods on unseen object instance
segmentation. We also show that our method can segment unseen objects for robot
grasping. Code, models and video can be found at the project website!.

1 Introduction

For a robot to work in an unstructured environment, it must have the ability to recognize new objects
that have not been seen before by the robot. Assuming every object in the environment has been
modeled is infeasible and impractical. Recognizing unseen objects is a challenging perception task
since the robot needs to learn the concept of “objects” and generalize it to unseen objects. Building
such a robust object recognition module is valuable for robots interacting with objects, such as
performing different manipulation tasks. A common environment in which manipulation tasks take
place is on tabletops. Thus, in this paper, we approach this by focusing on the problem of unseen
object instance segmentation (UOIS), where the goal is to separately segment every arbitrary (and
potentially unseen) object instance, in tabletop environments.

In order to ensure the generalization capability of the module to recognize unseen objects, we need to
learn from data that contains large amounts of various objects. However, in many robot environments,
large-scale datasets with this property do not exist. Since collecting a large dataset with ground truth
annotations is expensive and time-consuming, it is appealing to utilize synthetic data for training,
such as using the ShapeNet repository which contains thousands of 3D shapes of different objects [1].
However, there exists a domain gap between synthetic data and real world data. Training directly on
synthetic data only usually does not work well in the real world [2].

Consequently, recent efforts in robot perception have been devoted to the problem of Sim2Real, where
the goal is to transfer capabilities learned in simulation to real world settings. For instance, some
works have used domain adaptation techniques to bridge the domain gap when unlabeled real data
is available [3, 4]. Domain randomization [5] was proposed to diversify the rendering of synthetic
data for training. These methods mainly use RGB as input, and while that is desirable since there is
evidence that models trained on (real world) RGB have been shown to produce sharp and accurate
masks [6], this complicates the Sim2Real problem because state-of-the-art simulators typically cannot
produce photo-realistic renderings. On the other hand, models trained with synthetic depth have been
shown to generalize reasonably well (without fine-tuning) for simple settings such as bin-picking
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[7, 8]. However, in more complex settings, noisy depth sensors can limit the application of such
methods. An ideal method would combine the generalization capability of training on synthetic depth
and the ability to produce sharp masks by training on RGB.

In this work, we investigate how to utilize synthetic RGB-D images for UOIS in tabletop environments.
We show that simply combining synthetic RGB images and synthetic depth images as inputs does not
generalize well to the real world. To tackle this problem, we propose a simple two-stage framework
that separately leverages the strengths of RGB and depth for UOIS. Our first stage is a Depth Seeding
Network (DSN) that operates only on depth to produce rough initial segmentation masks. Training
DSN with depth images allows for better generalization to the real world data. However, these initial
masks from DSN may contain false alarms or inaccurate object boundaries due to depth senor noise.
In these cases, utilizing the textures in RGB images can significantly help.

Thus, our second stage is a Region Refinement Network (RRN) that takes an initial mask of an object
from DSN and an RGB image as input and outputs a refined mask. Our surprising result is that,
conditioned on initial masks, our RRN can be trained on non-photorealistic synthetic RGB images
without any of the domain randomization or domain adaptation approaches of Sim2Real. We posit
that mask refinement is an easier problem than directly using RGB as input to produce instance masks.
We empirically show robust generalization across many different objects in cluttered real world data.
In fact, as we show in our experiments, our RRN works almost as well as if it were trained on real
data. Our framework, including the refinement stage, can produce sharp and accurate masks even
when the depth sensor reading is noisy. We show that it outperforms state-of-the-art methods trained
using any combination of RGB and depth as input, including Mask-RCNN [6].

To train our method, we introduce a synthetic dataset of tabletop objects in house environments. The
dataset consists of indoor scenes of random ShapeNet [1] objects on random tabletops. We use a
physics simulator [9] to generate the scenes and render depth and non-photorealistic RGB. Despite
this, training our proposed method on this dataset results in state-of-the-art results on the OCID
dataset [10] and the OSD dataset [11] introduced for UOIS.

This paper is organized as follows. After reviewing related work, we discuss our proposed method.
We then describe our generated synthetic dataset, followed by experimental results and a conclusion.

2 Related Works

Object Instance Segmentation. Object instance segmentation is the problem of segmenting every
object instance in an image. Many approaches for this problem involve top-down solutions that
combine segmentation with object proposals in the form of bounding boxes [6, 12]. However, when
the bounding boxes contain multiple objects (e.g. heavy clutter in robot manipulation setups), the
true segmentation mask is ambiguous and these methods struggle. More recently, a few methods
have investigated bottom-up methods which assign pixels to object instances [13, 14, 15]. Most of
these algorithms provide instance masks with category-level semantic labels, which do not generalize
to unseen objects in novel categories.

One approach to adapting object instance segmentation techniques to unseen objects is to employ
“class-agnostic” training, which treats all object classes as one foreground category. One family
of methods exploits motion cues with class-agnostic training in order to segment arbitrary moving
objects [16, 17]. Another family of methods are class-agnostic object proposal algorithms [18, 19, 20].
However, these methods will segment everything and require some post-processing method to select
the masks of interest. We also train our proposed method in a class-agnostic fashion, but instead
focus our notion of unseen objects in particular environments such as tabletop settings.

Sim2Real Perception. Training a model on synthetic RGB and directly applying it to real data
typically fails [2]. Many methods employ some level of rendering randomization [21, 22, 23, 5,
24, 25], including lighting conditions and textures. However, they typically assume specific object
instances and/or known object models. Another family of methods employ domain adaptation to
bridge the gap between simulated and real images [3, 4]. Algorithms trained on depth have been
shown to generalize reasonably well for simple settings [7, 8]. However, noisy depth sensors can
limit the application of such methods. Our proposed method is trained purely on (non-photorealistic)
synthetic RGB-D data and is accurate even when depth sensors are inaccurate, and can be trained
without adapting or randomizing the synthetic RGB.
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Figure 1: Overall architecture. The Depth Seeding Network (DSN) is shown in the red box, the Initial
Mask Processor ( ) in the green box, and the Region Refinement Network (RRN) in the blue box.
The images come from a real example taken by an RGB-D camera in our lab. Despite the level of
noise in the depth image (due to reflective table surface), our method is able to produce sharp and
accurate instance masks.

3 Method

Our framework consists of two separate networks that process Depth and RGB separately to produce
instance segmentation masks. First, the Depth Seeding Network (DSN) takes a depth image and
outputs a semantic segmentation and 2D directions to object centers. From these, we calculate initial
instance segmentation masks with a Hough voting layer. These initial masks are expected to be
quite noisy, so we use an Initial Mask Processor (IMP) to robustify the masks with standard image
processing techniques. Lastly, we refine the processed initial masks using our Region Refinement
Network (RRN). Because the Hough voting layer and IMP are non-differentiable, DSN and RRN are
trained separately as opposed to end-to-end. The full architecture is shown in Figure 1.

3.1 Depth Seeding Network

3.1.1 Network Architecture

The DSN takes as input a 3-channel organized point cloud, D € R#*Wx3 of XYZ coordinates. D
is passed through an encoder-decoder architecture to produce two outputs: a semantic segmentation
mask F' € REXWXC where C is the number of semantic classes, and 2D directions to object centers
V € REXWX2 We use C' = 3 for our semantic classes: background, tabletop (table plane), and
tabletop objects. Each pixel of V' encodes a 2-dimensional unit vector pointing to the 2D center
of the object. We define the center of the object to be the mean pixel location of the observable
mask. Although we do not explicitly make use of the tabletop label in Section 5, it can be used in
conjunction with RANSAC [26] in order to better estimate the table and get rid of false positive
masks. For the encoder-decoder architecture, we use a U-Net [27] architecture where each 3 x 3
convolutional layer is followed by a GroupNorm layer [28] and ReL.U. Sitting on top of this is two
parallel branches of convolutional layers that produce the foreground mask and center directions.

In order to compute the initial segmentation masks from F' and V', we design a Hough voting layer
similar to [21]. First, we discretize the space of all 2D directions into M equally spaced bins. For
every pixel in the image, we compute the percenteage of discretized directions from all other pixels
that point to it and use this as a score for how likely the pixel is an object center. We then threshold
the scores to select object centers and apply non-maximum suppression. Given these object centers,
each pixel in the image is assigned to the closest center it points to, which gives the initial masks as
shown in the red box of Figure 1.

3.1.2 Loss Function

To train the DSN, we apply two different loss functions on the semantic segmentation F' and the
direction prediction V. For the semantic segmentation loss, we use a weighted cross entropy as this
has been shown to work well in detecting object boundaries in imbalanced images [29]. The loss
islp = ZZ w; ok (FZ-, FZ> where ¢ ranges over pixels, FZ-, F;; are the predicted and ground truth

probabilities of pixel 4, respectively, and £ is the cross-entropy loss. The weight w; is inversely
proportional to the number of pixels with labels equal to F};, normalized to sum to 1.



We apply a weighted cosine similarity loss to the direction prediction V. The cosine similarity is
focused on the pixels belonging to the tabletop objects, but we also apply it to the background/tabletop
pixels to have them point in a fixed direction to avoid potential false positives. The loss is given by
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where V;, V; are the predicted and ground truth unit directions of pixel 7, respectively. B, T, O are the
sets of pixels belonging to background, table, and tabletop object classes, respectively. «; is inversely
proportional to the number of pixels with the same instance label as pixel ¢, giving equal weight to
each instance regardless of size. We set Ay; = 0.1. The total loss is given by £z + y.

3.2 Initial Mask Processing Module

Computing the initial masks from F' and V' with the Hough voting layer often results in noisy masks
(see an example in Figure 1). For example, these instance masks often exhibit salt/pepper noise and
erroneous holes near the object center. As shown in Section 5, the RRN has trouble refining the
masks when they are scattered as such. To robustify the algorithm, we propose to use two simple
image processing techniques to clean the masks before refinement.

For a single instance mask, we first apply an opening operation, which consists of mask erosion
followed by mask dilation [30], removing the salt/pepper noise issues. Next we apply a closing
operation, which is dilation followed by erosion, which closes up small holes in the mask. Finally, we
select the closest connected component to the object center and discard all other components. Note
that these operations are applied to each instance mask separately.

3.3 Region Refinement Network
3.3.1 Network Architecture

This network takes as input a 4-channel image, which is a cropped RGB image concatenated with an
initial instance mask. The full RGB image is cropped around the instance mask with some padding
for context, concatenated with the (cropped) mask, then resized to 224 x 224. This gives an input
image I € R224%224x4 The output of the RRN is the refined mask probabilities R € R?24%224,
which we threshold to get the final output. We use the same U-Net architecture as in the DSN. To
train the RRN, we apply the loss £ with two classes (foreground vs. background) instead of three.

3.3.2 Mask Augmentation

In order to train the RRN, we need examples of perturbed instance masks. This problem can be seen
as a data augmentation task where we augment the ground truth mask into something that resembles
an initial mask (after the IMP). We detail the different augmentation techniques used below:

o Translation/rotation: We translate the mask by sampling a displacement vector proportionally
to the mask size. Rotation angles are sampled uniformly in [—10°, 10°].

o Adding/cutting: For this augmentation, we choose a random part of the mask near the edge,
and either remove it (cut) or copy it outside of the mask (add). This reflects the setting when
the initial mask egregiously overflows from the object, or is only covering part of it.

e Morphological operations: We randomly choose multiple iterations of either erosion or
dilation of the mask. The erosion/dilation kernel size is set to be a percentage of the mask
size, where the percentage is sampled from a beta distribution. This reflects inaccurate
boundaries in the initial mask, e.g. due to noisy depth sensors.

e Random ellipses: We sample the number of ellipses to add or remove in the mask from a
Poisson distribution. For each ellipse, we sample both radii from a gamma distribution, and
sample a rotation angle as well. This augmentation requires the RRN to learn to remove
irrelevant blots outside of the object and close up small holes within it.

4 Tabletop Object Dataset

Many desired robot environment settings (e.g. kitchen setups, cabinets) lack large scale training sets
to train deep networks. To our knowledge, there is also no large scale dataset for tabletop objects.



Figure 2: Examples from our Tabletop Object Dataset. RGB, depth, and instance masks are shown.

To remedy this, we generate our own synthetic dataset which we name the Tabletop Object Dataset
(TOD). This dataset is comprised of 40k synthetic scenes of cluttered objects on a tabletop in home
environments. We use the SUNCG house dataset [31] for home environments and ShapeNet [1] for
tables and arbitrary objects. We only use ShapeNet tables that have convex tabletops, and filter the
ShapeNet object classes to roughly 25 classes of objects that could potentially be on a table.

Each scene in the dataset is of a random table from ShapeNet inside a random room from a SUNCG
house. We randomly sample anywhere between 5 and 25 objects to put on the table. The objects are
either randomly placed on the table, on top of another object (stacked), or generated at a random
height and orientation above the table. We use PyBullet [9] to simulate physics until the objects
come to rest and remove any objects that fell off the table. Next, we generate seven images (RGB,
depth, and ground truth instance masks) using PyBullet’s rendering capabilities. One view is of
only background, another is of just the table in the room, and the rest are taken with random camera
viewpoints with the tabletop objects in view. The viewpoints are sampled at a height of between
.5m and 1.2m above the table and rotated randomly with an angle in [—12°,12°]. The images are
generated at a resolution of 640 x 480 with vertical field-of-view of 45 degrees. The segmentation
has a tabletop (table plane, not including table legs) label and instance labels for each object.

We show some example images of our dataset in Figure 2. The rightmost two examples show that
some of our scenes are heavily cluttered. Note that the RGB looks non-photorealistic. In particular,
PyBullet is unable to load textures of some ShapeNet objects (see gray objects in leftmost two images).
PyBullet was built for reinforcement learning, not computer vision, thus its rendering capabilities are
insufficient for photorealistic tasks [9]. Despite this, our RRN is able to learn to snap masks to object
boundaries from this synthetic dataset.

S Experiments

5.1 Implementation Details

In this section, all models are trained from

scratch for 100k iterations of SGD with a batch Overlap Boundary
size of 8. We use a fixed learning rate of le-2 for Method R F R F
our models and follow the Detectron schedule | GCUT [32] | 21.5 515 2571102 468 157
for Mask RCNN. All images have a resolution ISEICJE gﬂ ‘5‘2'1 ;g? gg; ggé g;é 2(2)2
H = 480, W = 640. During DSN training, We | yup 35) | 653 814 69.5 | 625 814 66.6
augment depth with multiplicative gamma noise Ours 888 817 8411830 672 733
and additive Gaussian Process noise, similar to
[7]. Inputs to the RRN are augmented as de- Figure 3: Comparison with baselines on the
scribed in Section 3.3.2. All experiments run on ARID20 and YCBI10 subsets of OCID [10].

a NVIDIA RTX 2080ti.

5.2 Datasets

We use TOD to train all of our models. We do not fine tune on any real data. We evaluate quantitatively
and qualitatively on the OCID dataset [10] and the OSD dataset [11], which have 2346 images of
semi-automatically constructed labels and 111 manually labeled images, respectively. We note that
OCID contains images with objects on a tabletop, and images with objects on a floor. Despite our
method being trained in tabletop settings, it generalizes to floor settings as well.



OCID [10] OSD [11]
Method Input Overlap Boundary Overlap Boundary
R F R F R F R F
Mask RCNN RGB 70.7 256 302 | 450 148 16.7 | 673 278 349|249 10.0 12.0
Mask RCNN Depth 835 752 78.1 | 734 593 644|744 721 721|498 415 440
Mask RCNN RGB-D 80.8 739 76.1 | 682 584 618 | 744 727 734|531 481 498
Ours DSN:RGB-D | 842 57.6 622 | 729 445 499 | 722 63.7 66.1 | 585 434 484
Ours DSN: Depth | 88.3 789 81.7 | 820 659 714 | 80.7 805 799 | 660 67.1 65.6

Table 1: Evaluation of our method against state-of-the-art instance segmentation algorithm Mask
RCNN trained on different input modes.

OCID [10] OSD [11]
Overlap Boundary Overlap Boundary
R F R F R F R F
TOD 883 789 81.7] 820 659 714|807 805 799 | 66.0 671 656
OID [37] 879 79.6 817|840 69.1 741 | 812 833 817|698 737 708

RRN
training data

Table 2: Comparison of RRN when training on TOD and real images from Google OID [37].

5.3 Metrics

We use the precision/recall/F-measure (P/R/F) metrics as defined in [17]. This metric promotes meth-
ods that segment the desired objects and penalize methods that provide false positives. Specifically,
the precision, recall, and F-measure are computed between all pairs of predicted mask and ground
truth masks. The Hungarian method is used to compute a matching between predictions and ground
truth. Given this matching, the final P/R/F is computed by

P:Z:”ciﬁg(ci)\7 R:Zi\ciﬁg(cm, e 2PR
2 leil 2. 194l P+R

where ¢; denotes the set of pixels belonging to predicted object i, g(c;) is the set of pixels of the
matched ground truth object of ¢;, and g; is the set of pixels for ground truth object j. We denote this
as Overlap P/R/F. See [17] for more details.

While the above metric is quite informative, it does not take object boundaries into account. To
remedy this, we introduce a Boundary P/R/F measure to complement the Overlap P/R/F. Using the
same Hungarian matching used to compute Overlap P/R/F, we compute Boundary P/R/F by

p_XilenDlge)l  ,_ LDlelngle)l . _ 2PR
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where we overload notation and denote c;, g; to be the set of pixels belonging to the boundaries of
predicted object ¢ and ground truth object j, respectively. D|-] denotes the dilation operation, which

allows for some slack in the prediction. Roughly, these metrics are a combination of the F-measure
in [36] along with the Overlap P/R/F as defined in [17].

We report all P/R/F measures in the range [0, 100] (P/R/F x100).

5.4 Quantitative Results

Comparison to baselines. We compare to baselines shown in [10], which include GCUT [32],
SCUT [33], LCCP [34], and V4R [35]. In [10], these methods were only evaluated on the ARID20
and YCB10 subsets of OCID, so we compare our results these subsets as well. These baselines are
designed to provide over-segmentations (i.e., they segment the whole scene instead of just the objects
of interest). To allow a more fair comparison, we set all predicted masks smaller than 500 pixels to
background, and set the largest mask to table label (which is not considered in our metrics). Results
are shown in Figure 3. Because the baselines aim to over-segment the scene, the precision is in
general low while the recall is high. LCCP is designed to segment convex objects (most objects in
OCID are convex), but its predicted boundaries are noisy due to operating on depth only. Both SCUT
and V4R utilize models trained on real data. V4R was trained on OSD [11] which has an extremely
similar data distribution to OCID, giving V4R a substantial advantage. Our method, despite never
having seen any real data, significantly outperforms these baselines on F-measure.



DSN | o e | RRN Boundary - Method Input | RRN Bouﬁdary .
7 350 585 434 || Mask RCNN | RGB 249 100 120
v v 1360 481 396 | MaskRCNN | RGB | v |529 261 316
VR 492 553 517 || Mask RCNN | Depth 498 415 440
v v v | 590 641 607 | MaskRCNN | Depth | v | 647 524 564
oo 538 547 53.6 || Mask RCNN | RGB-D 5301 48.1 498
v v v v |660 671 656 | MaskRCNN | RGB-D | v | 60.6 547 565

Table 3: (left) Ablation experiments on OSD [11]. O/C denotes the Open/Close morphological
transform, while CCC denotes Closest Connected Component of the IMP module. (right) Refining
Mask RCNN results with our RRN on OSD.

Effect of input mode. Next, we evaluate how different input modes affect the results by training
Mask RCNN [6] on different combinations of RGB and depth from TOD. In Table 1, we compare
Mask RCNN trained on RGB, depth, and RGB-D and compare it to our proposed model on the full
OCID and OSD datasets. Training Mask RCNN on synthetic RGB only does not generalize at all.
Training on depth drastically boosts performance. When training on RGB-D, we posit that Mask
RCNN relies heavily on depth since adding RGB to depth results in little change. However, our
method (line 5, Table 1) exploits RGB and depth separately, leading to better results while being
trained on the exact same synthetic dataset. Furthermore, we show that when our DSN is trained
on RGB concatenated with depth (line 4, Table 1), we see a drop in performance, suggesting that
training directly on (non-photorealistic) RGB is not the best way of utilizing the synthetic data.

Degradation of training on non-photorealistic simulated RGB. To quantify how much non-
photorealistic RGB degrades performance, we train an RRN on real data. This serves as an ap-
proximate upper bound on how well the synthetically-trained RRN can perform. We use the instance
masks from the Google Open Images dataset (OID) [37] and filter them to relevant object classes,
resulting in roughly 220k instance masks on real RGB images. Results are shown in Table 2. Both
models share the same DSN and IMP. The Overlap measures are roughly the same, while the RRN
trained on OID has slightly better performance on the Boundary measures. This suggests that
while there is still a gap, our method is surprisingly not too far off, considering that we train with
non-photorealistic synthetic RGB. We conclude that mask refinement with RGB is an easier task to
transfer from Sim2Real than directly segmenting from RGB.

Ablation studies. We report ablation studies on OSD to evaluate each component of our proposed
method in Table 3 (left). We omit the Overlap P/R/F results since they follow similar trends to
Boundary P/R/F. Running the RRN on the raw masks output by DSN without the IMP module
actually hurts performance as the RRN cannot refine such noisy masks. Adding the open/close
morphological transform and/or the closest connect component results in much stronger results,
showing that the IMP is key in robustifying our proposed method. In these settings, applying the RRN
significantly boosts Boundary P/R/F showing that it effectively sharpens the masks. In fact, Table
3 (right) shows that applying the RRN to the Mask RCNN results effectively boosts the Boundary
P/R/F, showing the efficacy of the RRN despite being directly trained on non-photorealistic RGB.
Note that even with this refinement, the Mask RCNN results are outperformed by our method.

5.5 Qualitative Results

We show qualitative results on OCID of baseline methods, Mask RCNN (trained on RGB-D), and our
proposed method in Figure 4 (top). It is clear that the baseline methods suffer from over-segmentation
issues; they segment the table and background into multiple pieces. For the methods that utilize
RGB as an input (GCUT and SCUT), the objects are often over-segmented as well. Methods that
operate on depth alone (LCCP and V4R) result in noisy object boundaries due to noise in the depth
sensors. The main failure mode for Mask RCNN is that it tends to undersegment objects; a close
inspection of Figure 4 shows that Mask RCNN erroneously segments multiple objects as one. This is
the typical failure mode of top-down instance segmentation algorithms in clutter. On the other hand,
our bottom-up method utilizes depth and RGB separately to provide sharp and accurate masks.

In Figure 4 (middle), we qualitatively show the effect of the RRN. The first row shows the initial
masks after the IMP module and the second row shows the refined masks. These images were taken
around our lab with an Inte]l RealSense D435 RGB-D camera to demonstrate the robustness of our
method to camera viewpoint variations and distracting backgrounds (OCID/OSD have relatively
simple backgrounds). Due to noise in the depth sensor, it is impossible to get sharp and accurate
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Figure 4: Qualitative results. (Top) Comparison on OCID [10]. (Middle) Mask refinements on images
taken from our lab. (Bottom) Failure modes on OSD [11].

predictions from depth alone without using RGB. Our RRN can provide sharp masks even when the
boundaries of objects are occluding other objects (images 2 and 5).

We show some failure modes of our method in Figure 4 (bottom) on the OSD dataset. In images 1, 5,
and 6, false positives contributed by the DSN cannot be undone by the RRN. In images 2 and 3, we
see examples of missed objects due to the center of the mask being occluded by an object, which is a
limitation of the 2D center voting procedure. Lastly, when an object is split into two (images 3, 4,
and 5), our method predicts two separate objects.

5.6 Application in Grasping Unknown Objects

We use our model to demonstrate manipulation of unknown objects in a cluttered environment using
a Franka robot with panda gripper and wrist-mounted RGB-D camera. The task is to collect objects
from a table and put them in a bin. Objects are segmented using our method and the point cloud
of the closest object to the camera is fed to 6-DOF GraspNet [38] to generate grasps, with other
objects considered obstacles. Video of the experiments can be found at the project website. While
our method segments the objects correctly most of the time, it does exhibit some failures, including
the over-segmentation of the drill. We conducted the experiment 3 times and our method was able to
successfully complete the task with 1-2 extra grasping attempts in each trial. The failures stem from
either imperfections in segmentation or inaccurate generated grasps.

6 Conclusion

We proposed a framework that separately leverages RGB and depth to provide sharp and accurate
masks for unseen object instance segmentation. Our two-stage framework produces rough initial
masks using only depth, then refines those masks with RGB. Surprisingly, our RRN can be trained on
non-photorealistic RGB and generalize quite well to real world images. We demonstrated the efficacy
of our approach on multiple datasets for UOIS in tabletop environments.
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