
Asynchronous Methods for Model-Based
Reinforcement Learning

Yunzhi Zhang∗
UC Berkeley

yunzhi@berkeley.edu

Ignasi Clavera∗
UC Berkeley

iclavera@berkeley.edu

Boren Tsai
UC Berkeley

Pieter Abbeel
UC Berkeley

Abstract: Significant progress has been made in the area of model-based rein-
forcement learning. State-of-the-art algorithms are now able to match the asymp-
totic performance of model-free methods while being significantly more data ef-
ficient. However, this success has come at a price: state-of-the-art model-based
methods require significant computation interleaved with data collection, resulting
in run times that take days, even if the amount of agent interaction might be just
hours or even minutes. When considering the goal of learning in real-time on real
robots, this means these state-of-the-art model-based algorithms still remain im-
practical. In this work, we propose an asynchronous framework for model-based
reinforcement learning methods that brings down the run time of these algorithms
to be just the data collection time. We evaluate our asynchronous framework on
a range of standard MuJoCo benchmarks. We also evaluate our asynchronous
framework on three real-world robotic manipulation tasks. We show how asyn-
chronous learning not only speeds up learning w.r.t wall-clock time through par-
allelization, but also further reduces the sample complexity of model-based ap-
proaches by means of improving the exploration and by means of effectively
avoiding the policy overfitting to the deficiencies of learned dynamics models.

Keywords: Reinforcement Learning, Model-Based, Asynchronous Learning

1 Introduction
Autonomous skill acquisition has the potential to dramatically expand the tasks robots can perform
ranging from manufacturing to household robotics. In real robotic agents, where data gathering is
typically expensive, low sample complexity algorithms are required. Model-based reinforcement
learning (RL) [1] offers the potential to be data-efficient while achieving the same learning capabil-
ities as model-free RL by first learning a predictive model of the environment and then deriving a
controller from it.

In recent years, significant advances have been made in deep model-based reinforcement learn-
ing. Model-based algorithms presented in [2, 3, 4, 5] achieve the same asymptotic performance as
model-free algorithms while requiring an order of magnitude less data. However, these impressive
results have been achieved at the cost of increasing the computational burden of model-based algo-
rithms. Tools such as ensembles and probabilistic models have been key ingredients, preventing the
policy from overfitting to the deficiencies of the learned model. As a result, while state-of-the-art
model-based methods require just a few hours of agent interaction to learn complex tasks, they can
nevertheless take days to train. For instance, the algorithm presented in [4] takes less than three
hours of real-world interaction to learn a locomotion behaviour, but the total training time is of
2.2 days [6]. A need for algorithms that are both sample efficient and computationally fast is even
more pressing when considering that these algorithms present a large number of sensitive hyperpa-
rameters. Altogether, slow experimentation and extensive hyperparameter search constitute a major
barrier for the applicability of model-based methods to real-world robotics.

To bring down the wall-clock time of current model-based RL algorithms, we propose an asyn-
chronous strategy where data collection, model learning, and policy improvement take place in

∗Equal contribution

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

parallel and asynchronously. Aside from speed, our method has two further benefits: First, learning
the model while training the policy prevents the policy from overfitting to the deficiencies of the
model, effectively regularizing the policy learning step [7]. Second, collecting each rollout using
the latest policy trained during the policy improvement process diversifies the data collected, which
results in better predictive models.

The main contribution of our work is a general asynchronous framework for model-based reinforce-
ment learning that reduces the run time of current model-based algorithms to be just the sampling
time. It achieves better sample complexity than the classical sequential versions, and removes some
hard-to-tune hyperparameters in current model-based approaches, such as the number of trajecto-
ries to collect or the number of gradients steps to take. Our experimental evaluation illustrates the
strengths of our framework on four standard MuJoCo [8] locomotion tasks. For instance, we were
able to learn an optimal policy in high dimensional and complex quadrupedal locomotion within 60
minutes, while the classic sequential version takes more than 10 times longer. Finally, we showcase
the effectiveness of our approach in real robotic manipulation skills that include block stacking and
shape matching. In these cases, our asynchronous framework was able to succeed at each of the
tasks within 10 minutes of wall-clock time. On the real robotic tasks our approach closely matches
the performance of prior specialized work for such complex contact manipulation [9], while being
more general. Code of parallel and sequential implementation of model-based algorithms, as well
as videos of our method on thr real robot environment, can be found at our website.2

2 Related Work
In this section, we discuss related work, including model-based reinforcement learning, asyn-
chronous learning in the context of RL, and finally real robotic learning with RL.

Model-based reinforcement learning. Model-based reinforcement learning methods are promis-
ing candidates for real-world sequential decision-making problems due to their data efficiency [1].
Current model-based RL algorithms generally fall into one of three categories: Dyna-style algo-
rithms, where the model is used to create imaginary experience for a model-free algorithm [10, 4,
7, 2, 11, 12, 5]; model predictive control (MPC) algorithms, where the model is used for planning
at each time-step [13, 3]; and policy search with backpropagation-through-time approaches, which
exploit the model derivatives [14, 15, 16, 17]. In this work, we focus on asynchronous versions of
Dyna-style approaches [10, 4]. Dyna-style methods learn a parametric policy, which burdens the
training process but make the methods able to scale up to high dimensional domains and become
suitable for real robotics tasks. In contrast, MPC approaches do not internalize experience into a
parametric policy. This results in a faster training process but computationally expensive test time.
Moreover, MPC methods tend to scale poorly to high dimensional domains [6], making them often
impractical for real-time feedback control. Nevertheless, our framework can easily be extended to
MPC and backpropagation-through-time approaches. Wang et al. [6] give a general overview and
comparison of approaches from all three families.

Asynchronous Learning. The Hogwild! algorithm [18] popularized asynchronous learning by
showing that lock-free asynchronous stochastic gradient descent (SGD) is able to out perform its
synchronous version. Later on, Dean et al. [19] demonstrated its benefits when training deep neural
networks. Inspired by this, Nair et al. [20] were the first to apply asynchronous training to deep
reinforcement learning. And further work has extended these results to more efficient algorithms [21,
22, 23, 24, 25]. However, previous work has focused on model-free algorithms [26, 27, 28, 29],
where large amounts of data are required, and distributed data collection is crucial for fast learning.
In the case of real robotics agents, however, parallel data collection requires having multiple robots,
which can easily be prohibitively expensive [30]. In our asynchronous framework parallelization
occurs across the different phases of model-based RL algorithms, rather than across multiple agents
collaborating on one single phase such as collecting experience.

Real Robot Learning. Prior work on model-based reinforcement learning on real robotic agents has
explored a diversity of schemes for dynamics learning, including Gaussian Processes [14], mixture
models [31], and local linear models [32]. In this work we focus on learning dynamics model
parametrized by deep neural networks, which offer the potential to scale up to higher dimensional
domains and more complex tasks. While deep dynamics models has been previously used on real
robots [33], it has been done using MPC type approaches. Another line of work has applied pure

2https://sites.google.com/view/asynch-mb-rl/home

2

(a) Our proposed asynchronous model-based frame-
work with three workers, communicating exclusively
through three servers. The workers do not proceed in
a specified order nor wait for the others to complete
to execute their own function.

(b) Classic synchronous model-based methods,
where three main steps proceed in well-defined or-
der. Each of the steps does not starts running until
the preceding one has finalized.

model-free RL [34, 35, 36, 37]. For instance, Gu et al. [30] used an asynchronous data collection
method for door opening. However, model-free RL is still significantly more data inefficient than
model-based methods, which hinders its applicability to general real robotics learning. The real
robotic tasks attempted in this work are similar to the ones proposed by Levine et al. [9]. In that
work, however, they use a specialized method for contact rich manipulation tasks.

3 Model-Based Reinforcement Learning
A discrete-time finite Markov decision process (MDP) M is defined by the tuple
(S,A, p, r, γ, p0, H). Here, S is the set of states, A the action space, p(st+1|st, at) the transi-
tion distribution, r : S × A → R is a reward function, p0 : S → R+ represents the initial state
distribution, γ the discount factor, and H is the horizon of the process. We define the return as the
sum of rewards r(st, at) along a trajectory τ := (s0, a0, ..., sH−1, aH−1, sH). The goal of rein-
forcement learning is to find a policy π : S × A → R+ that maximizes the expected return, i.e.:
maxπ J(π) = Eat∼π

st∼p
[
∑H
t=1 γ

tr(st, at)].

Model-based RL methods learn the transition distribution, also known as dynamics model, from
the observed transitions. This can be done with a parametric function approximator p̂φ(s′|s, a). In
such case, the parameters φ of the dynamics model are optimized to maximize the log-likelihood of
the state transition distribution. Current model-based algorithms often learn an ensemble of models
{p̂φ1

(s′|s, a), ..., p̂φK
(s′|s, a)}, in which case we denote as p̂φ(s′|s, a) the model obtained from

having a uniform prior on the ensemble, i.e., s′ ∼ pφI
(s′|s, a) where I ∼ U([K]).

4 Asynchronous Methods for Model-Based Reinforcement Learning
Typically, model-based algorithms iterate through three phases till convergence: gathering data by
interacting with the environment, learning a dynamics model using the gathered data, and improving
policy using the learned dynamics model. Previous model-based RL work has made significant
strides in decreasing sample complexity. It reduces interaction time with the environment, but shifts
more computational load into learning distribution with models to capture uncertainty [3], and also
into learning robust policies [7] or adaptive ones [4]. As a result, the wall-clock time of running such
methods has significantly increased; for instance, training for 200k timesteps in the Ant environment
takes 55 hours for MB-MPO [6].

Our asynchronous framework, shown in Figure 1a, overcomes this deficiency and further improves
sample efficiency of current model-based methods. In the following, we present the general recipe
for asynchronous model-based reinforcement learning.

Within the framework, three main tasks of model-based algorithms are assigned to three parallel,
independent workers that are respectively dedicated to data collection, model learning and policy
improvement. The main task for each worker contains only the minimum amount of work (e.g.
collecting one rollout, updating for one epoch or one gradient step). As a result, each worker fetches

3

Algorithm 1 Data Collection
1: for i = 1, ... do
2: Pull policy parameters

θ
3: Collect one trajectory

(st, at, st+1)t with πθ
in the real environment

4: Push data
{(st, at, st+1)}t

5: end for

Algorithm 2 Model Learning
1: D = ∅
2: for i = 1, ... do
3: Pull samples {st, at}t
4: D ← D ∪

{(st, at, st+1)}t
5: Train dynamics model

p̂φ for one epoch on D
6: Push dynamcis model

parameters φ
7: end for

Algorithm 3 Policy Improvement
1: Randomly initialize θ
2: for i = 1, ... do
3: Pull model parameters φ
4: Collect imagined samples

using πθ
5: Train policy for one gradi-

ent step
6: Push policy

parameters θ
7: end for

updates from servers with high frequency and acts in fully asynchronous behavior. Each worker
executes three operations:

• Pull. Worker gets an update from one of the three servers. For example, for the data
collection worker, it pulls the latest policy parameters from the corresponding server.

• Step. The step operation corresponds to the main function of the worker. For the data
collection worker, Step corresponds to collecting one rollout under its local copy of the
policy. In the following subsections we explain in detail Step operation for each of the
workers.

• Push. This operation sends the latest parameters or data to one of the three servers. Again,
in the case the data collection worker, Push corresponds to pushing the collected rollout to
the data buffer.

Each worker first checks one specific server either to fetch the latest parameters or to move all data
from the remote server to its local buffer. Then it carries out its own step operation, and finally
pushes the local change onto another specific server. Each worker loops through this process until a
global stopping criterion is met. In the experiments, Section 5, the stopping criterion is set to be a
total number of collected trajectories.

Data collection. The data collection worker first pulls policy parameters θ from the server.
With the latest policy it proceeds to the step operation, namely collecting one trajectory τ =
(s0, a0, ..., sH−1, aH−1, sH). Finally, it pushes the trajectory onto the data buffer and starts over
from pulling again.

Model learning. In each iteration, this worker moves all trajectories from the remote data buffer, if
it is not empty, to its local buffer. The local buffer is of fixed size and first-in-first-out. Then, it fits
the model for one epoch on the local data buffer. Lastly it pushes model parameter φ to the model
parameter server. Since in practice the data collection worker obtains samples at a slower pace than
model training, we apply early stopping via computing validation loss on held-out samples. The
training of the model stops if the an exponentially moving average of the validation loss increases
after an epoch. When new samples are available, the worker resets the rolling average and starts
training again. For long-horizon or low-data-frequency tasks where data collection is slow, early
stopping is crucial to prevent overfitting.

Policy improvement. In each iteration, the policy improvement worker first pulls from the model
parameter server. Then it carries out the specific policy improvement step specified by a model-
based algorithm. For instance, in the case of model-ensemble trust-region policy optimization (ME-
TRPO) [10], this step corresponds to sampling a batch of imaginary trajectories followed by a TRPO
update. Finally the worker pushes the improved policy weights θ to the policy parameter server.

Asynchronous learning offers several advantages over sequential learning. First, since the three
main processes run in parallel, the running time of the algorithms is reduced to be the total sampling
time. Second, since the policy is being learned while collecting data, at the beginning of each rollout
a new policy is usually available to the data collection worker, resulting in more diverse data. Third,
since the model and policy are learning concurrently, at each policy improvement step a new model
is readily available for the policy to fit on. It prevents the policy from overfitting to the model

4

deficiencies, similarly observed in [7]. Finally, there is no need to specify crucial hyper-parameters
for proper learning: number of environment rollouts, number of model epochs, or number of policy
gradient steps per iteration.

5 Experiments

Here, we will empirically corroborate the claims in the previous sections. Specifically, the exper-
iments are designed to address the following questions: (1) How does the learning speed of our
asynchronous framework compare against sequential and model-free baselines? (2) Does asyn-
chronous learning effectively prevent model-bias by regularizing the policy improvement step? (3)
Is asynchronous data collection more effective than batch data collection? (4) Is our framework able
to rapidly learn complex, real-world manipulation tasks? (5) Is our asynchronous framework brittle
to data collection frequency?

To answer the posed questions, we will first evaluate our framework on four continuous control
benchmark tasks in the Mujoco simulator [8, 38]. Then, we will analyze its benefits in further depth
on a subset of those tasks. And finally, we will showcase its performance on several contact rich
object manipulation tasks on the PR2 robot, Figure 6. The performance on all the simulated results
is averaged over 4 random seeds.

5.1 Wall-Clock Time Speed-up and Sample Efficiency

We adapt our asynchronous framework to three different model-based algorithms, namely model-
ensemble trust-region policy optimization (ME-TRPO) [10], a variant of it using proximal policy
optimization (PPO) [27] which will refer to as ME-PPO, and model-based meta-policy optimiza-
tion (MB-MPO) [4]. We directly compare the performance of the sequential and the asynchronous
version of each method, as well as two model-free methods TRPO [39] and PPO [27]. In order to
simulate real-world robot experiments, where data-collection is typically the time bottleneck for RL
algorithms, we report the wall-clock time that those algorithms would have taken if they were to be
run in the real-world. All the experiments have a maximum path length of 200 timesteps. Hence, the
time T to collect one trajectory corresponds to 200 times the control frequency, which is an attribute
of the environment [38]. In the asynchronous case, since data simulation is typically much faster
than real-time, the worker responsible for data collection sleeps until the time T elapses, and then
starts the next step.

0 15 30 45 60
Time (min)

0

100

200

300

400

500

Av
er

ag
e

Re
tu

rn

AntEnv

0 15 30 45 60
Time (min)

0

200

400

600

800

HalfCheetahEnv

0 5 10 15 20 25
Time (min)

200

0

200

400

600

HopperEnv

0 5 10 15 20 25
Time (min)

400

200

0

200

400

600
Walker2dEnv

asynch-me-trpo
asynch-me-ppo
asynch-mb-mpo

me-trpo
me-ppo
mb-mpo

trpo
ppo

Figure 2: Wall-clock time comparison between asynchronous model-based (solid), synchronous model-based
(dashed), and model-free (dotted) methods. Solid lines refer to algorithms within our asynchronous framework,
and dashed to its corresponding sequential version. Asynchronous learning significantly speeds up the training
time of current model-based algorithms. Best viewed in color.

Figure 2 shows the performance of the different algorithms in terms of wall-clock time. Here,
we see that the asynchronous adaptations significantly speed up the training process. In general,
asynch-ME-TRPO and asynch-ME-PPO converge faster than asynch-MB-MPO, and similar relative
convergence speed is observed in their synchronous versions.

5

0.0 0.5 1.0 1.5 2.0 2.5
Time-steps 1e5

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

AntEnv

0.0 0.4 0.8 1.2 1.6 2.0
Time-steps 1e5

0

200

400

600

800

1000

1200
HalfCheetahEnv

0.0 0.4 0.8 1.2 1.6 2.0
Time-steps 1e5

400

200

0

200

400

600

HopperEnv

0.0 0.4 0.8 1.2 1.6 2.0
Time-steps 1e5

400

200

0

200

400

600
Walker2dEnv

asynch-me-trpo
asynch-me-ppo
asynch-mb-mpo

me-trpo
me-ppo
mb-mpo

trpo
ppo

Figure 3: Sample complexity comparison between asynchronous model-based (solid), synchronous model-
based (dashed), and model-free (dotted) methods. Solid lines refer to algorithms within our asynchronous
framework, and dashed lines refer to corresponding sequential versions. Asynchronous learning in general
offers better sample complexity than sequential synchronous learning. Best viewed in color.

Figure 3 shows the performance of the different algorithms in terms of sample complexity. These
results show that in general, asynchronous learning converges to its optimal solution faster than their
corresponding synchronous methods. They suggest that the asynchronous framework enhances cur-
rent model-based methods by further reducing the sample complexity of these already data-efficient
algorithms.

5.2 Interleaved Policy Learning and Model Learning

One aspect that differentiates the asynchronous framework from the synchronous one is that policy
updates are interleaved with model updates, whereas in the latter case, the policy does not start
taking gradient steps until all the models in the ensemble have either early stopped or reached a pre-
determined maximum number of epochs. This section aims to show that such difference benefits the
overall learning through policy regularization.

To remove confounding effects, we implemented a partially-asynchronous ME-TRPO , with each it-
eration containing two phases: First, collect N rollouts from environment; and second, alternatively
fit the model ensemble for E epochs on current dataset and train the policy for G gradient steps
with the updated models. The first phase inherits the implementation of synch-ME-TRPO, while
the second phase mimics the asynchronous effect by updating the policy with the model parameters
before the models are fully trained on the available dataset.

To test our hypothesis, we compare the aforementioned methods in two Mujoco environments,
HalfCheetah and Walker2d. Figure 4a shows that the partially-asynchronous method achieves better
sample-efficiency than the synchronous one. It suggests that interleaving model and policy updates,
as is the case with the asynchronous framework, helps prevent the policy from overfitting to the
model deficiencies.

0.0 0.2 0.4 0.6 0.8 1.0
Time-steps 1e5

0

100

200

300

400

500

600

Av
er

ag
e

Re
tu

rn

HalfCheetahEnv

0.0 0.2 0.4 0.6 0.8 1.0
Time-steps 1e5

200

0

200

Walker2dEnv

interleaved policy learning in-order policy learning

(a) Comparison between interleaved and in-order
model and policy updates. Interleaved model and
policy updates, which mimics the asynchronous
training, leads to better sample complexity by effec-
tively regularizing the policy improvement steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time-steps 1e5

0

200

400

600

800

Av
er

ag
e

Re
tu

rn

HalfCheetahEnv

0.0 0.2 0.4 0.6 0.8 1.0
Time-steps 1e5

200

0

200

400
Walker2dEnv

interleaved data collection in-order data collection

(b) Comparison between interleaved and in-order
policy updates and sample collection. Interleaved
policy updates and data collections, which mimics
the set up of asynchronous training, reduces sample
complexity by collecting more diverse data.

Figure 4: Effects of asynchronous training in learning performance and sample efficiency.

6

5.3 Interleaved Policy Learning and Data Collection

A second aspect that distinguishes asynchronous methods is that policy learning and data collection
are interleaved. That is, environment trajectories are potentially collected under policy even before
the policy learner has taken sufficient gradient steps to fit to the current model.

To investigate whether such a difference improves exploration for data collection, we implemented
a second partially-asynchronous ME-TRPO. After acquiring an initial dataset, the trainer loops with
two phases: First, fit the model to the obtained dataset; second, alternatively take G policy gradient
steps and append a new sampled rollout to the dataset, for a total of N times.

This implementation is compared with synchronous ME-TRPO on HalfCheetah and Walker2d en-
vironments, as shown in Figure 4b. The result shows the advantage of asynchronous training in
terms of sample-efficiency. It suggests that an asynchronous framework effectively encourages data
exploration which results in learning benefits.

5.4 Early Stopping & Sampling Speed Effect

In this section, we first investigate the importance of integrating an early-stopping mechanism into
our framework. In our framework, we stop training the model if the current validation loss is larger
than the exponentially moving average of it. Second, we analyze the effect of the sampling fre-
quency in the data efficiency of asynchronous model-based RL. We analyze these two aspects in
asynchronous ME-TRPO in the environments of HalfCheetah and Walker2d.

In Figure 5a we show how different values of the weight in the exponentially moving average affect
performance. In Walker2d, the framework is robust to different degree of early stopping. However,
in the HalfCheetah environment, an appropriate value of early stopping leads to faster learning.

0.0 0.5 1.0 1.5 2.0 2.5
Time-steps 1e5

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

HalfCheetahEnv

0.0 0.5 1.0 1.5 2.0 2.5
Time-steps 1e5

400

200

0

200

400

600
Walker2dEnv

0.1 0.4 0.9 0.99

(a) Effect of the early stopping. Lower values weight
values in the exponential moving average result in a
more aggressive early stopping.

0.0 0.5 1.0 1.5 2.0 2.5
Time-steps 1e5

0

200

400

600

800

1000

1200

Av
er

ag
e

Re
tu

rn

HalfCheetahEnv

0.0 0.5 1.0 1.5 2.0 2.5
Time-steps 1e5

400

200

0

200

400

600
Walker2dEnv

2.0x 1.0x 0.5x

(b) Effect of the sampling speed. Slower data col-
lection benefits the performance in the asynchronous
framework by allowing more training on the model
and the policy.

Figure 5: Early stopping and sampling speed effect on the average returns.

The length of a rollout is typically a characteristic of the problem, and thus not tunnable. Here, we
compare the performance of our asynchronous training when data collection is carried out at differ-
ent speeds; specifically, twice the speed and half of it, Figure 5b. The result shows that slower data
collection, rather than faster, typically leads to better results. We attribute this to the fact that in the
asynchronous framework, data collection speed determines the number of gradient steps taken on
the model and policy. Slower data collection allows for more model and policy training. Hence in
algorithms where model or policy training is particularly slow, the asynchronous framework would
benefit from preventing the data collection worker to gather an excessive number of samples. A
particular instance of this effect is the increase on sample complexity of asynch-MB-MPO in Sec-
tion 5.1.

5.5 Real-World Experiments

To best evaluate the real-life efficacy of our proposed asynchronous methods, we expanded our
framework’s domain of application to include a physical PR2 robot. In particular, we evaluated
asynch-MB-MPO in three tasks: reaching a position, inserting a unique shape into its matching hole

7

(a) Shape matching, the PR2
robot insert shape into its
matching hole.

(b) Reaching, the PR2 moves
its end-effector to an pre-
specified goal.

(c) Lego stacking, the PR2 as-
sembles one lego block on top
of another.

Figure 6: Tasks in our PR2 experiments.

in a box, and stacking a modular block onto a fixed base. In the latter two experiments, the manip-
ulated objects were assumed to be fixed extensions of the end-effector, allowing us to use forward
kinematics to compute the object’s current position. These tasks can be observed in Figures 6a-c.

The robot itself has a 23-dimensional state space composed of measurements from the active left
arm: seven joint angles, seven joint velocities, and nine Cartesian points of the end-effector that
determine the pose of the object. The action space was directly the torque commands for the 7-DOF
arm. The actions were applied at a frequency of 10 Hz.

The reward function for each task was applied on the distance, d, between the current position of the
end-effector and a fixed target position. As in [9], we formulated reward as a mixture of a quadratic
penalty and a Lorentzian ρ-functions, i.e., r(d) = −ωd2 − v log(d2 + α), where we set ω = 1.0,
v = 1.0, and α = 10−5. The shape of this cost function ensures quick and precise execution of
tasks. Based on this reward, we also introduced two scaled quadratic penalties on the magnitude
of the joint velocities and applied torques controls to best secure a smooth performance in task
completion.

The results, shown in Figure 7, show that asynchronous MB-MPO achives contact rich object ma-
nipulated tasks, such as lego stacking and shape matching, within 100 time-steps. This corresponds
to 10 minutes of run time, matching similar speed performance attained in [9]. Videos of our method
on the real robot environment, can be found at our website.3

0 20 40 60 80 100
Time-steps

0

5

10

15

20

25

Av
g

Fi
na

l D
ist

an
ce

 (c
m

) PR2MatchEnv

0 10 20 30 40 50
Time-steps

5

10

15

20

25

Av
g

Fi
na

l D
ist

an
ce

 (c
m

) PR2ReachEnv

0 20 40 60 80 100
Time-steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g

Fi
na

l D
ist

an
ce

 (c
m

) PR2StackEnv

Figure 7: Final distance attained in each of the tasks evaluated on the PR2 robot with asynch-MB-MPO.

6 Conclusion

In this work we proposed an asynchronous framework for model-based reinforcement learning. Our
empirical investigation shows that asynchronous model-based RL learns substantially faster than
prior approaches. We characterized the key traits of asynchronous training that improves sample
efficiency: policy regularization by interleaving policy learning and model learning, and better data
collection by interleaving policy learning and data collection. Finally, we showcase the performance
of asynchronous learning in real robotic manipulation, achieving to learn contact rich tasks within
10 min of run time. An enticing direction for future work is the application of asynchronous learning
to more complex real robotics tasks.

3https://sites.google.com/view/asynch-mb-rl/home

8

References
[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. CoRR,

cs.AI/9605103, 1996.

[2] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy optimization.
CoRR, abs/1906.08253, 2019.

[3] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of trials
using probabilistic dynamics models. arXiv preprint arXiv:1805.12114, 2018.

[4] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel. Model-based reinforcement
learning via meta-policy optimization. CoRR, abs/1809.05214, 2018.

[5] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-efficient reinforcement learning with
stochastic ensemble value expansion. CoRR, abs/1807.01675, 2018. URL http://arxiv.org/abs/
1807.01675.

[6] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba.
Benchmarking model-based reinforcement learning. CoRR, abs/1907.02057, 2019.

[7] Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma. Algorithmic framework for model-based deep
reinforcement learning with theoretical guarantees. ICLR, 2019.

[8] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033. IEEE, 2012.

[9] S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich manipulation skills with guided policy
search. In 2015 IEEE international conference on robotics and automation (ICRA), pages 156–163.
IEEE, 2015.

[10] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel. Model-ensemble trust-region policy optimiza-
tion. arXiv preprint arXiv:1802.10592, 2018.

[11] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART Bulletin,
2(4):160–163, 1991.

[12] R. S. Sutton. Planning by incremental dynamic programming. In Machine Learning Proceedings 1991,
pages 353–357. Elsevier, 1991.

[13] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning. arXiv preprint arXiv:1708.02596, 2017.

[14] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine learning (ICML-11), pages 465–472,
2011.

[15] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. Learning continuous control policies
by stochastic value gradients. In Advances in Neural Information Processing Systems, pages 2944–2952,
2015.

[16] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors through online tra-
jectory optimization. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 4906–4913. IEEE, 2012.

[17] S. Levine and V. Koltun. Guided policy search. In International Conference on Machine Learning, pages
1–9, 2013.

[18] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gra-
dient descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 693–701. Curran Associates, Inc., 2011.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. aurelio Ranzato, A. Senior, P. Tucker,
K. Yang, Q. V. Le, and A. Y. Ng. Large scale distributed deep networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1223–1231. Curran Associates, Inc., 2012.

[20] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria, V. Panneershelvam, M. Su-
leyman, C. Beattie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, and D. Silver. Massively parallel
methods for deep reinforcement learning. CoRR, abs/1507.04296, 2015.

9

http://arxiv.org/abs/1807.01675
http://arxiv.org/abs/1807.01675

[21] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz. GA3C: gpu-based A3C for deep reinforce-
ment learning. CoRR, abs/1611.06256, 2016.

[22] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dun-
ning, S. Legg, and K. Kavukcuoglu. IMPALA: scalable distributed deep-rl with importance weighted
actor-learner architectures. CoRR, abs/1802.01561, 2018.

[23] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M. A. Eslami,
M. A. Riedmiller, and D. Silver. Emergence of locomotion behaviours in rich environments. CoRR,
abs/1707.02286, 2017. URL http://arxiv.org/abs/1707.02286.

[24] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[25] A. Stooke and P. Abbeel. Accelerated methods for deep reinforcement learning. CoRR, abs/1803.02811,
2018.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[28] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for off-policy policy evaluation. In Proceed-
ings of the Seventeenth International Conference on Machine Learning, ICML ’00, pages 759–766, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2.

[29] D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal difference learning with function approx-
imation. In Proceedings of the Eighteenth International Conference on Machine Learning, ICML ’01,
pages 417–424, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-1.
URL http://dl.acm.org/citation.cfm?id=645530.655817.

[30] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation.
CoRR, abs/1610.00633, 2016.

[31] T. M. Moldovan, S. Levine, M. I. Jordan, and P. Abbeel. Optimism-driven exploration for nonlinear
systems. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 3239–3246,
May 2015. doi:10.1109/ICRA.2015.7139645.

[32] R. Lioutikov, A. Paraschos, J. Peters, and G. Neumann. Sample-based informationl-theoretic stochastic
optimal control. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
3896–3902. IEEE, 2014.

[33] I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to adapt: Meta-
learning for model-based control. CoRR, abs/1803.11347, 2018.

[34] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
and S. Levine. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905, 2018.

[35] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep reinforcement
learning. CoRR, abs/1812.11103, 2018.

[36] R. Hafner and M. Riedmiller. Neural reinforcement learning controllers for a real robot application. In
Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 2098–2103, April
2007. doi:10.1109/ROBOT.2007.363631.

[37] V. Gullapalli, R. A. Grupen, and A. G. Barto. Learning reactive admittance control. In Proceedings 1992
IEEE International Conference on Robotics and Automation, pages 1475–1480. IEEE, 1992.

[38] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

[39] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1889–1897,
2015.

10

http://arxiv.org/abs/1707.02286
http://dl.acm.org/citation.cfm?id=645530.655817
http://dx.doi.org/10.1109/ICRA.2015.7139645
http://dx.doi.org/10.1109/ROBOT.2007.363631

	Introduction
	Related Work
	Model-Based Reinforcement Learning
	Asynchronous Methods for Model-Based Reinforcement Learning
	Experiments
	Wall-Clock Time Speed-up and Sample Efficiency
	Interleaved Policy Learning and Model Learning
	Interleaved Policy Learning and Data Collection
	Early Stopping & Sampling Speed Effect
	Real-World Experiments

	Conclusion

