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Abstract:
In essence, successful grasp boils down to correct responses to multiple contact
events between fingertips and objects. In most scenarios, tactile sensing is ade-
quate to distinguish contact events. Due to the nature of high dimensionality of
tactile information, classifying spatiotemporal tactile signals using conventional
model-based methods is difficult. In this work, we propose to predict and classify
tactile signal using deep learning methods, seeking to enhance the adaptability
of the robotic grasp system to external event changes that may lead to grasping
failure. We develop a deep learning framework and collect 6650 tactile image
sequences with a vision-based tactile sensor, and the neural network is integrated
into a contact-event-based robotic grasping system. In grasping experiments, we
achieved 52% increase in terms of object lifting success rate with contact detec-
tion, significantly higher robustness under unexpected loads with slip prediction
compared with open-loop grasps, demonstrating that integration of the proposed
framework into robotic grasping system substantially improves picking success
rate and capability to withstand external disturbances.
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1 Introduction

For human manipulation, neural receptors inside human fingers provide information of mechanical
interaction and thus play a pivotal role in dexterous manipulations [1]. Similarly, artificial tactile
sensors have been adopted and demonstrated to be effective in robotic systems for tasks including
sensing object geometry [2], contact force [3, 4, 5], and detecting contact slippage [4, 6]. How-
ever, tactile sensing technology makes progress slowly for reasons including fabrication difficulties,
limited resolution, multiplexing complexity, etc. [7]. Apart from difficulties in hardware develop-
ment, the inherent high dimensionality of tactile signals also challenges algorithms on information
interpretation.

Among multi-modality tactile signals, detection of contact events (e.g. contact making, slippage,
etc.) is irreplaceable for action adaptation. Also, anticipatory control policies support dexterous
object manipulation by avoiding long time delays in human nervous system [1]. To mimic human
touch feedback, multiple works have put efforts in integrating tactile sensing into contact events
detection [4, 8]. However, few previous work has extensively studied contact event perception.
Neither thorough contact event categorization nor generalizability of analytical methods is presented
in previous works. Besides, for the nature of the high dimensionality of tactile signals, model-based
methods have exceptional difficulties in interpreting useful contact information from raw readings.
Data-driven methods are superior in learning patterns from high dimensional data. Therefore, some
works have explored interpreting contact slip with learning methods [6, 9, 10, 11]. As far as we
know, thorough contact event categorization and classification utilizing deep learning frameworks
have not been explored, given its important role in reactive grasp manipulations.

Two major problems that hinder the processing effectiveness of tactile readings are: 1) unavailable
suitable neural network; 2) lack of properly labelled tactile sequence data. Artificial functionality of
sensing contact events that provides ground truth labelling for tactile sequences is not yet available
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Figure 1: Examples of tactile raw images (first row) and the corresponding images of displacement
vector fields (second row) collected by FingerVision. Displacement vectors are represented in HSV
color specification space: Hue=Direction, Saturation=1, Value=Magnitude.

as a tool. Therefore, we design a scheme taking advantage of the human sense of touch to label
tactile sequences. Towards the goal of tactile signal interpretation, we propose a neural network
to process spatiotemporal readings and collect 6650 trials of contact sequence as a dataset. Raw
tactile images are retrieved from FingerVision (first named in [12]) tactile sensor we developed [13]
(see Figure 3(a)) that outputs deformation images of the elastomer. A robot can employ the model
in predicting and detecting contact events, preventing the robot from lifting target objects without
enough contact and guaranteeing stable grasping by applying extra gripping force when unstable
contact events appear. This work presents the first attempt to classify contact events into explicit
7 categories, and experimental results demonstrate that incorporating predictions and detections of
contact events can substantially improve the grasping capability.

Contributions: 1) Collect a dataset containing vision-based tactile sequences with careful labelling
by human expert is collected. 2) Propose a network capable of predicting and detecting tactile
contact events that is critical to robotic grasping systems.

2 Related Works

Contact event detection. Previous studies on human contact event detection have proven its im-
portance for the interaction with environment. During a reaching and picking operation, four types
of mechanoreceptors in human hand respond to contact events with different firing patterns, coop-
eratively extracting spatiotemporal features associated with mechanical contact events [1]. Most
of the previous works on contact events studies focused on slip detection. Analytical methods with
hand-crafted features have been presented in literatures. Heyneman et al. [14] proposed two features
based on spectral analyses extracted from dynamic tactile sensors that could be used to discriminate
hand/object and object/world slip. Yuan et al. [4] presented entropy feature of the deformation fields
from vision-based tactile sensor Gelsight to segment sensing area into slipping and stable regions
with properly selected thresholds.

Since the generalizability of these model-based methods with hand-crafted features were not tested
in large number of repetitions and on different contact properties, data-driven methods, by compar-
ison, are more appealing. Su et al. [10] proposed to classify tactile signals into slip and stable cat-
egories with a lightweight multilayer perceptron (MLP) using BioTac tactile sensor [15]. However,
classification performance was not adequate for robotic operations (accuracy around 80%). SVM
[16], random forest [17], Long-short-term-memory (LSTM) network [18] and convolutional LSTM
(ConvLSTM) [19] have been applied to various tactile sensors [9, 11, 20] to generate slip/nonslip
classifications. In this work, we provide a finer categorization of contact events by borrowing in-
sights of neuron firing patterns triggered by distingshed contact events during human manipulations
[1]. Based on these categories, we propose a classification network and conduct extensive evalua-
tions.

Video prediction. We are interested in predicting future frames of tactile image sequences in
an unsupervised learning fashion. Currently, the state-of-the-art models of video prediction are
PredNet [21] with a inter-frame difference feed-forward operation, network in [22] with pixel-
transformation-based module called Dynamic Neural Advection (DNA), etc. ConvLSTM [19] units
are building blocks of these two models, which extract spatial and temporal features simultaneously.
While both two models successfully predict future frames with more natural looks and fewer de-
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Figure 2: Network structure for contact events prediction. (a) Network structure.

fects, they are more suitable for videos involving only rigid body objects. In our work, we propose
a pixel motion network (“PixelMotionNet”) that explicitly predicts the velocity of each individual
pixel’s value that is added afterwards to the current frame to obtain a future frame. This network
shows superior performance on tactile sequence prediction by comparison.

3 Learning Contact Event Detection and Predicting

In this work, we propose a LSTM-based neural network architecture as a spatiotemporal video
sequence classifier for vision-based tactile data. In this section, a pipeline for tactile image sequence
processing is introduced first and then description of the neural network structure is given.

3.1 Tactile Image Preprocessing

Instead of directly feeding the raw tactile images into neural networks [23], we preprocess raw
images (see Figure 1) to acquire displacement fields. The sensor surface undergoes different defor-
mations while making contact with different objects. By tracking the motions of the markers and
then applying interpolation (for smoothness), the displacement vector fields are retrieved. In Figure
1, 2-D displacement vector fields are color-coded in HSV space to facilitate better visualization, in
which color and intensity represent direction and magnitude of vectors, respectively.

we extract tactile displacement images iteratively and then stack samples within a time window of
tw as a sequence. Let D[n] be the tactile image at nth sample in the sequence S, Ns be the length
of the tactile sequence and fs be the sampling frequency. D[n] has two channels, dX[n] and dY [n],
which are projection components of Vd along X and Y axes respectively, on a grid of size Nh×Nw.
Then the collected sequence S can be represented as

S = {D[n] | D[n] = (dX[n], dY [n])
T
, n = 0, 1, ..., Ns} (1)

where

dX[n]{i, j} = 〈~Vd{i, j}, ~e1〉~e1
dY [n]{i, j} = 〈~Vd{i, j}, ~e2〉~e2

i = 0, ..., Nw and j = 0, ..., Nh and ~e1, ~e2 denote the orthonormal bases for the X and Y axes on
the sensor’s coordinate system respectively.

In our configuration, the system runs at frequency fs = 30 Hz, and time window tw = 1 s, there-
fore each sequence contains 30 samples of deformation images. To further reduce the forward-
propagation time of the network, we resample the original sequences with a stride of 2, thus the
length of each resampled sequence Ns = 15. After interpolation, entries of each dX[n] and dY [n]
are of shape 30 × 30. Succinctly, we have D[n] ∈ RCh×Nh×Nw , where Ch denotes the number of
channels (Ch = 2 in our case).
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(a) (b)

Figure 3: FingerVision sensor (a) and objects used for data collection (b).

3.2 Network Architecture

The collected dataset is in the form of I = {S1, ..., SK}, with K being the number of samples.
Corresponding to each sequence, label yi ∈ RC is in the one-hot encoding, where C denotes the
number of classes. The proposed network in Figure 2 consists of two subnetworks: Contact event
detection network and video prediction network.

Contact Event Detection Network. The event detection network is a long-short-term-memory net-
work (LSTM). Input to this network is sequences of tactile images Sv = {Dv[1], ..., Dv[Ns]}, where
Dv[n] ∈ RM×1 and M = 1800. To estimate the probabilities of a sequence Sv that belongs to cer-
tain class, the last hidden state vector at position n = Ns is fed into two cascaded Fully-Connected
(FC) layers and a Softmax layer. To avoid overfitting in the training phase, two Dropout [24] regu-
larization layers with possibility of 0.5 are added, as depicted in Figure 2(b). Loss of the network is a
reduced multi-class cross entropy between ground truth encodings and the corresponding predicted
probability vectors.

Video Prediction Network. The network PixelMotionNet is composed of convolution/upsampling
and ConvLSTM modules with a skip connection and an additive operation, as illustrated in Figure
2(a). The model predicts the value expectation of each pixel in the next frame depending on spa-
tiotemporal features propagated from previous image frames, inspired by the pixel transformation
module presented in [22, 25]. Upsampling layers recover feature maps back to the original size
for the additive operation between the predicted pixel motion map and the current frame. Future
frame prediction can be seen as a small modification by the pixel motion prediction map on the
current frame. Different from [22], correlations between value changes of pixels in this study are
only constrained by the sizes of the convolution kernels, instead of a spatial extent parameter. For
multiple-frame prediction scenario, estimated next frames are circulated as new inputs back to the
prediction network iteratively.

The problem of spatiotemporal sequence prediction is to predict the most likely future sequence
with length Np given the previous Nin observations. For the PixelMotionNet, the loss function used
during the training phase is L2-norm of the difference between the ground truth images and the pre-
dicted ones. Suppose the future frame sequence is Ŝ, Ŝ is computed by the following transformation
function given an input sequence S = {D[1], ..., D[Nin]}

Ŝ = {D̂[1 +Nin], ..., D̂[Np +Nin]} = T (S, θv) (2)

and the loss is given by

L =
1

Np

Np∑
k=1

(D̂[k +Nin]−D[k +Nin])
2 (3)

where Nin and Np are lengths of the input frames and future frames, θv is the learned parameters of
the prediction network, T is the transformation function of the PixelMotionNet.

4 Data Collection

Tactile image sequences span across temporal and spatial dimensions. When the tactile sensing
area undergoes certain contact events, the tactile images evolve accordingly. In previous works,
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Figure 4: Example network input image sequences with different labels. Extra resampling with
stride of 2 is applied for visualization and saving space.

automatic and outcome-associated contact events labelling methods were adopted. In [10], an IMU-
based slip detecter was used to automatically annotate tactile readings during grasping into slip or
nonslip. In [6, 9, 23], external cameras monitor relative motions between grippers and objects, or
extra contact making/breaking detection networks are pre-trained as grasp success/failure discrimi-
nators. Object dropping from gripper is a consequence of unstable contacts, and the labelling of the
tactile image with success or failure of grasping is reasonable only for stability estimation. However,
dynamic grasping adjustment on the fly requires more temporal accuracy on labeling time windows
during when contact events happen.

In this work, labelling of data is handled by a human expert. The reason why human involved in this
procedure is that automatic data collection requires a heuristic rule system or pretrained discrimi-
nator to help label tactile squences, which is unavailable or asks for human prior to guide another
labeling process to traine the discriminator beforehand. In comparison, labeling with the aid of
human sense of touch is superior in temporal accuracy and more direct. When collecting each tac-
tile sequence, one hand of the expert holds object and drives motion that associates to a targeted
contact event on tactile sensing area. At the same time, the other hand triggers the corresponding
labelling action for this sequence. According to [1], for human, the time gap between tactile sensing
of external stimuli and execution of the muscle contraction is roughly 100 ms, therefore, roughly 3
frames could be mislabelled with our annotation method. We classify contact events into 7 sets with
unique contact behaviors spatiotemporally: 1) Translational slip: object sticks with the sensor sur-
face and slips translationally; 2) Rotational slip: object sticks with the surface and slips rotationally;
3) Rolling: object rolls on the surface with contact maintained (for round edge) or experiences short
contact breaking and remaking (for flat surface); 4) Stable: object moves with relatively small/no
motion on the surface; 5) Noncontact: no object is making contact with the surface; 6) Making
contact: object makes contact within the sequence; 7) Breaking contact: object breaks contact the
current sequence.

To guarantee the generalizability of the network trained on the dataset to wide range of objects with
different geometry, hardness, elasticity, texture, we selected 10 objects as shown in Figure 3. Apart
from properties of the selected objects, we applied forces and drove motions randomly by hand while
collecting the data. Force intensity is in the range of 0∼20Nand the duration is 0.5∼2s for each
interaction. For each class, we collected around 500 sequences. With skipping resampling (stride
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Table 1: Best performances and properties of models.
Model Acc(%) Prec (%) Rec (%) F1 (%) Tf (ms) Nin End Epoch

ConvLSTM 87.86 88.01 88.12 87.92 2.7 11 95
CNN+LSTM 92.14 92.19 92.13 92.1 32.7 10 78

LSTM 98.50 98.63 98.39 98.50 9.4 12 55

2) and removal of out-of-class samples, we generated 6650 tactile sequences in total. Examples of
tactile sequences with labels are shown in Figure 4. The collected dataset is publicly available at
https://sites.google.com/view/tactile-event-corl2019/home.

5 Experiments

In this section, we present settings of the network training and baseline comparisons first, then
describe the implementation of reactive grasping experiments with integration of the proposed net-
work.

5.1 Network Training and Baseline Comparison

We train separately the sub-networks considering better convergences and more convenient model
evaluations. After separate training, our cascaded network takes in tactile image sequences and
predicts jointly the probabilities of each class, as shown in Figure 2(a). All networks run on a
computer with Intel i7-6700K CPU and NVIDIA GTX 1080Ti GPU, with batch size of 16, Adam
optimizer [26] and early stopping mechanism to prevent overfitting. To regularize the networks in
the training phase, an extra weight decay with value of 0.05 is added. Considering the relatively
small dataset size, small initial learning rates 4 × 10−5 and 6 × 10−5 are employed and decreased
with training epoch for classification and video prediction network, respectively. For both training,
dataset was split into training set and validation set with ratio of 9 : 1 sampled randomly with a fixed
random seed. After split, resulting support for each class is evenly spread.

For classification network, two additional baselines are selected. One is ConvLSTM, of which we
flatten the output and then feed the vector to two FC layers. The another is a cascaded Convolution
neural network (CNN) with a vanilla LSTM (CNN+LSTM). Three models are all built with rela-
tively shallow structure bearing the goal to achieve real-time capability for decentralized processing
of tactile units.

For the video prediction network, quantitative evaluation of the proposed PixelMotionNet, state-of-
the-art models PredNet [21] and ConvLSTM [19] are presented. Models are trained only on a subset
of 4 classes in the dataset without rolling, making contact, and breaking contact data, considering
the degradation of video prediction performance when encountering these abrubtly varying events
with hardly observable temporal coherences. Mean square error (MSE) and Structural Similarity
Index (SSIM) [27] are metrics used for evaluation.

5.2 Performance Evaluation

Following performance evaluations are all on the validation set.

Classification network. Performances of LSTM and baseline models on tactile sequence classi-
fication are summarized in Table 1. Here evaluation metrics including forward propagation time
Tf , accuracy, average precision, average recall, average F1-score over all classes, Nin with which
models achieved the best performances, and end epochs during training are given.

From the experimental results, LSTM outperforms the other two baseline models in all aspects
except for the forward propagation time. ConvLSTM is superior in model size and acceleration
on forward propagation for its weights sharing convolution layer compared to the fully connected
structure in the vanilla LSTM. LSTM network overall achieves an accuracy peak of 98.50% costing
short forwarding time with Nin = 12.

Video prediction network. Quantitatively, from the results in Table 2, PixelMotionNet is supe-
rior in both metrics compared to the other two baselines. We notice that the farther the network
predicts, the larger the divergence between the prediction and the ground truth is. Furthermore,
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Table 2: Evaluation of models on predicting future frames, w.r.t. the future frame index.
Model Metrics 1 2 3 4 5

ConvLSTM MSE 0.642±2.2930 0.940±3.600 1.310±5.7200 1.560±7.4700 1.800±9.4300
SSIM 0.950±0.0100 0.940±0.0200 0.970±0.0300 0.850±0.0400 0.830±0.0400

PredNet MSE 0.304±0.1580 0.259±0.1660 0.341±0.2110 0.483±1.0900 0.649±1.3900
SSIM 0.976±0.0009 0.974±0.0040 0.967±0.0040 0.956±0.0059 0.940±0.0069

PixelMotionNet MSE 0.024±0.0005 0.061±0.0049 0.107±0.0142 0.179±0.1060 0.301±0.1680
SSIM 0.990±0.0001 0.988±0.0002 0.979±0.0006 0.970±0.0018 0.957±0.0029

Figure 5: Tactile sequence prediction by PixelMotionNet: ground truth sequence vs. predicted
sequence.

variations of predictions rise as future frame index increases, which is reasonable since the pixel
value expectations of the future frames are less predictable as the network predicts further into the
furture. Qualitatively, in Figure 5, the predicted future frames are illustrated aside with the ground
truth frames to show how well the prediction network performs on the validation set. The PixelMo-
tionNet captures the motion of force concentration and pixel values successfully (the result is more
than copying the last image of the input sequence). It can be also seen that as the models predict
more frames into the future, blurrier the images become, which is consistent with the quantitative
analysis.

5.3 Experiments in Real-time Grasping

Since what we concern more in practice is how well the contact event prediction and detection
networks help robotic manipulation, we directly perform real-time grasping experiments integrating
the proposed network instead of evaluating it on a test dataset. In the grasping experiments, we
install the FingerVision sensor on a Robotiq 2-finger gripper mounted on a UR10 robotic arm, as
shown in Figure 6(a). This section is supplemented with a video document.

Contact detection experiment. To evaluate the performance of our framework in detecting contact
making, we test the grasping success rate with and without our tactile contact detection on 10 objects
with different shapes, sizes, and materials, as presented in Figure 6(b). We first choose the grasping
sites and measure the required gripper openings with ruler manuly, with which the objects can be
narrowly grasped and lifted. Then we add a small noise with standard deviation σn = 1 mm to
simulate noises in non-contact measurements, e.g., vision, and test if the gripper can grasp and lift
the objects. For open-loop operation, the gripper closes until it reaches target opening, while for
close-loop grasp, the gripper adjusts its opening until the network indicates contact making event.
10 trials are executed on each object in both groups. The number of successful trials for each object
and average success rate are summarized in Table 3. The success rate of these 10 objects is 46%
without contact detection while 98% with the contact detection, reflecting that the contact detection
facilitates the grasping significantly.

Stable grasp under slippage. Complementary to the above experiments, a further ability test of
the proposed framework to help stabilize grasped object under external disturbance by predicting
and detecting slip occurrence is performed. In this experiment, a gripper with the tactile sensor
holds the object, then weights are loaded on top of the object one by one to trigger slip on the
contact surfaces, as illustrated in Figure 7. Different outcomes under increasing loads are given in
Figure 7(b) and (c), without and with slip prediction by our framework respectively. With same
initial gripper opening, while gripper lost stable contact after 3 weights were loaded without slip
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(a) Experiment scene (b) Grasping objects

Figure 6: Real-time grasping experiments are performed on 10 distinct-shape objects. Grasping
sites are denoted by blue dots in (b).

Table 3: Grasping Success Rates
Detection Box Ball Chess Yellow Bottle Cup Cone Rabbit Mouse Power Average

Without 2 3 6 6 2 6 5 6 5 5 46%
With 10 10 10 9 10 10 10 10 9 10 98%

prediction, it maintained stable grasp with all 7 weights loaded by actively controlling the gripper’s
opening when slip prediction is provided. Qualitatively, slip prediction mechanism enhances the
ability of the grasping system under external disturbances.

Overall, the experimental results suggest that the proposed framework is able to cover multiple
phases of robotic grasping and enhance grasping system performance substantially.

(a) Initial state (b) Slip occurs (c) Stable grasp

Figure 7: Slip happens in (b) without slip prediction while grasp remains stable with slip prediction
in (c) under increasing load. (Better shown in video)

6 Conclusion and Discussion

Humans manipulate objects with smooth transitions between contact phases by predicting and de-
tecting contact events. In this paper, we try to endow the robot with similar capabilities. To this
goal, we develop a contact event prediction and detection network, consisting of classification and
sequence prediction subnetworks. We collect a contact sequence dataset of size 6650 with careful
labelling by a human expert. Taking a separate training and evaluation scheme, the results show
that the subnetworks outperform baselines on inference tasks given tactile sequences. Jointly, we
integrate the networks together and implement real grasp experiments, of which the results show
that the proposed framework grant robotic grasping system with new skills and improve overall
performance.

In our work, we attempt to predict and detect contact events in the absence of visual modality and
proprioceptive input. However, we observe that for contact making and breaking, PixelMotionNet
is incapable of capturing changes that happen in relatively short time, which leads to an inaccurate
prediction. On one hand, this stems from limited frame rate of hardware set up. On the other
hand, vision and proprioceptive signals could potentially alleviate this problem by building a robotic
perception system based on multi-modality sensor fusion. This raises an interesting direction as our
future work.
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