
Kernel Trajectory Maps for Multi-Modal
Probabilistic Motion Prediction

Weiming Zhi 1 and Lionel Ott 1 and Fabio Ramos 1,2

1 Department of Computer Science, University of Sydney, Australia
2 NVIDIA, USA

{firstname.lastname}@sydney.edu.au

Abstract: Understanding the dynamics of an environment, such as the movement
of humans and vehicles, is crucial for agents to achieve long-term autonomy in ur-
ban environments. This requires the development of methods to capture the multi-
modal and probabilistic nature of motion patterns. We present kernel trajectory
maps (KTM) to capture the trajectories of movement in an environment. KTMs
leverage the expressiveness of kernels from non-parametric modelling by project-
ing input trajectories onto a set of representative trajectories, to condition on a se-
quence of observed waypoint coordinates, and predict a multi-modal distribution
over possible future trajectories. The output is a mixture of continuous stochastic
processes, where each realisation is a continuous functional trajectory, which can
be queried at arbitrarily fine time steps.

Keywords: Trajectory Learning, Motion prediction, Kernel methods

1 Introduction

Autonomous agents may be required to operate in environments with moving objects, such as pedes-
trians and vehicles in urban areas, for extended periods of time. A probabilistic model that captures
the movement of surrounding dynamic objects allows an agent to make more effective and robust
plans. This work presents kernel trajectory maps (KTM) 1, that capture the multi-modal, probabilis-
tic, and continuous nature of future paths. Given a sequence of observed waypoints of a trajectory
up to a given coordinate, a KTM is able to produce a multi-modal distribution over possible future
trajectories, represented by a mixture of stochastic processes. Continuous functional trajectories,
which are functions mapping queried times to trajectory coordinates, can then be sampled from the
output stochastic process.

Early methods to predict future motion trajectories generally extrapolate based on physical laws of
motion [1]. Although simple and often effective, these models have the drawback of being unable
to make use of other observed trajectories, or account for environment topology. For example,
physics-based methods fail to take into account that trajectories may follow a road that exists in a
map. To address this shortcoming, methods have been developed that map the direction or flow
of movements in an environment in a probabilistic manner [2, 3, 4, 5]. These methods are able
to output distributions over future movement directions or velocities, conditioned on the current
queried coordinate. Using these models, one can sequentially forward sample to obtain a trajectory.
This forward sampling approach makes the Markov assumption, assuming that the object dynamics
only depend on the current position of the object. These approaches discard useful information from
the trajectory history, and can accumulate errors from the forward simulation.

Motivated to overcome these aforementioned limitations of past methods, we utilise distance sub-
stitution kernels [6, 7] with the Fréchet distance [8, 9, 10] to project trajectory data onto a repre-
sentative set of trajectories to obtain high-dimensional projection features. Using a neural network
with a single hidden layer with the projection features, we learn a multi-modal mixture of stochastic
processes. The resulting mixture is also a stochastic process, and can be viewed as a distribution
over functions, where each realisation is a continuous functional trajectory. Figure 1 shows observed
trajectories and realised trajectory predictions, demonstrating the probabilistic and multi-modal na-

1Code available at https://github.com/wzhi/KernelTrajectoryMaps

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

https://github.com/wzhi/KernelTrajectoryMaps

Figure 1: Observed waypoints (blue) and predicted trajectories (green with magenta end-points)
sampled from KTM outputs. The ground truth is indicated in red. The probabilistic and multi-
modal nature of KTMs is able to capture the complexity of the motion patterns. Units in meters.

ture of KTMs. The probabilistic nature of the output provides an estimate for uncertainty, which can
be used for robust planning and decision making. We contribute the KTM, a method that:

1. is trajectory history aware and captures dependencies over the entire trajectory;

2. models the output as a mixture of stochastic process, providing a multi-modal distribution
over possible trajectories;

3. represents realised trajectories as continuous functions, allowing them to be queried at
arbitrary time resolution.

2 Related Work

Kernel Trajectory Maps (KTMs) learn motion patterns in an environment, and represent sampled
outputs as continuous trajectories. i.e. trajectories that can be queried at arbitrarily fine time resolu-
tions. Here we briefly revisit literature on modelling motion dynamics and continuous trajectories.

Motion Modelling. Some of the simplest approaches to model trajectory patterns are kinematic
models that make extrapolations based on a sequence of observed coordinates. Popular examples
include the constant velocity and constant acceleration models [11]. Some other attempts to un-
derstand dynamics take the approach of extending occupancy mapping beyond static environments
by building occupancy representations along time [12, 13, 14]. This approach tends to be memory
intensive, limiting scalability. Other recent approaches have incorporated global spatial [2, 3, 4, 5]
and temporal information [2, 15, 16]. The authors of [3] propose directional grid maps, a model
that learns the distribution of motion directions in each grid cell of a discretised environment. This
is achieved by fitting a mixture of von-Mises distributions on the motion directions attributed to
each cell. A similar method is also presented in [4], where a map of velocity distributions in the
environment is modelled by semi-wrapped Gaussian mixture models. Continuous spatiotemporal
extensions are provided in [2]. These methods are able to capture the uncertainty of motion at a
given point coordinate, but require forward sampling to obtain trajectories.

Continuous Trajectories. Continuous representations of trajectories, often modelled by a Gaus-
sian processes [17] or a sparse low rank approximations of Gaussian processes [18], have arisen in
previous works for trajectory estimation [19] and motion planning [20, 21]. In this work, we also
formulate a method to produce continuous trajectories, and then leverage continuous trajectories for
extrapolation, rather than the estimation and interpolation problems addressed in previous works.

3 Methodology

3.1 Problem Formulation and Overview

We work with continuous trajectory outputs, Ξ, and discrete trajectories inputs, ξ. Discrete trajec-
tories are an ordered set of waypoint coordinates indexed by time, ξ = {(xt, yt)}Tt=1. Continuous
trajectories, Ξ(·), are functions that map time to coordinates. Continuous trajectories can be dis-
cretised by querying at time steps, t = 1, . . . , T . In this paper, continuous trajectories, Ξ(·), are
defined by weighted combinations of features, φ(·), wherew contains the weight parameters. φ(·)
is dependent on the queried time. We discuss continuous trajectories in detail in subsection 3.3.

Given a dataset of N pairs of trajectories, D = {ξObs
n , ξTar

n }Nn=1, where ξObs is an observed input
trajectory, and ξTar is a target trajectory. The input contains coordinates up to a given time, and the

2

target is a continuation of the same trajectory thereafter. We seek to predict a probability distribution
over possible future trajectories beyond the given observed waypoints, p

(
Ξ∗(·)|ξ∗,D,φ(·)

)
, where

ξ∗ is a queried discrete trajectory, Ξ∗(·) is a predicted continuous trajectory starting from the last
time step of ξ∗. To find the distribution over future trajectories, we write the marginal likelihood as,

p(Ξ∗(·)|ξ∗,D,φ) =

∫
p(Ξ∗(·)|φ,w)p(w|ξ∗,D)dw. (1)

To evaluate the marginal likelihood, we learn p
(
w|ξ∗,D

)
and sample realisations of weights to

conduct inference (detailed in subsection 3.5). This learning can be summarised by the following
steps:

1. Construct high-dimensional feature vectors of observed discrete trajectories, by project-
ing to a set of representative trajectories, using discrete Fréchet [9] kernels (DF-Kernels).
(Subsection 3.2)

2. Concisely represent each trajectory as a continuous function, defined by a vector of weights
and predetermined basis functions. (Subsection 3.3)

3. Train a single hidden layer mixture density network (MDN) model on the projection fea-
tures, with weight vectors as targets, to obtain p

(
w|ξ∗,D

)
. (Subsection 3.4)

3.2 Generating Projection Features from Discrete Trajectories

In this subsection, we describe the conversion from discrete input trajectories to high-dimensional
kernel projections. We make use of distance substitute kernels [22, 6, 7], which are defined as
k(x, x′) = k(d(x, x′)), for kernel function, k(·), and distance measure d that is symmetric, i.e.
d(x, x′) = d(x′, x), and has zero diagonal, i.e. d(x, x) = 0. In this work, we use the discrete
Fréchet distance [9] substituted in a radial basis function (RBF) kernel. The Fréchet distance [8]
between curves is defined as,

Fr(P,Q) = inf
α,β

max
t∈[0,1]

||P (α(t))−Q(β(t))||, (2)

where P,Q are parameterisations of two curves, and α, β range over all continuous and monotone
increasing functions. We use a discrete approximation of the Fréchet distance, which provides a
distance metric between ordered sets of arbitrary length. The discrete Fréchet distance between two
trajectories can be computed efficiently in O(pq), where there are p and q waypoints in each of the
trajectories. The discrete Fréchet distance takes into consideration the ordering of waypoints, and
can in general distinguish a given trajectory with its reverse. An algorithm to compute the discrete
Fréchet distance is outlined in [9]. We name this kernel the discrete Fréchet (DF) kernel, given by:

kDF (ξ, ξ′) = exp

{
−
(
dDF (ξ, ξ′)

)2
2`DF

}
, (3)

where ξ and ξ′ are discrete trajectories, which can be of different lengths; `DF is the length scale
parameter of the RBF kernel; dDF is the discrete Fréchet distance.

We project each observed trajectory with DF-kernel onto a set of representative trajectories. We
obtain ϕn ∈ RMξ , a vector of projections from ξn onto {ξ̂1, . . . , ˆξMξ

}. A set of Mξ trajecto-
ries, {ξ̂1, . . . , ˆξMξ

}, are selected from the set of all observed input trajectories. We refer to the
selected trajectories as representative trajectories. An alternative view of this process is placing
basis functions over representative trajectories. The corresponding high-dimensional features over
all N observations are given by,

KN×Mξ
=

ϕ
T
1
...
ϕTN

 =

 kDF (ξ1, ξ̂1) . . . kDF (ξ1, ˆξMξ
)

...
. . .

...
kDF (ξN , ξ̂1), . . . , kDF (ξN , ˆξMξ

).

 (4)

We later input the projection features to a simple neural network model, and do not operate directly
on the Gram matrix. This can be viewed as learning combinations of fixed basis functions, similar

3

to sparse Gaussian process (GP) regression [18]. Selecting good representative trajectories can be
done in a manner similar to selecting inducing points for the Nyström Method [23, 24, 25, 26] in
sparse GPs. Even though randomly selecting a subset of trajectories from the observed trajectories
is sufficient, we outline a quick and simple sampling scheme, similar to the leverage score sampling
method [24]. Provided a square matrix of the discrete Fréchet distances between all trajectories in
a dataset of observation, DN×N , sort the columns of the matrix by its L2 norm, and select every
ith column, with i being a fixed stepsize. The corresponding trajectory of each column selected is
added to the representative set. The intuition is that almost identical trajectories would likely be
sorted adjacent to one another. Hence, our heuristic discourages selecting multiple almost identical
representative trajectories, and encourages selecting a more diverse set of representations.

Though not explored deeply in this work, projecting input trajectories to a fixed set of represen-
tative trajectories may also be exploited to efficiently condition on high-dimensional trajectories.
Challenges can arise from the ”vastness” of space trajectories can lie in. If trajectories in high-
dimensional space belong to only a few groupings, and in practice only occupy a limited volume in
high-dimensional space, inputs may be adequately represented by a not-too-large representative set.

The projected feature vectors generated are representations of our discrete input observations,
whereas continuous output trajectories sampled from KTMs are in concise functional forms. Details
for constructing functional trajectories are described in the next subsection.

3.3 Constructing Continuous Functional Trajectories

The conversion of target trajectories from ordered sets of coordinates to parameterised functions
can be viewed as finding a concise low-dimensional representation of discrete trajectories. We
assume that each output trajectory comprises independent functions, x(t) and y(t), that model the
x, y coordinates of the trajectory over time t. x(t) and y(t) give coordinates relative to the last
waypoint coordinate of the queried discrete trajectory. A target trajectory recorded from time T ′
to T , ξTar =

{
(xt, yt)}Tt=T ′ , is represented as weighted sums of projections to square exponential

basis functions placed at fixed times, Ξ(·) = (wT
xφ(·),wT

yφ(·)), whereφ(·) represents the features,
and wx, wy are weights. Squared exponential basis functions are smooth and often used as a least
informative default, though we are not restricted to using squared exponential bases. The weights
parameters are found by solving kernel ridge regression problems with constraint t = 0:

min
wx

T−T ′∑
n=1

(
xn −wT

xφ(tn)
)2

+ λ1||wx||2

(5a)

s.t. wT
xφ(0) = 0 (5b)

min
wy

T−T ′∑
n=1

(
xn −wT

yφ(tn)
)2

+ λ1||wy||2

(6a)

s.t. wT
yφ(0) = 0 (6b)

where λ1 is a regularisation coefficient, and φ(·) is a feature map defined by,

φ(t) = [k(t, t̂1), . . . , k(t, t̂Mt)] =

[
exp

(
− ||t̂1 − t||

2

2`t

)
, . . . , exp

(
− ||t̂Mt

− t||2

2`t

)]
(7)

where t̂1, . . . , ˆtMt is a set of Mt fixed points in time. We refer to these points as inducing points,
and center the basis functions on them. `t is a length scale of the square exponential bases. Note that
φ, projects to inducing points in time, and ϕ, projects to representative trajectories. By including
equations 5b and 6b as squared penalty terms, with penalty coefficient λ2, to equations 5a and 6a,
and equating derivatives to zero gives the solution to the minimisation problems,

wx =
(
λ1I + λ2φ(0)Tφ(0) +

N∑
n=1

φ(tn)Tφ(tn)
)−1(N∑

n=1

xnφ(tn)
)
,

wy =
(
λ1I + λ2φ(0)Tφ(0) +

N∑
n=1

φ(tn)Tφ(tn)
)−1(N∑

n=1

ynφ(tn)
)
.

(8)

We can solve the minimisation problem to obtain vector of weights, wx and wy , that parameterise
the function x(t) and y(t) respectively. In this work, we define the same set of inducing points for
x(t) and y(t), so both wx and wy are of dimensionality Mt, as there is a weight for each basis.

4

3.4 Learning a Mixture of Stochastic Processes

We extend our functional representation of trajectories to stochastic processes, akin to distributions
over functions. To model stochastic processes {xt}t and {yt}t, we fit distributions over the weight
parameters of x(t) and y(t). Namely, we wish to find the probability distribution, p(w|ξ∗,D),
where w is a vector containing both wx and wy , and ξ∗ is a queried trajectory. We consider the
concatenation of vectorswx andwy ,w which has 2Mt elements. To permit multiple modes over the
mean function, assume {xt}t and {yt}t can be expressed as a linear sum of R individual stochastic
processes, which we shall call components. We can express p(w|ξ∗,D) as a linear sum with mixture
coefficients αr[ϕ], where

∑R
r=1 αr[ϕ] = 1. Each αr[ϕ∗] is a function on ϕ∗, the projections of ξ∗

via the DF-kernel, detailed in subsection 3.2. Defining the shorthand αr := αr[ϕ
∗], we have,

p
(
w|ξ∗,D

)
= p(w|ϕ∗) =

R∑
r=1

αrpr(w|ϕ∗). (9)

In this work, we approximate the probability distribution of each element of w in each compo-
nent, given a queried trajectory ξ∗, to be independent Gaussian distributions. The mean, µr,m[ϕ∗],
and standard deviations, σr,m[ϕ∗], of the mth weight of the rth component are functions of
ϕ∗. For brevity, we use the shorthand µr,m := µr,m[ϕ∗] and σr,m := σr,m[ϕ∗]. For the
mth weight of the rth component, we have pr(wm|ϕ∗) = N (µr,m, σ

2
r,m). Assuming weights

are independent, the conditional probability over the vector of weights, of each component r, is
pr(w|ϕ∗) =

∏2M
m=1N (µr,m, σ

2
r,m). We subsequently derive a loss function to learn µr,m, σr,m,

and αr, for all r and m.

Let us consider the set of N observations of input and target trajectories, D = {(ξObs, ξTar)n}Nn=1.
At the nth observation, ξObs

n is projected using the DF-kernel to obtain high-dimensional projections,
ϕn. Weights,wn, that parameterise ΞTarn , continuous representations of discrete target trajectories,
are then found by evaluating equation 8. Assuming that observations are independent and identically
distributed, we can write the conditional density as,

p({wn}Nn=1|{ϕn}Nn=1) =

N∏
n=1

p(wn|ϕn) =

N∏
n=1

R∑
r=1

αr[ϕn]

2Mt∏
m=1

N (µr,m, σ
2
r,m) (10)

Fitting the conditional probabilities over weight parameters can be done by maximising 10. We
define the loss function as,

L = − log
{
p({wn}Nn=1|{ϕn}Nn=1)

}
(11)

= −
N∑
n=1

log
{ R∑
r=1

exp
[

log(αr)− 2M log(2π) +

2M∑
m=1

log(σr,m)−
2M∑
m=1

(wn,m − µr,m)2

2σ2
r,m

]}
(12)

Constraints
∑R
r=1 αr = 1 can be enforced by applying a softmax activation function, αr =

exp(zar)∑R
r=1 exp(zar)

, where zar denotes the network outputs of αr. To enforce σr,m ≥ 0, an exponential
activation function, σr,m = exp(zσr,m), is applied to the network outputs corresponding to standard
deviation. By utilising the expressiveness of our projection features, a simple mixture density net-
work [27, 28], with a single hidden layer can then be used to learn the functions of parameters αr[ϕ],
µr,m[ϕ], σr,m[ϕ], by minimising our loss function via Stochastic Gradient Descent (SGD).

3.5 Conducting Inference and Obtaining Trajectory Realisations

After learning the functions αr[ϕ], µr,m[ϕ], and σr,m[ϕ] as described in subsection 3.4,
we have p

(
w|ξ∗,D

)
via equation 9, and the assumption of independent Gaussian dis-

tributed weights. Given a vector of feature maps, φ(t), to evaluate p(Ξ∗(t)|ξ∗,D,φ(t)) =∫
p(Ξ∗(t)|φ(t),w)p(w|ξ∗,D)dw, we have p(Ξ∗(t)|φ(t),w) = N (wTφ(t), s2I) [29], where s

denotes the standard deviation of the observation error. It is possible to estimate s2 via p(s2|D) ∝
p(D, s2) =

∫
p(D|s2,w)p(w)p(s2)dw. Like [30] and [31], in this work, we focus on the deter-

ministic observation case, where s = 0.

5

The inference process to sample continuous trajectories Ξout is outlined in algorithm
1. Under the assumption of deterministic observations, we evaluate p(Ξ∗|ξ∗,D,φ) =∫
p(Ξ∗|φ,w)p(w|ξ∗,D)dw, by randomly sampling p

(
w|ξ∗,D

)
, and obtaining realisations of con-

tinuous trajectories Ξout(·) ∼ p(Ξ∗(·)|φ(·),w) by evaluating (wT
xφ(·),wT

y φ(·)). We can obtain
a discrete trajectory ξout by querying Ξout(·) at times, t = [t1, . . . , tn], i.e. ξout ← Ξout(t).

Algorithm 1: KTM Inference
input : ξ∗,αr[ϕ], µr,m[ϕ], σr,m[ϕ], ϕ(·), φ(·)
output: Realised Continuous Trajectory, Ξout(·)

1 begin
2 ϕ∗ ← ϕ(ξ∗) // generate projections with DF-kernel
3 Evaluate αr[ϕ∗], µr,m[ϕ∗], σr,m[ϕ∗] // Find parameters of mixture of SP

4 p(w|ϕ∗)←
∑R
r=1 αrpr(w|ϕ∗)

5 w ∼ p(w|ϕ∗) // Sample p(w|ϕ∗)
6 Ξout(·)← (wT

xφ(·),wT
y φ(·)) // retrieve continuous trajectory

7 end

4 Experiments and Discussions

We wish to highlight the benefits KTMs bring. In particular: (1) map-awareness; (2) trajectory
history awareness; (3) multi-modal probabilistic predictions, with continuous trajectory realisations.

4.1 Experimental Setup

We run experiments on both simulated and real-life trajectory datasets, including:

1. Simulated dataset (S): Simulated trajectories of pedestrians crossing a road, similar to the
simulated datasets used in [3]

2. Edinburgh dataset [32] (E): Pedestrian trajectories in the real-world on September 24th

3. Lankershim dataset [33] (L): Subset of valid vehicle trajectories in the region between x-
coordinates −100m∼ 100m and y-coordinates 250m∼ 500m

In experiments, each whole trajectory is segmented with an input-target ratio of 1:3, 1:1, or 3:1.
The subset of the Lankershim dataset contains 6580 pairs of trajectories; Edinburgh 5972; simulated
600. We use R = 4 mixture components, and length scale `DF = 100, for the DF-kernel, and
`t = 10 for the square exponential bases. Bases are centered evenly at 2.5 time step intervals for the
Edinburgh dataset and 5 for the simulated and Lankershim datasets. Half the trajectories are used
as representative trajectories. To adequately evaluate the ability of KTMs, we ensure representa-
tive trajectories are not included in testing. We randomly select 20% of trajectories outside of the
representative set as test examples, or 10% of the total. To account for stationary vehicles, for the
Lankershim dataset, we only evaluate trajectories that move more than 20m in 20 time steps. All
values reported in metres. We train for 80 epochs, then evaluate on the test set. Inference can be
conducted efficiently, with an average time below 0.2 sec for predicting mixture of processes, on all
of our experiments with a standard desktop. Experiments are repeated 5 times, each with randomly
selected test examples. We give quantitative results on the following realised trajectories from the
output:

1. KTM-Weighted Average (KTM-W): A linear combination of the mean of each mixture
component, weighted by the mixture coefficient;

2. KTM-Closest (KTM-C): The mean trajectory of the mixture component that is the closest
to ground truth. Selecting the trajectory in this manner assumes the decision of which
option, out of the four possible trajectories to take, is made correctly. This allows us to
evaluate the quality of the predicted trajectory, without taking into account of the quality of
decision-making;

6

3. Constant Velocity (CV): The trajectory is generated by a model that the velocity remains
constant beyond the observations;

4. Directional Grid Maps (DGM): Directional grid map [3] is a recent method capable of
producing directional predictions. We conduct forward sampling on a DGM, with a step
size equal to that of the last observed step.

The metrics used to evaluate our trajectories are: (1) Euclidean distance (ED) between the end
points of predicted and ground truth trajectories; (2) Discrete Fréchet distance (DF) [9, 10] between
predicted and ground truth trajectories. Continuous trajectories are discretised for comparison.

4.2 Map-Awareness

Kernel Trajectory Maps learn to predict trajectories from a dataset of observed trajectories, which
contain rich information about the structure of the environment, such as obstacles and designated
paths. Methods that learn from a set of observed trajectories are intrinsically map-aware [11], and
can account for environment geometry. Dynamics based models are often map-unaware, and are not
able to anticipate a future changes in direction due to environmental factors, such as a turning road.

An example of map-awareness is demonstrated in figure 2. We sample realisations from the pre-
dicted mixture of a KTM, and compare it against the constant velocity (CV) model and ground truth
trajectory. The sharp turn the ground truth trajectory takes is due to the road structure in the dataset,
and there is little indication from the behaviour of the observed trajectory. The turn is not captured
by the CV model, but is captured by the KTM.

Table 1 contains the quantitative results of methods described in subsection 4.1. We predict future
trajectories over a horizon of 20 time steps. We see that map-aware methods, such as KTM and
DGM, tend to outperform the CV model. Notably the CV model performs strongly for the Lanker-
shim dataset, outperforming all but the KTM-C method, due to vehicle trajectories in that dataset
being approximately constant velocity over small distances. The Edinburgh dataset contains pedes-
trian motion trajectories which are much more unstructured and unrestricted. Thus, KTM-C and
KTM-W perform significantly stronger than the CV model.

Figure 2: 1000 sampled tra-
jectories from output mix-
ture (green with magenta end-
points) anticipate the turn, as
shown by the ground truth
(red). There is little indica-
tion of the turn from observed
waypoints (blue). The CV
(yellow) model does not.

KTM-C KTM-W CV DGM
(S) ED 1.3±0.1 1.8±0.2 6.5±0.3 4.4±0.1

DF 1.4±0.1 1.9±0.1 6.3±0.3 4.4±0.1
(E) ED 0.7±0.1 0.9±0.1 1.4±0.1 1.1±0.1

DF 0.8±0.1 0.9±0.1 1.4±0.1 1.1±0.1
(L) ED 5.8±0.3 11.5±0.2 11.3±0.2 11.4±0.2

DF 6.3±0.3 11.5±0.5 10.7±0.2 11.4±0.2

Table 1: The performance of KTMs compared to a baseline
CV model and an map-aware DGM model [3], on the Simu-
lated dataset (S), the Edinburgh dataset (E), and the Lankershim
dataset (L). We see that KTM-C outperforms the other methods,
while KTM-W also gives a strong performance. KTMs benefit
from map and trajectory history awareness. Note that the CV
model performs well on the Lankershim dataset (L) due to the
vehicle trajectories being approximately constant velocity of rel-
atively short time horizons. Results given in meters.

4.3 Trajectory History Awareness

Recent attempts to encode multi-modal directional distributions in a map [3, 4, 5] largely condition
only on the most recent coordinate, and are unable to utilise the full trajectory history of the object.
KTMs are trajectory history aware, as demonstrated by trajectories sampled from a KTM trained
on the simulated dataset, shown in figure 4. The predicted trajectories sampled vary significantly,
though the positions of the last observed location are similar. Methods that condition solely on
the most recent coordinate, can not differentiate between the two observed trajectories. The latter
portion of the observed trajectories are similar, but with dissimilar early portions. By exploiting
DF-kernels, KTMs give predictions conditioned on the entire trajectory. Although directional flow
methods, such as DGM [3], are able to capture the general movement directions of dynamic objects,

7

Figure 3: 50 realisations of x(t) and y(t) (left and center respectively), and the corresponding
predicted trajectories (right). x(t) and y(t) give coordinates relative to the last observed coordinate.

Figure 4: Examples of simulated trajectories (left). All trajectories starting at the lower left terminate
at the upper right, and those starting at the lower right terminate at the upper left. The ground truth
of the two trajectories, one starting at the lower left, the other at the lower right, are shown (center).
Though the latest waypoints of both are similar, the KTM predictions are visibly different.

trajectories can only be obtained by making the Markov assumption and forward sampling. This
process is sensitive to errors, and recursive behaviour can also arise. For example, a prediction at
A points to B, which in turn may give a prediction pointing back to A. KTMs allow for realisations
of entire trajectories, without forward sampling or making Markovian assumptions. The trajectory
history awareness of KTMs explain the strong performance of KTMs relative to the DGM method,
specifically on the simulated dataset, as shown in table 1.

4.4 Multi-modal Probabilistic Continuous Outputs

KTMs output mixtures of stochastic processes, corresponding to multi-modal distributions over
functions. This provides us with information about groups of possible future trajectories with as-
sociated uncertainty. Figure 3 illustrates sampling functions from the outputted mixtures. The left
and center plots show realisations of the functions x(t) and y(t), and the right plot shows the corre-
sponding trajectory. There is clear multi-modality in the distribution over future trajectories.

A major benefit of KTMs is that realisations of the output are continuous functional trajectories.
These are smooth and continuous, and do not commit to an a priori resolution. We can query any
time value to retrieve predicted coordinates at the given time point. The functional representation
with square exponential bases is inherently smooth, allowing us to operate on the derivatives of
displacement. This property permits us to constrain certain velocity, acceleration, or jerk values.

5 Conclusion

In this paper, we introduce Kernel Trajectory Maps (KTM), a novel multi-modal probabilistic motion
prediction method. KTMs are map-aware and condition on the whole observed trajectory. By
projecting on a set of representative trajectories using expressive DF-kernels, we can use a simple
single hidden layer mixture density network to arrive at a mixture of stochastic processes, equivalent
to a multi-modal distribution over future trajectories. Each realisation of the mixture is a continuous
trajectory, and can be queried at any time resolution. We recover whole trajectories without resorting
to forward sampling coordinates. Empirical results show the awareness of the map and trajectory
history improves performance when compared to a CV and map-aware, but not trajectory history
aware, DGM model. The multi-modal and probabilistic properties of KTMs are also apparent from
the experimental results. Future work will look into embedding social dynamics, and interaction
between multiple predicted trajectories, into the KTM framework.

8

Acknowledgements

The authors thank Rafael Oliveira and Philippe Morere for the fruitful discussions. W. Zhi is sup-
ported by a Commonwealth of Australia Research Training Program Scholarship.

References
[1] X. Rong Li and V. P. Jilkov. Survey of maneuvering target tracking. part i. dynamic models.

IEEE Transactions on Aerospace and Electronic Systems, 2003.

[2] W. Zhi, R. Senanayake, L. Ott, and F. Ramos. Spatiotemporal learning of directional uncer-
tainty in urban environments with kernel recurrent mixture density networks. IEEE Robotics
and Automation Letters, 2019.

[3] R. Senanayake and F. Ramos. Directional grid maps: modeling multimodal angular uncertainty
in dynamic environments. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2018.

[4] T. P. Kucner, M. Magnusson, E. Schaffernicht, V. H. Bennetts, and A. J. Lilienthal. Enabling
flow awareness for mobile robots in partially observable environments. IEEE Robotics and
Automation Letters, 2017.

[5] L. McCalman, S. O’Callaghan, and F. Ramos. Multi-modal estimation with kernel embeddings
for learning motion models. In IEEE International Conference on Robotics and Automation,
2013.

[6] B. Haasdonk and C. Bahlmann. Learning with distance substitution kernels. In DAGM-
Symposium, Lecture Notes in Computer Science, 2004.

[7] B. Schölkopf. The kernel trick for distances. In Advances in Neural Information Processing
Systems, 2000.

[8] M. M. Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico
di Palermo (1884-1940), 1906.

[9] T. Eiter and H. Mannila. Computing discrete fréchet distance. Technical report, 1994.

[10] P. C. Besse, B. Guillouet, J. Loubes, and F. Royer. Review and perspective for distance-based
clustering of vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems,
2016.

[11] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras. Human
motion trajectory prediction: A survey. CoRR, 2019.

[12] D. Arbuckle, A. Howard, and M. Mataric. Temporal occupancy grids: a method for classifying
the spatio-temporal properties of the environment. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2002.

[13] T. Kucner, J. Saarinen, M. Magnusson, and A. J. Lilienthal. Conditional transition maps:
Learning motion patterns in dynamic environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013.

[14] Z. Wang, R. Ambrus, P. Jensfelt, and J. Folkesson. Modeling motion patterns of dynamic
objects by iohmm. IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014.

[15] T. Krajnk, J. P. Fentanes, J. M. Santos, and T. Duckett. Fremen: Frequency map enhance-
ment for long-term mobile robot autonomy in changing environments. IEEE Transactions on
Robotics, 2017.

[16] S. Molina, G. Cielniak, T. Krajnı́k, and T. Duckett. Modelling and predicting rhythmic flow
patterns in dynamic environments. In Towards Autonomous Robotic Systems, 2018.

[17] C. E. Rasmussen. Gaussian Processes in Machine Learning. 2004.

9

[18] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances
in Neural Information Processing Systems, 2006.

[19] T. Barfoot, C. Tong, and S. Särkkä. Batch continuous-time trajectory estimation as exactly
sparse gaussian process regression. In Robotics: Science and Systems Conference, 2014.

[20] Z. Marinho, B. Boots, A. Dragan, A. Byravan, G. J. Gordon, and S. Srinivasa. Functional gra-
dient motion planning in reproducing kernel hilbert spaces. In Robotics: Science and Systems,
2016.

[21] G. Francis, L. Ott, and F. Ramos. Stochastic functional gradient for motion planning in contin-
uous occupancy maps. In IEEE International Conference on Robotics and Automation, 2017.

[22] A. Woznica, A. Kalousis, and M. Hilario. Distances and (indefinite) kernels for sets of objects.
In International Conference on Data Mining (ICDM), 2006.

[23] C. K. I. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems, 2001.

[24] P. Drineas and M. W. Mahoney. On the nyström method for approximating a gram matrix for
improved kernel-based learning. Journal of Machine Learning Research, 2005.

[25] A. E. Alaoui and M. W. Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In Advances in Neural Information Processing Systems, 2015.

[26] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the nyström method. Journal
of Machine Learning Research, 2012.

[27] C. M. Bishop. Mixture density networks. Technical report, Dept. of Computer Science and
Applied Mathematics, Aston University, 1994.

[28] A. Brando. Mixture density networks (mdn) for distribution and uncertainty estimation. Tech-
nical report, Universitat de Barcelona, 2017.

[29] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
2006.

[30] N. De Freitas, A. J. Smola, and M. Zoghi. Exponential regret bounds for gaussian process ban-
dits with deterministic observations. In International Coference on International Conference
on Machine Learning, 2012.

[31] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas. Bayesian multi-scale optimistic optimization.
In AISTATS, 2014.

[32] B. Majecka. Statistical models of pedestrian behaviour in the forum. Technical report, School
of Informatics, University of Edinburgh, 2009.

[33] Lankershim boulevard dataset. Technical report, Federal Highway Administration, 2007.

10

	Introduction
	Related Work
	Methodology
	Problem Formulation and Overview
	Generating Projection Features from Discrete Trajectories
	Constructing Continuous Functional Trajectories
	Learning a Mixture of Stochastic Processes
	Conducting Inference and Obtaining Trajectory Realisations

	Experiments and Discussions
	Experimental Setup
	Map-Awareness
	Trajectory History Awareness
	Multi-modal Probabilistic Continuous Outputs

	Conclusion

