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Abstract

Can a text classifier generalize well for datasets where the text length is different? For exam-
ple, when short reviews are sentiment-labeled, can these transfer to predict the sentiment of
long reviews (i.e., short to long transfer), or vice versa? While unsupervised transfer learn-
ing has been well-studied for cross domain/lingual transfer tasks, Cross Length Transfer
(CLT) has not yet been explored. One reason is the assumption that length difference is
trivially transferable in classification. We show that it is not, because short/long texts
differ in context richness and word intensity. We devise new benchmark datasets from
diverse domains and languages, and show that existing models from similar tasks cannot
deal with the unique challenge of transferring across text lengths. We introduce a strong
baseline model called BaggedCNN that treats long texts as bags containing short texts.
We propose a state-of-the-art CLT model called Length Transfer Networks (LeTraNets)
that introduces a two-way encoding scheme for short and long texts using multiple training
mechanisms. We test our models and find that existing models perform worse than the
BaggedCNN baseline, while LeTraNets outperforms all models.

1. Introduction

Text classification can be categorized according to the text length of the data, from sentence-
level classification (Kim, 2014) to document-level classification (Manevitz and Yousef, 2001;
Yang et al., 2016). One kind of such task is sentiment classification (Pang et al., 2002), a
subtask of sentiment analysis (Pang and Lee, 2007; Liu, 2012) where we are to predict the
sentiment/rating given a review written by a user. In some domains, the length of these
reviews varies widely. For example, well-known review websites in East Asia such as Naver
Movies1 and Douban Movies2 provide two channels for users to write reviews, depending
on their preferred length. Figure 1 shows the review channels provided in Naver Movies.

The first channel is a short review channel, which contains large amounts of reviews, and
enforces users to write short reviews accompanied by rating labels. Although labeled, these
reviews lack expressiveness to extract useful information. In contrast, the second channel
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(a)

(b)

Figure 1: Short review (a) and long review (b) channels for users to write reviews in Naver
Movie website. Highlighted areas emphasize the difference in number of reviews,
review text length, and sentiment label availability.

is a long review channel, which contains few long and detailed reviews with descriptions of
different aspects about the product/service. Despite being more expressive, long reviews are
often not accompanied by sentiment labels, which most supervised sentiment classification
models would require.

We study the “transferability” from one review channel to the other. That is, we try to
answer whether a text classifier trained on a dataset with length α can predict a text with
length β, where α and β differ by a large margin (e.g., sentences versus paragraphs). This
is an important question because there are scenarios where we may have better and more
sufficient labeled text data, but we want to classify unlabeled texts with different length.
For long to short transfer, more expressive long reviews can be leveraged for training a
sentiment classifier for short and context-sparse reviews. For short to long transfer, large
amounts of short reviews can be used as supervision to train a classifier for long reviews.

To motivate the non-triviality of such transfer, we train an out-channel (OC) classi-
fier that uses short texts to predict long texts, and an in-channel (IC) classifier that uses
long texts on both training and prediction. We also experiment conversely. We use three
kinds of classifiers: bag-of-words (BoW), convolutional neural networks (CNN; Kim, 2014),
and BERT multilingual (Devlin et al., 2018). We calculate the transfer loss (TL; Glorot
et al., 2011), which is the difference between the out-channel and in-channel classifier er-
rors (i.e., TL = 0 means trivially transferable). Table 1 shows that, though using a better
inductive bias such as CNN and BERT seems to slightly lower TL, it remains significantly
high, consistently suggesting that length transfer is non-trivial.

Our first contribution is thus to define a new task called Cross Length Transfer (CLT).
CLT is a task similar to Cross Domain (Blitzer et al., 2007) and Cross Lingual Transfer
(Mihalcea et al., 2007) where the difference between the source and target texts is the
text length, having non-trivial influence that is shown in Table 1. Our second contribu-
tion is to show that models from similar tasks (e.g. Cross Domain Transfer and Multiple
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Mov en Res en Mov ko
L>S S>L L>S S>L L>S S>L

BoW 4.2 9.8 5.8 9.8 17.5 13.0
CNN 5.5 5.7 5.8 11.8 6.3 14.5
BERT 5.3 5.7 4.5 8.5 3.0 10.0

LeTraNets -1.2 0.5 3.2 -1.5 0.6 4.5

Table 1: Transfer loss (TL) of different classifiers for each transfer task for all datasets
described in Section 2.1.

Instance Learning) are not effective for CLT and even yield negative transfer, as we elabo-
rate in Section 2.2 and empirically show in Section 4. Finally, we present two new models
specifically for CLT: a strong baseline called BaggedCNN that treats long texts as bags
containing short texts, and a state-of-the-art CLT model called Length Transfer Networks
(LeTraNets). LeTraNets enables a two-way encoding scheme using multiple training
mechanims, and accepts both short and long text inputs, where one such input is created
artificially through concatenation or segmentation. Table 1 shows that LeTraNets has
the best transfer loss, and sometimes perform better than in-channel classifier (when TL is
less than zero).

We test our models using the multiple benchmark datasets we gathered and show that
models from other tasks perform worse than our proposed strong baseline and that Le-
TraNets performs the best among all models. To the best of our knowledge, we are the
first to study CLT.

2. Cross Length Transfer

Cross Length Transfer (CLT) is an unsupervised transfer learning task in which the setting
is that the sampling distributions of the training and test data are different because the
texts lengths are different (e.g., sentences and paragraphs).

Formally, we suppose two sets of texts: a source set S in which we have labels, and
a target set T in which we want to predict the labels. Moreover, we know that the text
length distributions of S and T are different, such that an equality case exists as |S| = r|T |,
where |X | is the mean length of the set X , and r 6= 1 is a non-negative rate of difference
between two mean lengths. There are two subtasks: long to short transfer where r > 1
and thus S contains longer texts, and short to long transfer where r < 1 and thus S
contains shorter texts. A CLT model should effectively learn to predict the labels of T , on
both scenarios.

A concrete and simple example is when S contains labeled sentence reviews and T
contains unlabeled paragraph reviews. A CLT model uses S for training to effectively
predict labels of reviews in T . Also, the same CLT model should be able to do effective
prediction vice versa, i.e., when S are paragraph reviews and T are sentence reviews.

Previous unsupervised transfer learning tasks, i.e. Cross Domain Transfer (Blitzer et al.,
2007) and Cross Lingual Transfer (Wan, 2009), are similar to CLT but have concrete dif-
ferences. Generally, the goal of these tasks is to map semantic domains, contextually or
linguistically, of both S and T into a shared space, by aligning the vocabulary (Pan et al.,
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Dataset Length #Train #Test #Unlabeled Words/Instance

Mov en
short 1600 400 8000 22
long 1600 400 8000 372

Res en
short 1600 400 8000 22
long 1600 400 8000 249

Mov ko
short 1600 400 4000 12
long 1600 400 0 57

Table 2: Dataset statistics.

2010; Shi et al., 2018), expanding domain-specific lexicons (Qiu et al., 2009; He et al., 2011),
generating labeled samples (Yu and Jiang, 2016), and learning to indiscriminate between
domains (Chen et al., 2016; Liu et al., 2018). These methods are generally symmetric; i.e.,
even when S and T interchange, the same method can be applied easily.

However, in CLT, both S and T are already in the same contextual and linguistic
domains, thus previous methods would not work. Also, CLT brings two new challenges
against devising a symmetric model. First, texts with different context richness may have
different properties they focus on: hierarchical structures (Yang et al., 2016) may be more
important for document-level reviews while finding lexical/phrasal cues (Kim, 2014) may
be more important for sentence-level reviews. Second, words on texts with different lengths
may have different semantic intensity. For example, “good” may have a very high positive
sentiment intensity on short texts, and a relatively low positive sentiment intensity on long
ones.

2.1. Benchmark Datasets

We provide three pairs of short/long datasets from different domains (movies and restau-
rants) and from different languages (English and Korean) suitable for the task: Mov en,
Res en, and Mov ko. Most of the datasets are from previous literature and are gathered
differently The Mov en datasets are gathered from different websites; the short dataset
consists of hand-picked sentences by Pang and Lee (2005) from document-level reviews
from the Rotten Tomatoes website, while the long dataset consists of reviews from the
IMDB website obtained by Tang et al. (2015b). The Res en dataset consists of reviews
from Yelp, where the short dataset consists of reviews with character lengths less than 140
from Amplayo and Hwang (2017), while reviews in the long dataset are gathered from Tang
et al. (2015b). We also share new short/long datasets Mov ko, which are gathered from
two different channels, as shown in Figure 1, available in Naver Movies.

Unlike previous datasets (Blitzer et al., 2007; Glorot et al., 2011) where they used
polarity/binary (e.g., positive or negative) labels as classes, we also provide fine-grained
classes, with five classes of different sentiment intensities (e.g., 1 is strong negative, 5 is
strong positive), for Res en and Mov ko. Following the Cross Domain Transfer setting
(Blitzer et al., 2007; Ziser and Reichart, 2017; Ruder and Plank, 2018), we limit the size
of the dataset to be small-scale to focus on the main task at hand. This ensures that
models focus on the transfer task, and decrease the influence of other factors that can
be found when using larger datasets. Finally, following Glorot et al. (2011), we provide
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additional unlabeled data for those models that need them (Blitzer et al., 2007; Ziser and
Reichart, 2017), except for the long dataset of Mov ko, where the labeled reviews are
very limited. We show the dataset statistics in Table 2, and share the datasets here:
https://github.com/rktamplayo/LeTraNets.

2.2. Possible Existing Solutions

Cross Domain Transfer (CDT) CDT offers models that effectively transfer domain-
independent features from two different domains. The most popular non-neural CDT model
is Structural Correspondence Learning (SCL; Blitzer et al., 2007), a method that identifies
feature correspondence from different domains using pivot features. A recent neuralized
extension is Neural SCL (NeuSCL; Ziser and Reichart, 2017), in which an autoencoder
module is integrated to SCL. The CDT literature is vast, and we refer the readers to
Pan et al. (2012) and Tan et al. (2018) for overviews. Although these models may see
improvements due to a possible difference in vocabulary (especially when the review channels
are different), these improvements may be marginal since the domain of the datasets is the
same.

Multiple Instance Learning (MIL) MIL is a task where given the labels of a bag
of multiple instances, we are to label the individual instances (Zhou et al., 2009). In the
text classification domain, MIL is often devised as segment-level classification (Kotzias
et al., 2015; Angelidis and Lapata, 2018), where documents are bags and sentences in the
documents are segments. The most recent MIL model is the Multiple Instance Learning
Network (MILNet; Angelidis and Lapata, 2018), where they used attention-based polarity
scoring to identify segment labels. MIL models can be used in long to short transfer, where
we assume that segment labels in long texts can be used to label short reviews. However,
they (a) assume that segments from long data, which rely on inter-sentence semantics, are
comparable to self-contained short texts, and (b) are ineffective on short to long transfer
because it needs multiple sentences to train components of the model for document-level
classification.

Weak Supervision A simple yet possible solution for short to long transfer is a three-
step approach where we (1) cluster the short texts into several long texts, (2) infer the
class labels of the clusters, and (3) use the labeled clusters as weak supervision to create
a classifier. Micro Aspect Sentiment Model (MASM; Amplayo and Hwang, 2017) does (1)
and (2) automatically. For (3), we can train a classifier such as CNNs (Kim, 2014) to predict
labels of long texts. One critical issue of this solution is that since both clustering and class
labels are inferred, there is a high chance that at least one of them is incorrect. This thus
creates compounding errors that decrease the performance of the model.

3. Our Models

3.1. BaggedCNN: A Strong Baseline

We present BaggedCNN, a simple yet strong baseline to the CLT task. BaggedCNN is a
model derived from MILNet (Angelidis and Lapata, 2018). MILNet uses CNN to encode
segments, BiGRU (Bahdanau et al., 2014) to calculate attention weights, and gated polarity
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to calculate document-level probabilities. We refer the readers to the original paper for more
details. We improve using two key modifications: (a) removing the sequential connections
(i.e., BiGRU) between segments, and (b) using a single classifier for both the segments and
full document.

For each document divided into segments D = {Si}, BaggedCNN starts by encoding
the segments using a CNN classifier called CNNbag. Then, we pool the segment encodings
into one vector using attention mechanism. Finally, we use a logistic regression classifier
that can be used to classify either the segments or the document. This is possible since the
vectors of both segments and document are in the same vector space:

si = CNNbag(Si)

asi = softmax(v>tanh(Wasi + ba))

d =
∑
i

si ∗ asi

yd = softmax(Wcd+ bc)

ysi = softmax(Wcsi + bc)

The model is trained differently depending on the transfer task: For long to short trans-
fer, we minimize the cross-entropy loss between the actual and predicted class of the docu-
ment Ld. For short to long transfer, we minimize the mean cross entropy loss between the
actual and predicted class of the segments

∑
Lsi/n, 1 ≤ i ≤ n. Note that BaggedCNN is

reduced to a model where average pooling is done instead of the attention mechanism. At
test time, we use yd for classification.

While it has been shown that removing the sequential structure in the document level
(i.e., BiGRU in the case of MILNet) decreases the performance of the document classifier
(Tang et al., 2015a; Yang et al., 2016), we argue that this removal is effective on the CLT
task because of inter-segment independence. That is, sentences in the document are treated
similar to short texts. We also show in our experiments that BaggedCNN performs better
than MILNet.

However, BaggedCNN still fails to consider two things. First, while the model relaxes
the strong assumption on similarity between segments and short texts, by removing the
sequential connections, most segments cannot be treated as stand-alone short texts. For
example, the segment “Yet it is salty.” is not a stand-alone short review. Second, when
doing short to long transfer, the input short text is just one segment, thus the model is
reduced into a weaker hierarchical CNN classifier.

3.2. LeTraNets: Length Transfer Networks

We improve BaggedCNN by proposing a model called Length Transfer Networks (LeTraNets),
as shown in Figure 2. LeTraNets is composed of two classifiers: a stand-alone CNN clas-
sifier with text encoder CNNlone, and BaggedCNN, which includes a segment-level text
encoder CNNbag. The CNNlone encoder is used to capture holistic textual features, while
the CNNbag encoder is used to capture segment-level textual features, assuming there is a
bigger text that owns the segments.

For each data instance, LeTraNets accepts two kinds of inputs: a long text D = wd

and a set of short texts S = ws0 , ..., wsn . However, the task setting only provides either one
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Figure 2: Full architecture of LeTraNets. L{a}x refers to cross entropy loss of classifier a
(l: p(y{l}), b: p(y{b}), j: p(y{j})) using text x (s: short text, d: long text). Rx

is the prediction regularization. The highlighted boxes refer to the long to short
and short to long transfer-specific configurations. We share our implementation
here: https://github.com/rktamplayo/LeTraNets.

of long texts or short texts as input. We thus create pseudo-texts from the available text
data through the following methods. In the long to short transfer task, we use segments
in long texts as pseudo-short texts, as used in BaggedCNN. In the short to long transfer
task, we concatenate a random number of short texts to create pseudo-long texts. The
latter amounts to a possibly infinite number of long texts we can use for training.

The short texts are encoded by both CNNlone and CNNbag as s
{l}
i and s

{b}
i . The long

texts are encoded using both CNNlone and BaggedCNN as d{l} and d{b}:

s
{l}
i = CNNlone(Si)

s
{b}
i = CNNbag(Si)

d{l} = CNNlone(D)

d{b} = BaggedCNN(D)

The encoded long text vectors d{l} and d{b} and short text vectors s
{b}
i and s

{l}
i are used

to classify their labels using softmax classifiers specific to the CNN encoders:

p(y
{l}
d ) = softmax(W {l}c d{l} + b{l}c )

p(y
{b}
d ) = softmax(W {b}c d{b} + b{b}c )

p(y{l}si ) = softmax(W {l}c s
{l}
i + b{l}c )

p(y{b}si ) = softmax(W {b}c s
{b}
i + b{b}c )

Training Mechanisms There are two main issues when training the model in the CLT
setting. First, both the stand-alone CNN classifier and BaggedCNN are disconnected,
acting as two individual classifiers. Second, the model needs both labels for both short and
long text data, but we are only given labels for one kind of data during training for each
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transfer setting. Solving the second issue is crucial for short to long transfer, as we cannot
train the full model if we do not have labels for long data. To this end, we use three training
mechanisms below that help mitigate these issues.

We connect them on different levels. In the word-level, we use the same word embedding
space for both classifiers. Beyond word-level, we use a training mechanism called Joint
Training (JT). This concatenates the encoded text vectors, and creates another logistic
regression classifier for the concatenated vector. This creates a connection between classifiers
at the classification-level.

p(y
{j}
d ) = softmax(W {j}c [d{l}; d{b}] + b{j}c )

p(y{j}si ) = softmax(W {j}c [s
{l}
i ; s

{b}
i ] + b{j}c )

Beyond word-level, we introduce Prediction Regularization (PR) mechanism to
train encoders with no labels. This regularizes the predictions of a weaker classifier based on
the predictions of a stronger classifier. We consider BaggedCNN as the stronger classifier
for long to short transfer, and CNNlone as the stronger classifier for short to long transfer.
We use Kullback-Leibler divergence as the regularization function.

Rd =
∑
i

DKL(ybsi ||y
l
si)

Rs = DKL(yld||ybd)

Finally, using the PR mechanism directly might not work because predictions from the
stronger classifier may not be optimized yet. Hence, we use Stepwise Pretraining (SP)
mechanism to pretrain specific parts of the model in a step-by-step fashion. First, we
pretrain the stronger classifier, then the weaker classifier with PR mechanism, and finally
the classifier of the JT mechanism. After pretraining, we train the full model.

The training configurations are different depending on the transfer task, which is also

shown in Figure 2. For long to short transfer, we use p(y
{j}
d ) for the JT mechanism and Rd

for the PR mechanism. For short to long transfer, we use p(y
{j}
si ) for the JT mechanism and

Rs for the PR mechanism.
The final training objective is to minimize the loss function, depending on the text

length:

Ld = L{l}d + L{b}d + L{j}d + λRd

Ls =
∑
i

(L{l}si + L{b}si + L{j}si )/n+ λRs

where L{a}x is the cross-entropy loss between the actual and predicted values of the classifier

p(y
{a}
x ), and λ is tuned using a development set. At test time, we use p(y

{j}
d ) and p(y

{j}
si )

to classify the sentiment for long to short and short to long transfer, respectively.

4. Experiments

Experimental Settings The dimensions of word vectors are set to 300. We use pre-
trained GloVe embeddings3 (Pennington et al., 2014) to initialize our English word vectors,

3. https://nlp.stanford.edu/projects/glove/
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Mov en Res en Mov ko
Model P Acc P Acc F Acc F RMSE P Acc F Acc F RMSE

Long to Short Transfer Task

CNN 0.728 0.750 0.388 1.440 0.600 0.228 1.678
CNNx2 0.735 0.756 0.401 1.431 0.603 0.228 1.674

SCL 0.640 0.685 0.340 1.857 0.438 0.208 1.754
NeuSCL 0.645 0.665 0.373 1.765 0.428 0.203 1.709
SCL+CNN 0.710 0.788 0.390 1.280 0.578 0.230 1.811
NeuSCL+CNN 0.730 0.798 0.425 1.444 0.600 0.230 1.683
MILNet 0.757 0.785 0.400 1.426 0.620 0.212 1.685

BaggedCNN 0.767 0.765 0.468 1.190 0.625 0.245 1.614
LeTraNets 0.795* 0.863* 0.502* 1.081* 0.652 0.265 1.591

Short to Long Transfer Task

CNN 0.758 0.780 0.390 1.374 0.552 0.453 0.973
CNNx2 0.763 0.784 0.396 1.372 0.559 0.460 0.960

SCL 0.700 0.738 0.343 1.361 0.488 0.220 1.568
NeuSCL 0.725 0.725 0.385 1.251 0.480 0.245 1.546
SCL+CNN 0.720 0.753 0.403 1.190 0.555 0.345 1.250
NeuSCL+CNN 0.783 0.778 0.448 1.366 0.568 0.460 0.885
MASM+CNN 0.570 0.600 0.235 2.322 0.543 0.045 1.658

BaggedCNN 0.792 0.838 0.438 1.224 0.585 0.465 0.865
LeTraNets 0.810 0.858 0.478* 1.138* 0.625* 0.493 0.802

Table 3: Accuracy and RMSE of competing models on polarity (P Acc) and fine-grained
(F Acc and F RMSE) datasets. Items in red are performances worse than the
no-transfer CNN baseline. An asterisk (*) indicates that LeTraNets is significantly
better than the second best model (p < 0.05) .

and pre-trained FastText embeddings4 (Grave et al., 2018) to initialize our Korean word
vectors. For all CNNs, we set h = 3, 4, 5, each with 100 feature maps, following (Kim, 2014).
We use dropout (Srivastava et al., 2014) on all non-linear connections with a dropout rate
of 0.5. We set the batch size to 32. We use stochastic gradient descent over shuffled mini-
batches with the Adadelta update rule (Zeiler, 2012) with l2 constraint of 3. We experiment
with a 5-fold cross-validation on the given source training set and report the average results.

Comparison Models We compare our models with the models from similar tasks as
discussed in Section 2.2. Specifically, we compare with (a) Cross Domain Transfer (CDT)
models SCL (Blitzer et al., 2007) and NeuSCL (Ziser and Reichart, 2017), (b) CDT models
with a CNN classifier integration (Yu and Jiang, 2016) (SCL+CNN and NeuSCL+CNN),
(c) a multiple-instance learning (MIL) model MILNet (Angelidis and Lapata, 2018), (d)
a weakly supervised model MASM+CNN Amplayo and Hwang (2017). We remind that
MILNet is only applicable to long to short transfer, and MASM+CNN is only applicable
to short to long transfer. We use the available code provided by previous authors5. Finally,
we also compare with CNN (Kim, 2014), and a combination of two CNNs (CNNx2) as
no-transfer baselines.

4. https://fasttext.cc/

5. SCL and NeuSCL: https://github.com/yftah89/Neural-SCL-Domain-Adaptation, MILNet: https:
//github.com/stangelid/milnet-sent, MASM: https://github.com/rktamplayo/MicroASM
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Dataset and Evaluation We use the datasets described in Table 2 for all our experi-
ments. We use the following evaluation metrics. For all datasets, we use accuracy (Acc)
to measure the overall sentiment classification performance. Additionally, for fine-grained
datasets, we use root mean squared error (RMSE) to measure the divergence between the
predicted and ground truth sentiment scores. Finally, in order to compare models in an in-
tegrated manner, we report the average transfer ratio (TR; Glorot et al., 2011), a version of
the transfer loss which is more adaptive to averaging, calculated as the average quotient be-
tween the transfer error and the in-domain baseline error, i.e. TR =

∑
x e(Sx, Tx)/eb(Tx, Tx),

where Sx and Tx are the source and domain of dataset x, respectively, e and eb are accuracy
errors from the competing model and the baseline CNN model.

Long to Short Transfer We show the results for long to short transfer in the first part
of Table 3. Results show that Cross Domain Transfer models do not perform well, which
confirms our hypothesis that they are not well suited for this task. MILNet performs
well on polarity tasks, but performs poorly on fine-grained tasks, having worse performance
than the no-transfer CNN baseline. This shows that although Multiple Instance Learning
models are effective in classifying positive or negative sentiments, they are not flexible to
fine-grained sentiment intensities, which differs when text lengths are different. On the other
hand, BaggedCNN performs better than MILNet, proving that simplifying MIL models
work well on CLT. Overall, LeTraNets performs the best among all models, having the
best accuracies and RMSEs on all datasets and settings.

Short to Long Transfer We report the results for short to long transfer in the second
part of Table 3. Results show that Cross Domain Transfer models perform much worse
compared to their performance in the long to short transfer task. The weak supervised
model MASM+CNN performs the worst, having worse results than the no-transfer CNN
baseline on all datasets. BaggedCNN also performs well in this task, even though it does
not use its attention mechanism. This shows that BaggedCNN is a very tough-to-beat
baseline for the CLT task. Finally, LeTraNets also outperforms all the models on this
subtask.

Transfer Ratio (TR) Figure 3 shows the average transfer ratio (TR) of all competing
models, where TR = 1 means trivially transferable. The figure shows that the CDT models
SCL and NeuSCL both obtain a larger transfer ratio compared to the no-transfer CNN
baseline. The transfer ratios improve when CNN is integrated into both models, but does
not improve much from the baseline. MILNet and BaggedCNN perform comparably on
the long to short transfer task, where BaggedCNN performs slightly better. LeTraNets
performs the best among the models, having transfer ratios less than 1.1.

5. Analyses

Ablation on Training Mechanisms We investigate the performance of LeTraNets
when the training mechanisms are not used. Specifically, we perform ablation tests on
the Joint Training (JT), Prediction Regularization (PR), and Stepwise Pretraining (SP)
mechanisms. The results in Table 4 show that LeTraNets performs the best when all
training mechanisms are used. Also, when used individually, all the training mechanisms
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Figure 3: Average transfer ratio of all competing models for both transfer task. Lower is
better.

Mov en Res en Mov ko
P Acc P Acc F Acc P Acc F Acc

Long to Short Transfer Task
- 0.767 0.800 0.470 0.630 0.240

JT 0.782 0.838 0.480 0.637 0.255
PR 0.777 0.848 0.487 0.637 0.253
SP 0.782 0.845 0.495 0.635 0.260
All 0.795 0.863 0.502 0.652 0.265

Short to Long Transfer Task
- 0.780 0.813 0.435 0.595 0.465

JT 0.797 0.835 0.453 0.620 0.468
PR 0.813 0.830 0.448 0.610 0.465
SP 0.808 0.835 0.475 0.610 0.468
All 0.810 0.858 0.478 0.625 0.493

Table 4: Effect (in Acc) of using the training mechanisms Joint Training (JT), Prediction
Regularization (PR), and Stepwise Pretraining (SP) in LeTraNets.

boost up the performance of the model. Hence, we confirm that the training mechanisms
help LeTraNets achieve good performance on the task.

Performance per Text Length We check the capability of LeTraNets to transfer
across text lengths, by looking at its performance as the text length increases. Specifically,
we compare the performance per text length of LeTraNets and CNN models, trained
on either short texts (LeTraNetsshort and CNNshort) or long texts (LeTraNetslong and
CNNlong), on Res en short/long datasets. Figure 4 shows the results. CNN performs
well when the text length is similar to the training dataset and performs poorly otherwise.
LeTraNets, however, performs similarly on all kinds of text lengths although it is trained
purely on a dataset of a specific length. More interestingly, LeTraNetsshort performs better
than LeTraNetslong on longer texts, and unexpectedly performs worse on shorter texts.
This suggests that LeTraNets weakens its ability to classify texts with the same length
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Figure 4: Accuracy of different models across different text lengths on the Res en dataset.
The legend model (length) means that the model is trained on length dataset.

and improves its ability to classify texts with different length. This property is acceptable
in our problem setup since we care on effectively classifying short (or long) texts more,
assuming we only have access to long (or short) texts as training data. However, future
work should explore on CLT models that perform well on both text lengths.

On Topic Diversity Longer texts can discuss diverse topics, while shorter texts are
limited to few (or one) topics. In the sentiment classification domain, longer reviews may
mention positive sentiments towards an aspect of a product, and then talk about negative
sentiments towards another aspect. With this hypothesis, we examine whether LeTraNets
can handle longer texts with diverse topics when trained on short texts. Specifically, we
compare the performance per topic diversity of LeTraNets and CNN models, trained on
short texts of Res en dataset. We measure topic diversity as the Shannon index (Shannon,
1948) of the topic distribution inferred by an LDA topic model (Blei et al., 2003) fit using the
unlabeled data. Figure 5 shows the results. Results indicate that the performance increase
of LeTraNets over CNN increases as the diversity of topics increases. This shows that
for short to long transfer, LeTraNets is able to handle texts with topics that are more
diverse, even when trained on short texts, which tend to have less diverse topics.

Cross Domain and Length Transfer Which between domain and text length should
we consider to achieve a better performance? To answer this question, we combine Cross
Domain Transfer (CDT) and Cross Length Transfer (CLT) into one task: Cross Domain
and Length Transfer (CDLT) and compare the performance of CDT and CLT models on
the task. We use the Mov en and Res en datasets to create four CDLT datasets, and
check which between the CDT model NeuSCL+CNN and the CLT model LeTraNets
achieves a higher increase in performance. The results are shown in Table 5. We find that
NeuSCL+CNN performs worse, obtaining accuracies worse than that of the no-transfer
CNN baseline. LeTraNets performs better, obtaining significant increase in performance
from the baseline. This shows that solving the non-transferability of length is more impor-
tant to achieve a more effective sentiment classifier.
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Figure 5: Accuracy of different models across different topic diversity on the Res en
dataset.

Long to Short Short to Long
Model M>R R>M M>R R>M

CNN 0.755 0.620 0.755 0.728
NeuSCL+CNN 0.710 0.638 0.695 0.585
LeTraNets 0.828 0.745 0.790 0.785

Table 5: Accuracies of models on four CDLT datasets from M:Mov en and R:Res en
datasets.

6. Conclusions

We defined a new task called Cross Length Transfer (CLT) to check the transferability
across lengths of classification models. We set the grounds by defining the task, providing
three benchmark datasets from different domains and languages, and introducing models
from related tasks. We proposed two models: a strong baseline model called BaggedCNN,
and LeTraNets, a model that improves over the weakness of BaggedCNN. Our multiple
experiments show that LeTraNets demonstrates superior performance over all competing
models. We aim to apply the CLT to other classification tasks, such as natural language
inference (Bowman et al., 2015), where text length is influential towards overall model
performance (Williams et al., 2018).
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