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Abstract
Bayesian inference provides an attractive online-learning framework to analyze sequential
data, and offers generalization guarantees which hold even with model mismatch and ad-
versaries. Unfortunately, exact Bayesian inference is rarely feasible in practice and approx-
imation methods are usually employed, but do such methods preserve the generalization
properties of Bayesian inference ? In this paper, we show that this is indeed the case for
some variational inference (VI) algorithms. We consider a few existing online, tempered
VI algorithms, as well as a new algorithm, and derive their generalization bounds. Our
theoretical result relies on the convexity of the variational objective, but we argue that the
result should hold more generally and present empirical evidence in support of this. Our
work in this paper presents theoretical justifications in favor of online algorithms relying
on approximate Bayesian methods.
Keywords: Bayesian inference, Variational inference, Online learning, Generalization
bounds

1. Introduction

Bayesian methods, such as Kalman Filtering (Kalman, 1960), Hidden Markov Model (Baum
and Petrie, 1966) and Particle Filtering (Doucet and Johansen, 2009), are popular methods
to analyze sequential data. The posterior distribution provides a natural representation of
the past information and can be updated sequentially using the Bayes rule whenever new
data is available. Generalizations of Bayesian inference, such as those that temper the like-
lihood, offer good generalization guarantees (Banerjee, 2006; Audibert, 2009; Gerchinovitz,
2013). Such bounds hold even when the model is misspecified or when an adversary ma-
nipulates the stream of data. These generalization bounds are in fact very similar and
sometimes even identical to the ones obtained by online learning methods commonly used
in the optimization community (Cesa-Bianchi and Lugosi, 2006). The Bayesian principle
offers a new perspective which can be used to advance online-learning methods used in areas
such as convex optimization, machine learning, reinforcement learning, continual learning,
and lifelong learning.

Unfortunately, exact Bayesian inference is computationally challenging in cases where the
normalizing constant of the posterior distribution is a high-dimensional integral. Approx-
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imation methods, such as variational inference (VI) (Jordan et al., 1999) and expectation
propagation (Minka, 2001), can dramatically reduce the computation cost and enable appli-
cation of the Bayesian principle to large-scale problems. Despite concerns about their ap-
proximation error, these methods have extensively been applied to many machine-learning
problems where they show satisfactory performance in practice (Blei and Lafferty, 2006;
Hoffman et al., 2013; Kingma and Welling, 2013).

The practical success of such approximation methods points to the gap between the
theory and practice. A few recent works have established generalization bounds of the
approximation methods such as variational inference, but these are restricted to the batch
or offline setting (Alquier and Ridgway, 2017; Bhattacharya et al., 2018; Zhang and Gao,
2017). Extending such results to the online setting, without making strong assumption
about the model mismatch and adversaries, is the main focus of this paper.

We propose online version of variational inference with tempered likelihoods, and derive
new generalization bound, which has very similar form to the bound of exact Bayesian in-
ference. Unlike existing proof techniques, our proof extend to the case when approximations
are used instead of the exact Bayesian update. Our derivation relies on the convexity of the
variational objective. This covers a few important cases, but can be limiting. We argue that
the generalization bound is likely to hold more generally, and present empirical evidence in
support of these arguments. Our work takes a step towards establishing the generalization
properties of online approximate Bayesian methods.

1.1. Related works

Variational inference is extremely popular in statistics and machine learning, yet its the-
oretical properties are not investigated until recently. Generalization bounds for general-
ized versions of variational approximations are derived in Alquier et al. (2016); Cottet and
Alquier (2018). Similarly, Bernstein-von Mises’ theorems for variational approximations in
parametric models are proved in Wang and Blei (2018), while concentration of the posterior
in general models is studied in Alquier and Ridgway (2017); Sheth and Khardon (2017);
Bhattacharya et al. (2018); Zhang and Gao (2017); Chérief-Abdellatif and Alquier (2018);
Chérief-Abdellatif (2019); Jaiswal et al. (2019). These works show that variational approx-
imations does enjoy the same consistency properties as the posterior distribution under
general conditions. All of these results however only apply to the batch setting and their
extension to the online setting is not straightforward.

It is known that the Bayesian approach leads to good online predictions for a stream of
data; see Banerjee (2006), and Cesa-Bianchi and Lugosi (2006); Audibert (2009); Gerchi-
novitz (2013) for generalized posteriors in machine learning. However, there are only a
few attempts to study the online properties of variational inference, and the proofs used
in Cesa-Bianchi and Lugosi (2006) cannot easily be extended to online variational inference.

Generalization bounds for online approximations of the posterior are studied in Guhaniyogi
et al. (2013), but the algorithms analyzed there are different from the ones used in practice
and the feasibility of these algorithms is not proven. Recently Nguyen et al. (2017a) give
some results, but the order of magnitude of the bounds are not explicitly written and in
many contexts it is not clear that the bound will even be small enough to ensure consistency.
Even though stochastic/online versions of variational inference are known to give good re-
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sults in practice (Sato, 2001; Hoffman et al., 2010; Wang et al., 2011; Hoffman et al., 2013;
Khan and Lin, 2017; Nguyen et al., 2017b; Khan and Nielson, 2018; Khan et al., 2018; Zeno
et al., 2018), existing works have not been able to derive theoretical results confirming their
generalization properties. Our results fill this gap between theory and practice for some
types of variational approximations obtained with specific types of online algorithms.

2. Generalization Properties of Bayesian Inference for Online Learning

Given a stream of data, the goal of online learning is to learn to make good decisions,
estimations, or predictions on future data examples. The quality of such decisions is defined
with a loss function `(Dt, θ̂t), denoted by `t(θ̂t) for brevity, where Dt is the data at time t
and θ̂t is a quantity computed using the past data, i.e., D1:(t−1) := {D1,D2, . . . ,Dt−1}. This
definition of the loss includes popular supervised and unsupervised learning methods. For
example, in maximum-likelihood training of a parameterized model pθ, θ̂t is the parameter
estimate and the loss is `t(θ) := − log pθ(Dt). Similarly, for a classification task with input-
output pair Dt := (Xt, Yt), the loss could be the hinge loss `t(θ) = (1 − Ytfθ(Xt))+ with a
classifier fθ. In the whole paper, we assume that θ 7→ `t(θ) is convex. By using losses `t
until time t, our ultimate goal is to find a θt which is as close as possible to the minimizer
θ∗ of the generalization error E∗(θ) = ED∼P∗ [`(D, θ)] where P∗ is the true distribution of the
data. We would want to do this without many strong assumptions such as assuming the
data stream to be i.i.d., or the absence of adversaries.

Since E∗ is unavailable at time t, to ensure the quality of θ̂t, online-learning algorithms
aim at minimizing the cumulative error

∑t
i=1 `i(θ̂t) until time t. Many algorithms are known

with bounds on the regret of the decision θ̂t , that is the gap in the cumulative error and
the minimal cumulative error that could have been reached with a fixed parameter:

T∑
t=1

`t(θ̂t)− inf
θ∈Θ

T∑
t=1

`t(θ). (1)

Bounds on this quantity are known as regret bounds, e.g., see Cesa-Bianchi and Lugosi
(2006); Bubeck (2011); Shalev-Shwartz (2012); Hazan (2016). Fortunately, bounding the
regret also leads to upper bounds on the generalization gap, e.g., by using the average
θ̄T = 1

T

∑T
t=1 θ̂t we can bound the gap E∗(θ̄T ) − E∗(θ∗). Due to such properties, regret

bounds are useful to study generalization properties of an online algorithm. Moreover, the
bound holds with very little assumptions on the data and is valid when the data is not i.i.d.
and even when it is corrupted by an adversary.

For online learning, Bayesian inference algorithms have good generalization properties,
e.g., the following tempered posterior distribution introduced by Vovk (1990); Littlestone
and Warmuth (1994) has a controlled regret:

pηt (θ) :=
1

Zηt
π(θ)e−η

∑t−1
i=1 `t(θ) (2)

where η > 0 is a learning rate, π is a prior distribution, and Zηt is the normalizing constant
of the posterior distribution. Each loss `t here can be interpreted as the log-likelihood of
a data example Dt. When the loss is indeed equal to − log pθ(D) and η = 1, the above
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Algorithm 1 Tempered Bayesian Inference, a.k.a Exponentially Weighted Aggregration

Input Learning rate η > 0, prior π(θ), pη1 ← π.

For t = 1, 2, 3, . . . ,

1. θ̂t ← Eθ∼pηt (θ),

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update pηt+1(θ) ∝ pηt (θ) exp [−η`t(θ)].

algorithm is equivalent to Bayesian inference whose generalization properties are usually
established under the assumption of no model mismatch (e.g., see Ghosal and Van der
Vaart (2017)). The tempered version η < 1 can be shown to generalize well even when the
model is misspecified (Grünwald and Van Ommen, 2017) or when an adversary manipulates
the stream of data. Such tempered versions have also been studied in depth in the machine-
learning literature by using the PAC-Bayesian bounds (Shawe-Taylor and Williamson, 1997;
McAllester, 1999; Catoni, 2007; Seldin and Tishby, 2010; Suzuki, 2012; Seldin et al., 2011;
Cuong et al., 2013; Germain et al., 2016; Catoni and Giulini, 2017; Guedj, 2019; Tsuzuku
et al., 2019).

In the online-learning literature, the regret bound of this algorithm has been studied ex-
tensively under a variety of names, e.g., algorithms such as multiplicative update, weighted
majority algorithm, exponentially weighted aggregation (EWA) are all specific cases of tem-
pered Bayesian inference. Algorithm 1 shows a pseudo-code for EWA which performs tem-
pered Bayesian inference in an online fashion (Step 3 implements Equation (2)). Below,
we state a theorem which shows an example of regret bound1, proved in Theorem 4.6 in
Audibert (2009) for the algorithm shown in Algorithm 1.

Theorem 1 Assuming that the loss is bounded, i.e., 0 ≤ `t(θ) ≤ B, ∀Dt, θ, the cumulative
regret has the following upper bound when θ̂t = Eθ∼pηt [θ] is the posterior mean:

T∑
t=1

`t(θ̂t) ≤ inf
p∈S

{
Eθ∼p

[
T∑
t=1

`t(θ)

]
+
ηB2T

8
+
K(p, π)

η

}
(3)

where S is the set of all probability distributions over Θ and K is the Küllback-Leibler (KL)
divergence.

A proof is given in Appendix 6.5 for the sake of completeness.
The above regret bound is useful to derive explicit bounds in expectation on the gener-

alization error E∗ of an estimator that is defined as the average decision θ̄T :=
∑

t θ̂t/T . For
example, we can show that, when a classical prior mass condition2 on the prior is satisfied

1. In online-learning literature such results are usually stated for finite decision space, e.g., see similar results
for EWA in Cesa-Bianchi and Lugosi (2006). The result above holds for a more general continuous setting
but under a bounded loss.

2. The exact condition is that the prior π(θ) has mass bigger than εd on an ε-ball around θ∗ for some d.
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and when Dt are actually independent and identically distributed from P∗, the generalization
error has the following bound:

ED1:T∼P∗

[
E∗(θ̄T )

]
≤ E∗(θ∗) +B

√
d

2T
log

(
T

d

)
(4)

for some well-chosen η ∼
√
d/T and d > 0 is a complexity measure of the parameter space

(often the dimension). This bound shows that when Dt are i.i.d. from P ∗ then Bayesian
inference achieves generalization error at a rate

√
d/T . An exact statement and a complete

proof are given in Theorem 6 Subsection 6.3 in the appendix. The proof is based on a
technique called online-to-batch analysis. Similar bounds can be derived even for the cases
when the model is misspecified and an adversary is present.

The regret bound derived in Theorem 1 assumes that pηt is computed exactly, which is
extremely challenging and many a times infeasible. The difficulty arises due to the compu-
tation of Zηt which is a high-dimensional integral when the space of θ is large. Approximate
Bayesian inference methods approximate the integral by finding an approximation of pηt in a
restricted family of distributions F = {qµ, µ ∈M}, e.g., Gaussian distribution with µ being
the mean and variance. Our focus in this paper is to derive bounds similar to Theorem 1
for approximate Bayesian inference methods.

Unfortunately, deriving similar bounds as Theorem 1 for approximate inference is not
possible using existing proof techniques. This is because these techniques do not work when
pηt and S in (3) are replaced by qµt andM respectively. As shown in Appendix 6.5, these
proofs rely on cancellation of many terms in a telescoping sum. This cancellation does not
take place when an approximation is used instead, and the error accumulates making the
regret bound practically useless. In this paper, we solve this problem using a different proof
for tempered, online variational inference algorithms discussed in the next section.

3. Online Variational Inference

In this section, we introduce approximate Bayesian inference methods that can obtain
tractable approximations in an online fashion. The methods available in the approximate
inference literature are not always suitable for our purpose. Therefore, we present modifica-
tions of those methods that lead to feasible online variants of the Bayesian update shown in
(2). To simplify the notation, we will denote the expectation of the loss under an approxi-
mation qµ(θ) by L̄t(µ) := Eθ∼qµ [`t(θ)].

3.1. Sequential Variational Approximation

An advantage of variational inference is that it can be directly written as a constrained
optimization version of Bayesian inference. To see this we first note that the posterior given
in (2) can be obtained by solving the following optimization problem (Dai et al., 2016):

pηt+1(θ) = arg min
p∈S

{
Eθ∼p

[ t∑
i=1

`i(θ)

]
+
K(p, π)

η

}
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Algorithm 2 Online Variational Inference

Input Learning rate η > 0, a prior π(θ) ∈ F , qµ1 ← π.

For t = 1, 2, 3, . . . ,

1. θ̂t ← Eθ∼qµt [θ],

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update depending on the type of algorithm.

a) For SVA, solve (6).
b) For SVB, solve (7).
c) For NGVI, solve (8).

We can obtain an approximation by simply restricting the set S:

qµt := arg min
µ∈M

{
Eθ∼qµ

[ t−1∑
i=1

`i(θ)

]
+
K(qµ, π)

η

}
(5)

where the set M is the set of parameters for the set F := {qµ, µ ∈ M}. The above
approximation therefore is a variational approximation of the exact Bayesian inference.

Unfortunately, the update (5) may not be feasible in practice. The Bayesian update of
(2) takes a convenient form where update of pηt+1 can be written in terms of pηt ; see line 3 in
Algorithm 1. For update (5), this is not possible in most cases, i.e., we cannot express the
optimization problem for qµt+1 in terms of qµt . Typically, one need to store all the past data
examples Di and recompute their gradients, and then run the optimizer until it converges.
This can be very expensive, especially for large t.

We propose a sequential version which solves these problems by using an approximation.
We follow the ideas used in online gradient algorithms, e.g., such as those used in Shalev-
Shwartz (2012), and replace Eθ∼qµ [`i(θ)] = L̄i(µ) ≈ µT∇µL̄i(µi). This leads to

µt+1 = arg min
µ∈M

[
t∑
i=1

µT∇µL̄i(µi) +
K(qµ, π)

η

]
. (6)

Note that the gradients in the approximation are computed at the past µi, rather than
the current one µt. This results in an algorithm summarized in Algorithm 2 which we
call sequential variational approximation (SVA). When computing the gradient of the KL
divergence term is feasible, this algorithm can be cheaply performed.

3.2. Streaming Variational Bayes

An alternative approach is to remove the term K(qµ, π) since π is already included in qµt :

µt+1 = arg min
µ∈M

[
µT∇µL̄t(µt) +

K(qµ, qµt)

η

]
. (7)

6



A Generalization Bound for Online Variational Inference

This step, contained in Algorithm 2, is tractable whenever computing the gradient of the KL
term is feasible, e.g., when the expectation parameterization is used. This type of update has
been proposed in many recent works, e.g., Nguyen et al. (2017a), Zeno et al. (2018). These
updates can be seen as a special case of Broderick et al. (2013). Due to this connection, we
call this algorithm streaming variational Bayes (SVB).

3.3. Natural Gradient Variational Inference

The algorithm described in the previous sections are closely related to existing natural-
gradient variational inference (NGVI) algorithm (Sato, 2001; Hoffman et al., 2013; Khan
and Lin, 2017). These algorithms are typically applied for stochastic learning but can be
easily modified for online setting. We will consider the method of Khan and Lin (2017)
because it applies to the most general setting (other methods require strong conjugacy
assumptions on the loss `t(θ) and prior π(θ)). The NGVI algorithm is typically applied to
obtain exponential-family approximations, but as we will show the updates are similar to
our SVA algorithm which also reveals a more general way of implementing these algorithms
in the online setting.

The advantage of using NGVI for online learning is that it obtains closed-form updates
for qµt+1 which can be expressed in terms of qµt . This is done by exploiting the expectation
parameterization3 of the exponential family. Throughout this section, we denote the expec-
tation parameter by µ and natural parameterization of the exponential family by λ. Khan
and Lin (2017) propose the following update4 in the expectation-parameter space:

min
µ∈M

[
µT∇µL̄t(µt) +

K(qµ, π)

η
+
K(qµ, qµt)

α

]
, (8)

where α > 0 is a step size. The difference from (6) is that now the linear term does not
contain a sum over all past examples i, rather only the current one. Instead, we add another
KL divergence term which contains the past information in the previous approximation qµt .
Therefore, NGVI algorithm, summarized in Algorithm 2, employs a different way to add the
past information, but as we show next, it results in a very similar update as SVA. In the
appendix, we provide a closed-form solution to (8).

3.4. Example: Mean-Field Gaussian VI

We now give a concrete example of the algorithms introduced in this section. We will use the
mean-field Gaussian VI where F is the class of all Gaussian approximations with diagonal
covariance matrix. We denote the mean vector of the Gaussian by m = (m1, . . . ,md)

T and
the diagonal of the covariance matrix by σ2 = (σ2

1, . . . , σ
2
d)
T . To derive the updates for

SVA and SVB, we used µ = {m,σ} while for NGVI we used the expectation parameters
µ = {m,m2 + σ2}. (Here, and until (10) below, the squares and multiplications on vectors

3. Expectation parameters are expectations of the sufficient statistics, e.g., Gaussian approximation has
two expectation parameters: mean vector and correlation matrix respectively.

4. The exact update proposed in Khan and Lin (2017) is written differently but can be shown to be
equivalent to (8). This can be done by using their Lemma 1 and setting 1/α := 1/β−1/η where β is the
step-size used in their paper. We use this form since it makes it easier to establish connections to SVA.
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are to be understood componentwise). We also assume the prior π(θ) to be a Gaussian with
mean 0 and variance s2Id where Id is the identity d× d matrix.

Denoting the gradients ḡmt := ∂L̄t
∂m and ḡσt := ∂L̄t

∂σ , we give the update for each method
below (here h(x) :=

√
1 + x2 − x, applied componentwise for vector inputs):

SVA: mt+1 ← mt − ηs2ḡmt , gt+1 ← gt + ḡσt ,

σt+1 ← h
(

1
2ηsgt+1

)
s, (9)

SVB: mt+1 ← mt − ησ2
t ḡmt ,

σt+1 ← σth
(

1
2ησtḡσt

)
. (10)

4. Generalization Bounds for Online VI

In this section, we present regret bounds for online VI algorithms discussed in the previous
section. Our bounds take similar form to the one presented in Theorem 1, and can be used
to obtain generazation bounds similar to (4). Our proofs require convexity of L̄t(µ) :=
Eqµ [`t(θ)] with respect to µ, which is a strong assumption. Due to this we are able to derive
bounds for SVA and SVB. We expect our bound to hold for NGVI too, due to its similarity
to SVA. Specifically, all of our results use the following minimal assumption.

Assumption 4.1 L̄t is L-Lipschitz and convex.

Some results require the following stronger assumption.

Assumption 4.2 L̄t is H-strongly convex where H > 0, i.e., for any two µ, µ′ ∈ M, the
following holds:

L̄t(µ
′)− L̄t(µ) ≥ (µ′ − µ)T∇L̄t(µ) +

H

2
‖µ′ − µ‖2.

Finally, some results also require strong convexity for KL.

Assumption 4.3 The KL divergence µ 7→ K(qµ, qµ1) is α-strongly convex.

All of these assumption depend heavily on the parametrization of {qµ, µ ∈ M}. For some
parameterization, these assumptions do hold although such cases are limited. For example,
for Gaussian approximations and convex `, the assumptions are satisfied, as pointed out by
Challis and Barber (2013). This result has recently been extended by Domke (2019) to more
generals location-scale family. We give a formal statement below.

Proposition 1 (Theorem 1 in Domke (2019)) Assuming that qµ belongs to a location-
scale family F = {qm,C} where m is a d-length vector and C is a d×d matrix with qm,C(θ) =
[det(C)]−1/2ψ(C−1/2(θ −m)) for some fixed density ψ, then L̄t is convex. Moreover when
each θ 7→ `t(θ) is H-strongly convex and ψ is the density of a centered random variable with
identity variance matrix, then Assumption 4.2 is also satisfied.

The results for Gaussian approximation can be obtained as a special case.

Proposition 2 Assume that θ 7→ `t(θ) is L′-Lipschitz. Assume that we use the Gaussian
approximation family F =

{
qm,C = N (m,CTC), (m,C) ∈M

}
, M ⊂ Rd × UT (d) where

UT (d) is the set of full-rank upper triangular d × d real matrices. Then L̄t is L-Lipschitz
with L = 2L′.
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Finally, we remind the formula for the KL divergence between two Gaussian distributions.
Let qm,C = N (m,CTC) for any (m,C) ∈ Rd × UT (d). Then

K(qm,C , qm̄,C̄) =
1

2

(
(m− m̄)T C̄T C̄(m− m̄) + tr[(C̄T C̄)−1(CTC)] + log

(
det(C̄T C̄)

det(CTC)

)
− d
)

is known to be strongly convex on Rd×MC whereMC is a closed bounded subset of UT (d).
Thus, Assumption 4.3 is satisfied with a Gaussian prior and a Gaussian approximation
family.

We are now ready to state our regret bounds for SVA and SVB.

4.1. Bounds for SVA

Theorem 2 Under Assumptions 4.1 and 4.3, SVA has the following regret bound:

T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

{
Eθ∼qµ

[
T∑
t=1

`t(θ)

]
+
ηL2T

α
+
K(qµ, π)

η

}
. (11)

The above bound is almost identical to the bound given in Theorem 1 where we can replace
p by qµ, S byM, the bound B by the Lipschitz constant L, and factor of 8 by the strong
convexity parameter α. However, our proof of Theorem 2 is completely different from the
one for Theorem 1. It relies on arguments from online convex optimization that can be
found in Shalev-Shwartz (2012); Hazan (2016). A detailed proof is given in Appendix 6.5.

Similar to the Bayesian update case discussed in Section 2, using the online-to-batch
analysis detailed in Appendix 6.3, we can show that the average θ̄T = (1/T )

∑T
t=1 θ̂t satisfies

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
µ∈M

{
Eθ∼qµ [E∗(θ)] +

ηL2

α
+
K(qµ, π)

ηT

}
. (12)

As an example consider the mean-field Gaussian approximation and assume that for any
D, `(D, ·) is L/2-Lipschitz (note that these are the assumptions of Proposition 2 ensuring
that Assumption 4.1 is satisfied). Then Eθ∼qµ [E∗(θ)] = E∗(m) + ‖σ‖L/2 . Therefore, given
the expression of the KL-divergence between Gaussian distributions, taking a vector σ with
σj = Lη/(α

√
d), η = (1/L)

√
αd log(T/d)/T , and considering only the regret with respect

to bounded means m leads to

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
m∈[−M̄,M̄ ]d

E∗(m) + (1 + o(1))
2L

α

√
d log (dT )

T
.

This again is very similar to the generalization error shown in (4).

4.2. Bounds for SVB

Similarly to the SVA case, we can derive a regret bound, however our proof only applies
to the Gaussian case. For this case, we require a dynamic learning ηt. We use a different
learning rate for each element of θj which we denote by ηt,j . The result also works for a
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bounded parameter spaceM =Mm ×Mσ that will imply a projection step in addition to
the update in (10):

SVB: mt+1 ← ΠMm

[
mt − ησ2

t ḡmt
]
,

σt+1 ← ΠMσ

[
σth

(
1
2ησtḡσt

)]
.

where ΠMm and ΠMσ denote the orthogonal projection onMm andMσ respectively. The
following theorem states the result.

Theorem 3 We consider the mean-field Gaussian family qµ = N (m,diag(σ2)) and M =
Mm×Mσ whereMm andMσ are closed, bounded, convex subsets of Rd and Rd+ respectively,
and 0 ∈ Mσ. Define D2 = sup

{
‖m−m′‖22 + ‖σ‖2,m,m′ ∈Mm, σ ∈Mσ

}
. Then, under

Assumption 4.1, with the choice ηt,j = D
√

2
L

1√
tσ2
t,j

we get:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) +DL
√

2T . (13)

Under Assumptions 4.1 and 4.2, the choice ηt = 2/Htσ2
t leads to:

T∑
t=1

`t(θ̂t) ≤ inf
θ∈Mm

T∑
t=1

`t(θ) +
L2(1 + log T )

H
. (14)

Here again the results are similar to the Bayesian inference case but now expressed in terms
of the parameters µ instead of expectations.

A similar bound on the generalization error can also be proved. Define θ̄T = (1/T )
∑T

t=1 θ̂t.
Here, the online-to-batch analysis directly leads to

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) +
DL
√

2√
T

in the convex case and

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) +
L2(1 + log T )

HT

in the strongly convex case.
Note the in the online optimization setting studied in Shalev-Shwartz (2012), it is usual

to optimize on Euclidean balls. Here, Mm = {m ∈ Rd : ‖m‖ ≤ M̄} and Mσ = {σ ∈ Rd+ :
‖σ‖ ≤ S̄} leads to D = 4M̄2 + S̄2 leads to dimension-free bounds.

On the other hand, the choiceMm = [−M̄, M̄ ]d andMσ = [0, S̄]d implies D2 = d(4M̄2 +
S̄2), and so the bound in the convex case is

ED1:T∼P∗ [E∗(θ̄T )] ≤ inf
θ∈Mm

E∗(θ) +
L
√

2d(4M̄2 + S̄2)√
T

and its dependence in d is the same as in the bound on SVA.
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4.3. Generalization

We expect our bounds to hold for NGVI as well. When expectation parameterization is
used, the assumptions are satisfied only in very limited models. This is because the result
of Proposition 1 and 2 do not directly apply to expectation parameterization. However, the
NGVI update shown in (8) can be applied in other parameterization as well, in which case
some of our result can be extended to NGVI too.

5. Experiments

In this section, we conduct experiments on real and simulated datasets, in classification and
linear/nonlinear regression. The objective is twofold: check the convergence of SVA/SVB,
with and without the convexity assumption on L̄t, and compare SVA, NGVI and SVB.

5.1. Experimental setup

We compare the empirical performance of the algorithms we present in this paper through
classification and regression tasks on several toy and real-world datasets. We also include
the classical online gradient descent and the online gradient descent on the expected loss
as benchmarks. Please refer to Appendix 6.2 for more details on these algorithms. In the
following, OGA will stand for the classical online gradient descent while OGA-EL for the
OGA on the expected loss (Algorithm 3). We recall that SVA, NGVI and SVB respectively
refer to the sequential variational approximation (6), natural gradient variational inference
(8) and streaming variational Bayes (7).

Binary classification We consider first a classification problem. At each round t the
learner receives a data point xt ∈ Rd and predicts its label yt ∈ {−1,+1} using 〈xt, θt〉. The
adversary reveals the true value yt, then the learner suffers the loss `t(θt) = (1− ytθTt xt)+,
where a+ = a if a > 0 and a+ = 0 otherwise.

Regression At each round t, the learner receives a set of features xt ∈ Rd and predicts
yt ∈ R using 〈xt, θt〉. Then the adversary reveals the true value yt and the learner suffers
the loss `t(θt) = (yt − fθt(xt))2. We will consider both the linear case when the predictions
are linear fθ(xt) = θTxt and the nonlinear case where the predictions are outputs of a one-
hidden-layer neural network with a ReLU activation. The first case of linear predictions
leads to a convex loss with respect to θ, while the latter leads to a nonconvex loss.

Variational family For both tasks, we use a Gaussian mean-field variational family
F = {qµ = N

(
m,diag(σ2)

)
/µ = (m,σ) ∈Mm ×Mσ}, Mm = [−20, 20]d and Mσ = [0, 1]d.

Datasets We consider here six different datasets: one toy and three real datasets for
classification, and one real world dataset for both linear and nonlinear regression. The three
real world datasets used for the binary classification problem are the popular Breast Cancer,
the Pima Indians and the Forest Cover Type datasets, while those used for regression are
the Boston Housing and the California Housing datasets respectively for the convex and the
nonconvex case. All come from the UCI machine learning repository. Note that in some
databases, the data are ordered according to some criterion such as the date or the label.
In order to avoid any effect linked to this, we randomly permuted the observations.

11
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Figure 1: Average cumulative losses on different datasets for classification and regression
tasks with OGA (yellow), OGA-EL (red), SVA (blue), SVB (purple) and NGVI
(green) for the convex hinge loss and the squared loss functions. The black
line shows the average total cumulative loss in hindsight. We see that in most
cases NGVI outperforms the other algorithms. The last plot (California Housing
dataset) shows the consistency of our algorithms for a nonconvex loss L̄t.

The toy dataset is as follows: we sample n = 104 points yt according to a Bernoulli distri-
bution Be(2/3). Then

xt|(yt = 1) ∼ N
((

1
1

)
,

(
1 1
1 3

))
and xt|(yt = 0) ∼ N

((
−1
−1

)
,

(
1 0
0 1

))
.

Dataset T d Dataset T d

Toy classification 10000 2 Cover Type 581012 54
Breast cancer 569 30 Boston Housing 506 13
Pima Indians 768 8 California Housing 20640 9

5.2. Experimental results

For each task and each dataset, we plot the evolution of the average cumulative loss∑t
i=1 `i(θi)/t as a function of the step t = 1, ..., T , where T is the number of instances

of the dataset and θi is the decision made by the learner at step i. We compare this quan-
tity to the best average total cumulative loss in hindsight infθ∈Mm

1
T

∑T
t=1 `t(θ) which is

represented by a straight black horizontal line in Figure 1.
Parameters setting We initialize all means to 0 and all values of the variance to 1.

For simplicity, the values of the learning rates are set to η = 1/
√
T for OGA, OGA-EL and

SVA while ηt = 1/σ2
t

√
t for SVB and ηt = 1 for NGVI respectively. It is possible to optimize

the values of the step sizes. Nevertheless, we draw attention to the fact that a simple cross
validation technique would not be valid here as it would require to know the whole dataset
before selecting the step size, which is not possible in an online setting, and using such a
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strategy at each step t using the past data would change the learning rate of OGA, OGA-EL
and SVA at each step.

Conclusions The results are reported in Figure 1 that shows the consistency of our
algorithms. The goal of our simulations is to observe the empirical performance of our
algorithms in practice, and to see if it is possible to go further than the convexity assumption
that is required in Section 4. Looking at the plots, the two main findings of our experiments
are the following:
• the generalization properties of online variational inference seem to go beyond the

convex assumption we stated in the previous theoretical parts.
• even though SVA and SVB exhibit good performances, NGVI is the best method in

practice as it converges faster on all the datasets.

6. Conclusion

In this paper, we derive the first generalization bounds for some online variational inference
algorithms. Our proof techniques applies to cases where existing methods do not work.
By using existing variational methods, we proposed a few online methods for variational
inference. We provided generalization bounds for the SVA algorithm, and related them to the
NGVI methods. We also derived a bound for a special case of SVB. We provided numerical
results to establish consistency of our results. We observed that NGVI outperforms all the
other methods, and that the theoretical convexity assumption is not needed in practice.

We believe that it is possible to extend our proof techniques to NGVI case. Currently,
our proofs strongly rely on the convexity of Eθ∼qµ [`t(θ)] with respect to µ. This analysis
cannot directly be used for the parameterization of Khan and Lin (2017). However, it can be
applied to a general formulation where our assumptions hold. We believe that generalization
bounds for NGVI is possible to derive and will pursue this direction in the future.
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Appendix

6.1. Closed-form solutions for NGVI

The expectation parameterization of NGVI enables closed-form solution. This is because the
gradient of the KL diverence with respect to expectation parameter is available in closed-
form (see Eq. 10 in Khan and Nielson (2018)). The closed update is given in Eq. (50) in
Khan and Lin (2017) using which we obtain the following update:

λt+1 = (1− β)λt + βλ1 − ηβ∇µL̄t(µt), (15)

where 1/β := 1/α + 1/η. Given λt+1, we can get µt+1 = ∇λA(λt+1) where A is the log-
partition function of the exponential family.

Now we show that this closed-form update is similar to SVA. By using induction similar
to Lemma 4 in Khan and Lin (2017), we can write the update in terms of all past gradients:

λt+1 = λ1 − η
t∑
i=1

wi∇µL̄i(µi) (16)

where wi := β
∏

(1 − β)i−2. This can be compared to the SVA update in the expectation
parameterization where applying the gradient to (6) gives us the following update similar
to (15) but where wi = 1 for all i:

λt+1 = λ1 − η
t∑
i=1

∇µL̄i(µi) (17)

Therefore, SVA takes a gradient step assuming that all gradients are equally important,
which is similar to the Bayesian update (2) where all loss `i are treated equally. In contrast,
in NGVI, the past gradients are discounted using β and ultimately forgotten. Weighting
past gradients makes sense when we do not want the current mistakes to affect the future.
However, the choice of step-size is crucial to know the rate at which the past gradients should
be discounted.

NGVI is typically applied using expectation parameterization, but the formulation (8)
is more general although could be computationally difficult. The theoretical results in the
paper further assume that L̄i is convex in µ. Still, in our experiments, NGVI gives good
performance in an online setting compared to many other algorithms.

6.2. Online gradient algorithm on the expected loss (OGA-EL)

It is possible to directly use the online gradient algorithm (OGA) on the expected loss
Eθ∼qµ [`t(θ)], see Algorithm 3.

Note first that from Shalev-Shwartz (2012) step (iii) is actually equivalent to

µt+1 = arg min
µ∈M

[
t∑
i=1

µT∇L̄i(µi) +
‖µ− µ1‖2

η

]
,

which means that we replaced the Küllback-Leibler divergence by the Euclidean norm in
SVA.
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Algorithm 3 OGA-EL

Input Learning rate η > 0, a prior π(θ) ∈ F , qµ1 ← π.

Loop For t = 1, . . . ,

1. θ̂t ← Eθ∼qµt [θ],

2. Observe Dt to suffer a loss `t(θ̂t).

3. Update µt+1 = µt − η∇L̄t(µt).

Also, when µ = (m,σ) ∈ Rd×(R+)d and qµ = N (m,diag(σ)), then Algorithm 3 becomes

mt+1 = mt − ηs2∂L̄t
∂m

(mt, σt),

σt+1 = σt − ηs2∂L̄t
∂σ

(mt, σt).

We have regret bounds for this method, similar to the one for EWA:

Theorem 4 Under Assumption 4.1, Algorithm 3 leads to:

T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

{
Eθ∼qµ

[
T∑
t=1

`t(θ)

]
+ ηL2T +

‖µ− µ1‖2

η

}
,

and moreover, under Assumptions 4.3 and 4.1, Algorithm 3 leads to:

T∑
t=1

`t(θ̂t) ≤ inf
µ∈M

{
Eθ∼qµ

[
T∑
t=1

`t(θ)

]
+ ηL2T +

αK(qµ, π)

2η

}
.

The proof of this result is given below with the other proofs of the paper.

6.3. Online-to-batch conversion

Many times in the paper, we derived generalization error bounds from regret bounds, using
the online-to-batch conversion. We here give a formal statement for this result, note that
this result is essentially Theorem 5.1 in Shalev-Shwartz (2012). We also provide a proof for
the sake of completeness.

Theorem 5 Assume that D1, . . . ,DT are i.i.d from P∗. Assume we use an online algorithm
on the data that produce a sequence of parameters θ̂1, . . . , θ̂T . That is, θ̂t = θ̂(D1, . . . ,Dt−1).
Define the estimator

θ̄T =
1

T

T∑
t=1

θ̂t.

Then

ED1:T∼P∗ [E∗(θ̄T )] ≤ ED1:T∼P∗

[
1

T

T∑
t=1

`t(θ̂t)

]
.
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Proof We have:

E∗(θ̄T ) = ED∼P∗

[
`(D, θ̄T )

]
= ED∼P∗

[
`

(
D, 1

T

T∑
t=1

θ̂t

)]
≤ 1

T

T∑
t=1

ED∼P∗

[
`
(
D, θ̂t

)]
by Jensen’s inequality. The key is that as θ̂t = θ̂t(D1, . . . ,Dt−1) does not depend on Dt, we
can rewrite:

ED∼P∗

[
`
(
D, θ̂t

)]
= EDt∼P∗

[
`
(
Dt, θ̂t

)]
= EDt∼P∗

[
`t(θ̂t)

]
and so we have

ED1:T∼P∗

[
E∗(θ̄T )

]
≤ ED1:T∼P∗

{
1

T

T∑
t=1

ED∼P∗

[
`t(θ̂t)

]}

=
1

T

T∑
t=1

ED1:T∼P∗

[
`t(θ̂t)

]
= ED1:T∼P∗

[
1

T

T∑
t=1

`t(θ̂t)

]
.

As an application, we state an exact version of (4) and prove it from Theorem 1 and
Theorem 5.

Theorem 6 Assume that the loss ` is bounded by B as in Theorem 1 and that D1, . . . ,DT
are i.i.d from P∗. Assume that there is some d > 0 such that

r(ε) ≤ −d log(1/ε)

where r(ε) = log[1/π(B(θ∗, ε))] and B(θ∗, ε) = {θ ∈ Θ : E(θ)−E(θ∗) ≤ ε}. Use on this data
the EWA strategy with η = (1/2

√
2B)

√
(d/T ) log(d/T ), then

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) +B

√
d

2T
log

(
T

d

)
+
d

T
.

Note that the prior mass condition is classical in the PAC-Bayesian literature and in the
frequentist analysis of Bayesian estimators, see e.g Catoni (2007); Rousseau (2016); Bhat-
tacharya et al. (2016); Ghosal and Van der Vaart (2017). The estimator θ̄T averaging the
decisions θ̂t was first introduced by Catoni (2004) as the "double mixture rule".
Proof Define pε as π restricted to B(θ∗, ε) and note that

K(pε, π) = − logB(θ∗, ε) = r(ε) ≤ d log(1/ε).

From Theorem 1, for any ε,

T∑
t=1

`t(θ̂t) ≤ Eθ∼pε

[
T∑
t=1

`t(θ)

]
+
ηB2T

8
+
d log(1/ε)

η
.
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From Theorem 5,

ED1:T∼P∗ [E∗(θ̂T )] = ED1:T∼P∗

[
1

T

T∑
t=1

`t(θ̂t)

]

≤ ED1:T∼P∗

{
Eθ∼pε

[
1

T

T∑
t=1

`t(θ)

]}
+
ηB2

8
+
d log(1/ε)

Tη

= Eθ∼pε [E∗(θ)] +
ηB2

8
+
d log(1/ε)

Tη

≤ E∗(θ∗) + ε+
ηB2

8
+
d log(1/ε)

Tη

where the last inequality comes from the definition of pε. Taking ε = d/T gives:

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) +
d

T
+
ηB2

8
+
d log(T/d)

Tη
.

Finally, substitute its value to η to get

ED1:T∼P∗ [E∗(θ̂T )] ≤ E∗(θ∗) +B

√
d

2T
log

(
T

d

)
+
d

T
.

6.4. A tool for the proofs

We remind the following classical lemma. We refer the reader for example to Catoni (2007)
for a proof of this result, where it is stated as Lemma 1.1.3 (page 16).

Lemma 1 Let h : Θ→ R be a bounded measurable function and π ∈ S(Θ). Then

sup
p∈S(Θ)

{Eθ∼p[h(θ)]−K(p, π)} = logEθ∼π[exp(h(θ))]

and the supremum is actually reached for

p(θ) ∝ exp[h(θ)]π(θ).

This lemma will actually turn out to be a fundamental tool for some of the proofs.

6.5. Proofs

Proof [Proof of Theorem 1] Note that this proof is classical and is reminded here for the
sake of completeness. We have first:

exp
[
−η`t(θ̂t)

]
= exp

[
−η`t(Eθ∼pηt (θ))

]
≥ exp

[
−ηEθ∼pηt (`t(θ))

]
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≥ Eθ∼pηt

{
exp

[
−η`t(θ)−

η2B2

8

]}
where we used respectively Jensen and Hoeffding’s inequality. So

`t(θ̂t) ≤
ηB2

8
− 1

η
logEθ∼pηt exp [−η`t(θ)] . (18)

Remind that by definition,

pηt (θ) =
exp

(
−η
∑t−1

i=1 `i(θ)
)
π(θ)

Nt

where Nt is the normalisation constant given by

Nt = Eθ∼π

[
exp

(
−η

t−1∑
i=1

`i(θ)

)]
.

But note that then
logEθ∼pηt exp [−η`t(θ)] = log

(
Nt+1

Nt

)
.

We plug this into (18) and sum for t = 1, . . . , T . We obtain

T∑
t=1

`t(θ̂t) ≤
ηB2T

8
− 1

η

T∑
t=1

log

(
Nt+1

Nt

)
=
ηB2T

8
− 1

η
log

(
NT+1

N1

)
=
ηB2T

8
− 1

η
log

(
Eθ∼π

[
exp

(
−η

T∑
t=1

`t(θ)

)])
.

Lemma 1 leads to

T∑
t=1

`t(θ̂t) ≤
ηB2T

8
+ inf
p∈S(Θ)

{
Eθ∼p

[
T∑
t=1

`t(θ)

]
+
K(p, π)

η

}
.

Proof [Proof of Proposition 2] Let ϕm,C(·) denote the p.d.f of the Gaussian distribution
with mean m and variance matrix C. Let (m1, C1), (m2, C2) ∈M ,

|L̄t(m1, C1)− L̄t(m2, C2)| =
∣∣∣∣∫ `t(θ)ϕm1,C1(θ)dθ −

∫
`t(θ)ϕm2,C2(θ)dθ

∣∣∣∣
≤
∫
|`t(m1 + C1u)− `t(m2 + C2u)|ϕ0,Id(u)du

≤ L′‖m1 −m2‖+ L′
∫
‖(C1 − C2)u‖ϕ0,Id(u)du.
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For any C = (Ci,j) ∈ UT (d), we have∫
‖Cu‖ϕ0,Id(u)du ≤

√∫
‖Cu‖2ϕ0,Id(u)du

=

√√√√√∫ d∑
i=1

 d∑
j=1

Ci,juj

2

ϕ0,Id(u)du =

√√√√ d∑
i=1

d∑
j=1

C2
i,j

which leads to

|L̄t(m1, C1)− L̄t(m2, C2)| ≤ L′‖m1 −m2‖+ L′

√√√√ d∑
i=1

d∑
j=1

(C1 − C2)2
i,j

≤ 2L′‖(m1, C1)− (m2, C2)‖.

This ends the proof.

Proof [Proof of Theorem 2] First, Assumption 4.1 ensures that the L̄t’s are convex. By
definition of the subgradient of a convex function,

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] =

T∑
t=1

`t
(
Eθ∼qµt (θ)

)
−

T∑
t=1

Eθ∼qµ [`t(θ)]

≤
T∑
t=1

Eθ∼qµt [`t(θ)]−
T∑
t=1

Eθ∼qµ [`t(θ)]

=

T∑
t=1

L̄t(µt)−
t∑
t=1

L̄t(µ)

≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt). (19)

Then, following the general proof scheme detailed in Chapter 2 in Shalev-Shwartz (2012),
we prove by recursion on T that for any µ ∈M,

T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µT∇L̄t(µt) ≤
T∑
t=1

µTt ∇L̄t(µt)−
T∑
t=1

µTt+1∇L̄t(µt) +
K(qµ, π)

η
(20)

which is exactly equivalent to
T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µT∇L̄t(µt) +
K(qµ, π)

η
. (21)

Indeed, for T = 0, (21) just states that K(qµ, π) ≥ 0 which is a well-known property of KL.
Assume that (21) holds for some integer T − 1. We then have, for all µ ∈M ,

T∑
t=1

µTt+1∇L̄t(µt) =

T−1∑
t=1

µTt+1∇L̄t(µt) + µTT+1∇L̄T (µT )
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≤
T−1∑
t=1

µT∇L̄t(µt) +
K(qµ, π)

η
+ µTT+1∇L̄T (µT )

as (21) holds for T − 1. Apply this to µ = µT+1 to get

T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µTT+1∇L̄t(µt) +
K(pµT+1 , π)

η

= min
m∈M

[
T∑
t=1

mT∇L̄t(µt) +
K(pm, π)

η

]
, by definition of µT+1

≤
T∑
t=1

µT∇L̄t(µt) +
K(qµ, π)

η

for all µ ∈M. Thus, (21) holds for T . Thus, by recursion, (21) and (20) hold for all T ∈ N.
The last step is to prove that for any t ∈ N,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≤
ηL2

α
. (22)

Indeed,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) = (µt − µt+1)T∇L̄t(µt)
≤ ‖µt − µt+1‖‖∇L̄t(µt)‖ by Cauchy-Schwarz
≤ L‖µt − µt+1‖ (23)

as L̄t is L Lipschitz (Assumption 4.1). Define

Gt(µ) =
t−1∑
i=1

µT∇L̄i(µi) +
K(qµ, π)

η
.

Note that from Assumption 4.3, µ 7→ K(qµ, π)/η is α/η-strongly convex. As the sum of a
linear function and an α/η-strongly convex function, Gt is α/η-strongly convex. So, for any
(µ, µ′),

Gt(µ
′)−Gt(µ) ≥ (µ′ − µ)T∇Gt(µ) +

α‖µ′ − µ‖2

2η
.

As a special case, using the fact that µt is a minimizer of Gt, we have

Gt(µt+1)−Gt(µt) ≥
α‖µt+1 − µt‖2

2η
.

In the same way,

Gt+1(µt)−Gt+1(µt+1) ≥ α‖µt+1 − µt‖2

2η
.

Summing the two previous inequalities gives

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≥
α‖µt+1 − µt‖2

η
,
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and so, combined with, this gives:

‖µt+1 − µt‖ ≤
√
η

α

[
µTt ∇L̄t(µt)− µTt+1∇L̄t(µt)

]
.

Combining this inequality with (23) leads to (22).
Plugging (19), (20) and (22) together gives

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] ≤
ηTL2

α
+
K(qµ, π)

η
,

that is the statement of the theorem.

Proof [Proof of Theorem 3] We prove this theorem from scratch and use the main techniques
outlined in Hazan (2016). As previously, the idea is to study differences L̄t(µt) − L̄t(µ).
However, in this case, we have, for any µ = (m,σ), using Jensen’s inequality,

L̄t(m,σ) = Eθ∼qm,σ [`t(θ)] ≥ `t(m) = L̄t(m, 0).

So, we can assume from the beginning that µ = (m, 0).

Convex case:

First, we assume that each function L̄t is convex, for all m = (m1, ...,md) ∈ Mm and
µ = (m, 0):

L̄t(µt)− L̄t(µ) ≤ ∇L̄t(µt)T (µt − µ) =
d∑
j=1

[
∂L̄t
∂mj

(mt, σt)(mt,j −mj) +
∂L̄t
∂σj

(mt, σt)σt,j

]
.

Using the update formulas 10:

(mt+1,j −mj)
2 = (mt,j −mj)

2 + η2
t,jσ

4
t,j

∂L̄t
∂mj

(mt, σt)
2 − 2ηt,jσ

2
t,j

∂L̄t
∂mj

(mt, σt)(mt,j −mj)

and

σ2
t+1,j = σ2

t,j+
η2
t,jσ

4
t,j

2

∂L̄t
∂σ j

(mt,j , σt,j)
2−ηt,jσ2

t,j

√√√√
1 +

(ηt,jσt,j ∂L̄t∂σj
(mt, σt)

2

)2∂L̄t
∂σj

(mt, σt)σt,j .

Rearranging the terms, we get:

∂L̄t
∂mj

(mt, σt)(mt,j −mj) =
(mt,j −mj)

2 − (mt+1,j −mj)
2

2ηt,jσ2
t,j

+
ηt,jσ

2
t,j

∂L̄t
∂mj

(mt, σt)
2

2

and

∂L̄t
∂σj

(mt, σt)σt,j =
σ2
t,j − σ2

t+1,j

ηt,jσ2
t,j

√
1 +

(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
+

ηt,jσ
2
t,j
∂L̄t
∂σj

(mt, σt)
2

2

√
1 +

(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
.
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We also use the boundedness of the gradients: for any (m,σ) ∈M, at any date t,
d∑
j=1

[
∂L̄t
∂mj

(m,σ)2 +
∂L̄t
∂σj

(m,σ)2

]
≤ L2.

We upper bound the inverse of the square root by 1, the gradient by L and we sum over
time:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤
d∑
j=1

T∑
t=1

(mt,j −mj)
2

2

[
1

ηt,jσ2
t,j

− 1

ηt−1,jσ2
t−1,j

]

+

d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2

∂L̄t
∂mj

(mt, σt)
2

+

d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2

ηt−1,jσ2
t−1,j

]

+

d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2

∂L̄t
∂σj

(mt, σt)
2

=

d∑
j=1

T∑
t=1

(mt,j −mj)
2

2

[
1

ηt,jσ2
t,j

− 1

ηt−1,jσ2
t−1,j

]

+

d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2

ηt−1,jσ2
t−1,j

]

+

T∑
t=1

ηt,jσ
2
t,j

2

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)
2 +

∂L̄t
∂σj

(mt, σt)
2

]

≤
d∑
j=1

T∑
t=1

[
(mt,j −mj)

2 + σ2
t,j

][
1

ηt,jσ2
t,j

− 1

ηt−1,jσ2
t−1,j

]

+
T∑
t=1

ηt,jσ
2
t,j

2

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)
2 +

∂L̄t
∂σj

(mt, σt)
2

]
.

The key point in the following is that the difference
1

ηt,jσ2
t,j

− 1

ηt−1,jσ2
t−1,j

does not depend on j on account of the formula ηt,j = K/(
√
tσ2
t,j) > 0. We also recall that

d∑
j=1

(mt,j −mj)
2 + σ2

t,j ≤ D2.

Moreover,
T∑
t=1

1√
t
≤ 2
√
T ,
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so setting ηt,j = K√
tσ2
t,j

> 0 with K = D
√

2
L , we finally have:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤ 1

K

T∑
t=1

(
√
t−
√
t− 1)

d∑
j=1

[(mt,j −mj)
2 + σ2

t,j ] +
T∑
t=1

K√
t
L2

≤ D2

K

T∑
t=1

(
√
t−
√
t− 1) +

KL2

2

T∑
t=1

1√
t

=

(
D2

K
+
KL2

2

)√
T

= DL
√

2T ,

where K is chosen so that it minimizes the bound.

Strongly convex case:

Now, we assume that each function L̄t is H-strongly convex, for allm ∈Mm and µ = (m, 0):

L̄t(µt)− L̄t(µ) ≤ ∇L̄t(µt)T (µt − µ)− H

2
‖µt − µ‖2

=

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)(mt,j −mj) +
∂L̄t
∂σj

(mt, σt)σt,j −
H

2
(mt,j −mj)

2 − H

2
σ2
t,j

]
.

Again,

∂L̄t
∂mj

(mt, σt)(mt,j −mj) =
(mt,j −mj)

2 − (mt+1,j −mj)
2

2ηt,jσ2
t,j

+
ηt,jσ

2
t,j

∂L̄t
∂mj

(mt, σt)
2

2

and

∂L̄t
∂σj

(mt, σt)σt,j =
σ2
t,j − σ2

t+1,j

ηt,jσ2
t,j

√
1 +

(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
+

ηt,jσ
2
t,j
∂L̄t
∂σj

(mt, σt)
2

2

√
1 +

(
ηt,jσt,j

∂L̄t
∂σj

(mt,σt)

2

)2
,

and then as previously with ηt,j = 2
Htσ2

t,j
:

T∑
t=1

L̄t(µt)− L̄t(µ) ≤
d∑
j=1

T∑
t=1

(mt,j −mj)
2

2

[
1

ηt,jσ2
t,j

− 1

ηt−1,jσ2
t−1,j

−H

]

+

d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2

∂L̄t
∂mj

(mt, σt)
2

+

d∑
j=1

T∑
t=1

σ2
t,j

2

[
2

ηt,jσ2
t,j

− 2

ηt−1,jσ2
t−1,j

−H
]
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+

d∑
j=1

T∑
t=1

ηt,jσ
2
t,j

2

∂L̄t
∂σj

(mt, σt)
2

≤
d∑
j=1

T∑
t=1

(mt,j −mj)
2

2

[
tH

2
− (t− 1)H

2
−H

]

+
d∑
j=1

T∑
t=1

σ2
t,j

2

[
tH − (t− 1)H −H

]

+
T∑
t=1

1

Ht

d∑
j=1

[
∂L̄t
∂mj

(mt, σt)
2 +

∂L̄t
∂σj

(mt, σt)
2

]

≤
d∑
j=1

T∑
t=1

(mt,j −mj)
2

2

[
H

2
−H

]
+ 0 +

T∑
t=1

L2

Ht

≤ L2

H
(1 + log(T )),

which ends the proof.

Proof [Proof of Theorem 4] The proof is exactly the same as for Theorem 2. As previously,
we first prove by recursion on T that

∀µ ∈M,
T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µT∇L̄t(µt) +
‖µ− µ1‖2

η
. (24)

It is obvious that it holds for T = 0. Assume now that (24) holds for some integer T − 1.
Then for all µ ∈M ,

T∑
t=1

µTt+1∇L̄t(µt) =
T−1∑
t=1

µTt+1∇L̄t(µt) + µTT+1∇L̄T (µT )

≤
T−1∑
t=1

µT∇L̄t(µt) +
‖µ− µ1‖2

η
+ µTT+1∇L̄T (µT )

as (24) holds for T − 1. Apply this again to µ = µT+1:

T∑
t=1

µTt+1∇L̄t(µt) ≤
T∑
t=1

µTT+1∇L̄t(µt) +
‖µ− µ1‖2

η

= min
m∈M

[
T∑
t=1

mT∇L̄t(µt) +
‖µ− µ1‖2

η

]
, by definition of µT+1

≤
T∑
t=1

µT∇L̄t(µt) +
‖µ− µ1‖2

η

for all µ ∈M. Thus, (24) holds for T , and thus for integers.
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We prove now that for any t ∈ N,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) ≤ ηL2. (25)

Indeed,

µTt ∇L̄t(µt)− µTt+1∇L̄t(µt) = (µt − µt+1)T∇L̄t(µt)
≤ ‖µt − µt+1‖‖∇L̄t(µt)‖
≤ L‖µt − µt+1‖ (26)

as previously. Define

Gt(µ) =

t−1∑
i=1

µT∇L̄t(µi) +
‖µ− µ1‖2

η
.

Obviously, Gt is 1/η-strongly convex: for any (µ, µ′),

Gt(µ
′)−Gt(µ) ≥ (µ′ − µ)T∇Gt(µ) +

‖µ′ − µ‖2

2η
.

In particular, µt is a minimizer of Gt:

Gt(µt+1)−Gt(µt) ≥
‖µt+1 − µt‖2

2η
.

Similarly,

Gt+1(µt)−Gt+1(µt+1) ≥ ‖µt+1 − µt‖2

2η
.

Hence:

L̄t(µt)− L̄t(µt+1) ≥ ‖µt+1 − µt‖2

η
,

and then

‖µt+1 − µt‖ ≤
√
η
[
µTt ∇L̄t(µt)− µTt+1∇L̄t(µt)

]
which combined with (26) leads to (25).

Finally, as for Theorem 2:

T∑
t=1

`t(θ̂t)−
T∑
t=1

Eθ∼qµ [`t(θ)] ≤ ηTL2 +
‖µ− µ1‖2

η
,

which ends the proof.
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