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Abstract
We propose a method of stacking multiple long short-term memory (LSTM) layers for modeling
sentences. In contrast to the conventional stacked LSTMs where only hidden states are fed as in-
put to the next layer, the suggested architecture accepts both hidden and memory cell states of the
preceding layer and fuses information from the left and the lower context using the soft gating
mechanism of LSTMs. Thus the architecture modulates the amount of information to be deliv-
ered not only in horizontal recurrence but also in vertical connections, from which useful features
extracted from lower layers are effectively conveyed to upper layers. We dub this architecture Cell-
aware Stacked LSTM (CAS-LSTM) and show from experiments that our models bring significant
performance gain over the standard LSTMs on benchmark datasets for natural language inference,
paraphrase detection, sentiment classification, and machine translation. We also conduct extensive
qualitative analysis to understand the internal behavior of the suggested approach.
Keywords: sentence modeling, long short-term memory network, stacked recurrent neural network

1. Introduction

In the field of natural language processing (NLP), one of the most prevalent neural approaches to ob-
taining sentence representations is to use recurrent neural networks (RNNs), where words in a sen-
tence are processed in a sequential and recurrent manner. Along with their intuitive design, RNNs
have shown outstanding performance across various NLP tasks e.g. language modeling (Mikolov
et al., 2010; Graves, 2013), machine translation (Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015), text classification (Zhou et al., 2015; Tang et al., 2015), and parsing (Kiperwasser and
Goldberg, 2016; Dyer et al., 2016).

Among several variants of the original RNN (Elman, 1990), gated recurrent architectures such
as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Cho et al., 2014) have been accepted as de-facto standard choices for RNNs due to their
capability of addressing the vanishing and exploding gradient problem and considering long-term
dependencies. Gated RNNs achieve these properties by introducing additional gating units that learn
to control the amount of information to be transferred or forgotten (Goodfellow et al., 2016), and
are proven to work well without relying on complex optimization algorithms or careful initialization
(Sutskever, 2013).

Meanwhile, the common practice for further enhancing the expressiveness of RNNs is to stack
multiple RNN layers, each of which has distinct parameter sets (stacked RNN) (Schmidhuber, 1992;
El Hihi and Bengio, 1996). In stacked RNNs, the hidden states of a layer are fed as input to the
subsequent layer, and they are shown to work well due to increased depth (Pascanu et al., 2014) or
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Figure 1: Visualization of (a) plain stacked LSTM and (b) CAS-LSTM. The red nodes indicate the
blocks whose cell states directly affect the cell state clt.

their ability to capture hierarchical time series (Hermans and Schrauwen, 2013) which are inherent
to the nature of the problem being modeled.

However this setting of stacking RNNs might hinder the possibility of more sophisticated struc-
tures since the information from lower layers is simply treated as input to the next layer, rather than
as another class of state that participates in core RNN computations. Especially for gated RNNs
such as LSTMs and GRUs, this means that the vertical layer-to-layer connections cannot fully ben-
efit from the carefully constructed gating mechanism used in temporal transitions.

In this paper, we study a method of constructing multi-layer LSTMs where memory cell states
from the previous layer are used in controlling the vertical information flow. This system utilizes
states from the left and the lower context equally in computation of the new state, thus the infor-
mation from lower layers is elaborately filtered and reflected through a soft gating mechanism. Our
method is easy-to-implement, effective, and can replace conventional stacked LSTMs without much
modification of the overall architecture.

We call this architecture Cell-aware Stacked LSTM, or CAS-LSTM, and evaluate our method
on multiple benchmark tasks: natural language inference, paraphrase identification, sentiment clas-
sification, and machine translation. From experiments we show that the CAS-LSTMs consistently
outperform typical stacked LSTMs, opening the possibility of performance improvement of archi-
tectures based on stacked LSTMs.

Our contribution is summarized as follows. Firstly, we bring the idea of utilizing states coming
from multiple directions to construction of stacked LSTM and apply the idea to the research of
sentence representation learning. There is some prior work addressing the idea of incorporating
more than one type of state (Graves et al., 2007; Kalchbrenner et al., 2016; Zhang et al., 2016),
however to the best of our knowledge there is little work on applying the idea to modeling sentences
for better understanding of natural language text.

Secondly, we conduct extensive evaluation of the proposed method and empirically prove its
effectiveness. The CAS-LSTM architecture provides consistent performance gains over the stacked
LSTM in all benchmark tasks: natural language inference, paraphrase identification, sentiment clas-
sification, and machine translation. Especially in SNLI, SST-2, and Quora Question Pairs datasets,
our models outperform or at least are on par with the state-of-the-art models. We also conduct
thorough qualitative analysis to understand the dynamics of the suggested approach.

This paper is organized in the following way. We study prior work related to our objective in
§2, and §3 gives a detailed description about the proposed method. Experimental results are given
in §4, and §5 concludes this paper.
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2. Related Work

In this section, we summarize prior work related to the proposed method. We group the previous
work that motivated our work into three classes: i) enhancing interaction between vertical layers, ii)
RNN architectures that accepts latticed data, and iii) tree-structured RNNs.

Stacked RNNs. There is some prior work on methods of stacking RNNs beyond the plain stacked
RNNs (Schmidhuber, 1992; El Hihi and Bengio, 1996). Residual LSTMs (Kim et al., 2017; Tran
et al., 2017) add residual connections between the hidden states computed at each LSTM layer, and
shortcut-stacked LSTMs (Nie and Bansal, 2017) concatenate hidden states from all previous layers
to make the backpropagation path short. In our method, the lower context is aggregated via a gating
mechanism, and we believe it modulates the amount of information to be transmitted in a more
efficient and effective way than vector addition or concatenation. Also, compared to concatenation,
our method does not significantly increase the number of parameters.1

Highway LSTMs (Zhang et al., 2016) and depth-gated LSTMs (Yao et al., 2015) are similar to
our proposed models in that they use cell states from the previous layer, and they are successfully
applied to the field of automatic speech recognition and language modeling. However in contrast to
CAS-LSTM, where the additional forget gate aggregates the previous layer states and thus contexts
from the left and below participate in computation equitably, in Highway LSTMs and depth-gated
LSTMs the states from the previous time step are not considered in computing vertical gates. The
comparison of our method and this architecture is presented in §4.6.

Multidimensional RNNs. There is another line of research that aims to extend RNNs to operate
with multidimensional inputs. Grid LSTMs (Kalchbrenner et al., 2016) are a general n-dimensional
LSTM architecture that accepts n sets of hidden and cell states as input and yields n sets of states
as output, in contrast to our architecture, which emits a single set of states. In their work, the au-
thors utilize 2D and 3D Grid LSTMs in character-level language modeling and machine translation
respectively and achieve performance improvement. Multidimensional RNNs (Graves et al., 2007;
Graves and Schmidhuber, 2009) have similar formulation to ours, except that they reflect cell states
via simple summation and weights for all columns (vertical layers in our case) are tied. However
they are only employed to model multidimensional data such as images of handwritten text with
RNNs, rather than stacking RNN layers for modeling sequential data. From this view, CAS-LSTM
could be interpreted as an extension of two-dimensional LSTM architecture that accepts a 2D input
{hl

t}
T,L
t=1,l=0 where hl

t represents the hidden state at time t and layer l.

Tree-structured RNNs. The idea of having multiple states is also related to tree-structured RNNs
(Goller and Kuchler, 1996; Socher et al., 2011). Among them, tree-structured LSTMs (tree-LSTMs)
(Tai et al., 2015; Zhu et al., 2015; Le and Zuidema, 2015) are similar to ours in that they use both
hidden and cell states of children nodes. In tree-LSTMs, states of children nodes are regarded as
input, and they participate in computing the states of a parent node equally through weight-shared or
weight-unshared projection. From this perspective, each CAS-LSTM layer can be seen as a binary
tree-LSTM where the structures it operates on are fixed to right-branching trees.

Indeed, our work is motivated by the recent analysis (Williams et al., 2018a; Shi et al., 2018) on
latent tree learning models (Yogatama et al., 2017; Choi et al., 2018b) which has shown that tree-

1. The l-th layer of a typical stacked LSTM requires (dl−1 + dl +1)× 4dl parameters, and the l-th layer of a shortcut-
stacked LSTM requires (

∑l−1
k=0 dk + dl +1)× 4dl parameters. CAS-LSTM uses (dl−1 + dl +1)× 5dl parameters

at the l-th (l > 1) layer.
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Figure 2: Schematic diagram of a CAS-LSTM block.

LSTM models outperform the sequential LSTM models even when the resulting parsing strategy
generates strictly left- or right-branching parses, where a tree-LSTM model should read words in
the manner identical to a sequential LSTM model. We argue that the active use of cell state in com-
putation could be one reason of these counter-intuitive results and empirically prove the hypothesis
in this work.

3. Model Description

In this section, we give the detailed formulation of architectures used in experiments.

3.1. Stacked LSTMs

While there exist various versions of LSTM formulation, in this work we use the following, the
most common variant:

ilt = σ(Wl
ih

l−1
t + Ul

ih
l
t−1 + bl

i) (1)

f lt = σ(Wl
fh

l−1
t + Ul

fh
l
t−1 + bl

f ) (2)

c̃lt = tanh(Wl
ch

l−1
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c) (3)

olt = σ(Wl
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l−1
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oh
l
t−1 + bl

o) (4)

clt = ilt � c̃lt + f lt � clt−1 (5)

hl
t = olt � tanh(clt), (6)

where t ∈ {1, · · · , T} and l ∈ {1, · · · , L}. Wl
· ∈ Rdl×dl−1 , Ul

· ∈ Rdl×dl , bl
· ∈ Rdl are trainable

parameters, and σ(·) and tanh(·) are the sigmoid and the hyperbolic tangent function respectively.
Also we assume that h0

t = xt ∈ Rd0 where xt is the t-th element of an input sequence.
The input gate ilt and the forget gate f lt control the amount of information transmitted from c̃lt

and clt−1, the candidate cell state and the previous cell state, to the new cell state clt. Similarly the
output gate olt soft-selects which portion of the cell state clt is to be used in the final hidden state.

We can clearly see that the cell states clt−1, c̃lt, c
l
t play a crucial role in forming horizontal

recurrence. However the current formulation does not consider the cell state from (l − 1)-th layer
(cl−1t ) in computation and thus the lower context is reflected only through the rudimentary way,
hindering the possibility of controlling vertical information flow.
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Figure 3: Visualization of paths between cl−1t and clt. In CAS-LSTM, the direct connection between
cl−1t and clt exists (denoted as red dashed lines).

3.2. Cell-aware Stacked LSTMs

Now we extend the stacked LSTM formulation defined above to address the problem noted in the
previous subsection. To enhance the interaction between layers in a way similar to how LSTMs
keep and forget the information from the previous time step, we introduce the additional forget gate
gl
t that determines whether to accept or ignore the signals coming from the previous layer.

The proposed Cell-aware Stacked LSTM (CAS-LSTM) architecture is defined as follows:
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clt = ilt � c̃lt + (1− λ)� f lt � clt−1 + λ� gl
t � cl−1t (12)

hl
t = olt � tanh(clt), (13)

where l > 1 and dl = dl−1. λ can either be a vector of constants or parameters. When l = 1, the
equations defined in the previous subsection are used. Therefore, it can be said that each non-bottom
layer of CAS-LSTM accepts two sets of hidden and cell states—one from the left context and the
other from the below context. The left and the below context participate in computation with the
equivalent procedure so that the information from lower layers can be efficiently propagated. Fig.
1 compares CAS-LSTM to the conventional stacked LSTM architecture, and Fig. 2 depicts the
computation flow of the CAS-LSTM.

We argue that considering cl−1t in computation is beneficial for the following reasons. First,
contrary to hl−1

t , cl−1t contains information which is not filtered by ol−1t . Thus a model that directly
uses cl−1t does not rely solely on ol−1t for extracting information, due to the fact that it has access
to the raw information cl−1t , as in temporal connections. In other words, ol−1t no longer has to take
all responsibility for selecting useful features for both horizontal and vertical transitions, and the
burden of selecting information is shared with gl

t.
Another advantage of using the cl−1t lies in the fact that it directly connects cl−1t and clt. This

direct connection could help and stabilize training, since the terminal error signals can be easily
backpropagated to the model parameters by the shortened propagation path. Fig. 3 illustrates paths
between the two cell states.
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Regarding λ, we find experimentally that there is little difference between having it be a con-
stant and a trainable vector bounded in (0, 1), and we practically find that setting λi = 0.5 works
well across multiple experiments. We also experimented with the architecture without λ i.e. two
cell states are combined by unweighted summation similar to multidimensional RNNs (Graves and
Schmidhuber, 2009), and found that it leads to performance degradation and unstable convergence,
likely due to mismatch in the range of cell state values between layers ((−2, 2) for the first layer
and (−3, 3) for the others). Experimental results on various λ are presented in §4.6.

3.3. Sentence Encoders

For text classification tasks, a variable-length sentence should be represented as a fixed-length vec-
tor. We describe the sentence encoder architectures used in experiments in this subsection.

First, we assume that a sequence of T one-hot word vectors is given as input: (w1, · · · ,wT ),
wt ∈ R|V | where V is the vocabulary set. The words are projected to corresponding word rep-
resentations: X = (x1, · · · ,xT ) where xt = E>wt ∈ Rd0 , E ∈ R|V |×d0 . Then X is fed to a
L-layer CAS-LSTM model, resulting in the representations H = (hL

1 , · · · ,hL
T ) ∈ RT×dL . The

encoded sentence representation s ∈ RdL is computed by max-pooling H over time as in the work
of Conneau et al. (2017). Similar to their results, from preliminary experiments we found that the
max-pooling performs consistently better than the mean-pooling and the last-pooling.

For better modeling of semantics, a bidirectional CAS-LSTM network may also be used. In
the bidirectional case, the representations obtained by left-to-right reading H = (hL

1 , · · · ,hL
T ) ∈

RT×dL and those by right-to-left reading Ĥ = (ĥL
1 , · · · , ĥL

T ) ∈ RT×dL are concatenated and max-
pooled to yield the sentence representation s ∈ R2dL . We call this bidirectional architecture Bi-
CAS-LSTM in experiments.

To predict the final task-specific label, we apply a task-specific feature extraction function φ
to the sentence representation(s) and feed the extracted features to a classifier network. For the
classifier network, a multi-layer perceptron (MLP) with the ReLU activation followed by the linear
projection and the softmax function is used:

P (y|X) = softmax(WcMLP(φ(·))), (14)

where Wc ∈ R|L|×dh , |L| is the number of label classes, and dh the dimension of the MLP output.

4. Experiments

We evaluate our method on three benchmark tasks on sentence encoding: natural language infer-
ence (NLI), paraphrase identification (PI), and sentiment classification. To further demonstrate the
general applicability of our method on text generation, we also evaluate the proposed method on
machine translation. In addition, we conduct analysis on gate values model variations for the under-
standing of the architecture. We refer readers to the supplemental material for detailed experimental
settings. The code will be made public for reproduction.

For the NLI and PI tasks, there exists architectures specializing in sentence pair classification.
However in this work we confine our model to the architecture that encodes each sentence using a
shared encoder without any inter-sentence interaction, in order to focus on the effectiveness of the
architectures in extracting semantics. But note that the applicability of CAS-LSTM is not limited to
sentence encoder–based approaches.
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Model Acc. (%) # Params
300D LSTM (Bowman et al., 2016) 80.6 3.0M
300D TBCNN (Mou et al., 2016) 82.1 3.5M
300D SPINN-PI (Bowman et al., 2016) 83.2 3.7M
600D BiLSTM with intra-attention (Liu et al., 2016) 84.2 2.8M
4096D BiLSTM with max-pooling (Conneau et al., 2017) 84.5 40M
300D BiLSTM with gated pooling (Chen et al., 2017) 85.5 12M
300D Gumbel Tree-LSTM (Choi et al., 2018b) 85.6 2.9M
600D Shortcut stacked BiLSTM (Nie and Bansal, 2017) 86.1 140M
300D Reinforced self-attention network (Shen et al., 2018) 86.3 3.1M
600D BiLSTM with generalized pooling (Chen et al., 2018) 86.6 65M
300D 2-layer CAS-LSTM (ours) 86.4 2.9M
300D 2-layer Bi-CAS-LSTM (ours) 86.8 6.8M
300D 3-layer CAS-LSTM (ours) 86.4 4.8M
300D 3-layer Bi-CAS-LSTM (ours) 87.0 8.6M

Table 1: Results of the models on the SNLI dataset.

Model In (%) Cross (%) # Params
CBOW (Williams et al., 2018b) 64.8 64.5 -
BiLSTM (Williams et al., 2018b) 66.9 66.9 -
Shortcut stacked BiLSTM (Nie and Bansal, 2017)∗ 74.6 73.6 140M
BiLSTM with gated pooling (Chen et al., 2017) 73.5 73.6 12M
BiLSTM with generalized pooling (Chen et al., 2018) 73.8 74.0 18M∗∗

2-layer CAS-LSTM (ours) 74.0 73.3 2.9M
2-layer Bi-CAS-LSTM (ours) 74.6 73.7 6.8M
3-layer CAS-LSTM (ours) 73.8 73.1 4.8M
3-layer Bi-CAS-LSTM (ours) 74.2 73.4 8.6M

Table 2: Results of the models on the MultiNLI dataset. ‘In’ and ‘Cross’ represent accuracy calcu-
lated from the matched and mismatched test set respectively. ∗: SNLI dataset is used as additional
training data. ∗∗: computed from hyperparameters provided by the authors.

4.1. Natural Language Inference

For the evaluation of performance of the proposed method on the NLI task, SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018b) datasets are used. The objective of both datasets is
to predict the relationship between a premise and a hypothesis sentence: entailment, contradiction,
and neutral. SNLI and MultiNLI datasets are composed of about 570k and 430k premise-hypothesis
pairs respectively.

GloVe pretrained word embeddings2 (Pennington et al., 2014) are used and remain fixed during
training. The dimension of encoder states (dl) is set to 300 and a 1024D MLP with one or two
hidden layers is used. We apply dropout (Srivastava et al., 2014) to the word embeddings and
the MLP layers. The features used as input to the MLP classifier are extracted by the following

2. https://nlp.stanford.edu/projects/glove/
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Model Acc. (%)
CNN (Wang et al., 2017) 79.6
LSTM (Wang et al., 2017) 82.6
Multi-Perspective LSTM (Wang et al., 2017) 83.2
LSTM + ElBiS (Choi et al., 2018a) 87.3
REGMAPR (BASE+REG) (Brahma, 2018) 88.0
CAS-LSTM (ours) 88.4
Bi-CAS-LSTM (ours) 88.6

Table 3: Results of the models on the Quora Question Pairs dataset.

equation:
φ(s1, s2) = s1 ⊕ s2 ⊕ |s1 − s2| ⊕ (s1 � s2), (15)

where ⊕ is the vector concatenation operator.
Table 1 and 2 contain results of the models on SNLI and MultiNLI datasets. Along with other

state-of-the-art models, the tables include several stacked LSTM–based models to facilitate compar-
ison of our work with prior related work. Liu et al. (2016); Chen et al. (2017, 2018) adopt advanced
pooling algorithms motivated by the attention mechanism to obtain a fixed-length sentence vector.
Nie and Bansal (2017) use the concatenation of all outputs from previous layers as input to the next
layer.

In SNLI, our best model achieves the accuracy of 87.0%, which is the new state-of-the-art
among the sentence encoder–based models, with relatively fewer parameters. Similarly in MultiNLI,
our models match the accuracy of state-of-the-art models in both in-domain (matched) and cross-
domain (mismatched) test sets. Note that only the GloVe word vectors are used as word represen-
tations, as opposed to some models that introduce character-level features. It is also notable that
our proposed architecture does not restrict the selection of pooling method; the performance could
further be improved by replacing max-pooling with other advanced algorithms e.g. intra-sentence
attention (Liu et al., 2016) and generalized pooling (Chen et al., 2018).

4.2. Paraphrase Identification

We use Quora Question Pairs dataset (Wang et al., 2017) in evaluating the performance of our
method on the PI task. The dataset consists of over 400k question pairs, and each pair is annotated
with whether the two sentences are paraphrase of each other or not.

Similarly to the NLI experiments, GloVe pretrained vectors, 300D encoders, and 1024D MLP
are used. The number of CAS-LSTM layers is fixed to 2 in PI experiments. Two sentence vectors
are aggregated using the following equation and fed as input to the classifier.

φ(s1, s2) = |s1 − s2| ⊕ (s1 � s2) (16)

The results on the Quora Question Pairs dataset are summarized in Table 3. Again we can
see that our models outperform other models, especially compared to conventional LSTM–based
models. Also note that Multi-Perspective LSTM (Wang et al., 2017), LSTM + ElBiS (Choi et al.,
2018a), and REGMAPR (BASE+REG) (Brahma, 2018) in Table 3 are approaches that focus on
designing a more sophisticated function for aggregating two sentence vectors, and their aggregation
functions could be also applied to our work for further improvement.
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Model SST-2 (%) SST-5 (%)
Recursive Neural Tensor Network (Socher et al., 2013) 85.4 45.7
2-layer LSTM (Tai et al., 2015) 86.3 46.0
2-layer BiLSTM (Tai et al., 2015) 87.2 48.5
Constituency Tree-LSTM (Tai et al., 2015) 88.0 51.0
Constituency Tree-LSTM with recurrent dropout (Looks et al., 2017) 89.4 52.3
byte mLSTM (Radford et al., 2017)∗ 91.8 52.9
Gumbel Tree-LSTM (Choi et al., 2018b) 90.7 53.7
BCN + Char + ELMo (Peters et al., 2018)∗ - 54.7
2-layer CAS-LSTM (ours) 91.1 53.0
2-layer Bi-CAS-LSTM (ours) 91.3 53.6

Table 4: Results of the models on the SST dataset. ∗: models pretrained on large external corpora
are used.

Model BLEU
256D LSTM 28.1 ± 0.22
256D CAS-LSTM 28.8 ± 0.04∗

247D CAS-LSTM 28.7 ± 0.07∗

Table 5: Results of the models on the IWSLT 2014 de-en dataset. ∗: p < 0.0005 (one-tailed paired
t-test).

4.3. Sentiment Classification

In evaluating sentiment classification performance, the Stanford Sentiment Treebank (SST) (Socher
et al., 2013) is used. It consists of about 12,000 binary-parsed sentences where constituents (phrases)
of each parse tree are annotated with a sentiment label (very positive, positive, neutral, negative, very
negative). Following the convention of prior work, all phrases and their labels are used in training
but only the sentence-level data are used in evaluation.

In evaluation we consider two settings, namely SST-2 and SST-5, the two differing only in their
level of granularity with regard to labels. In SST-2, data samples annotated with ‘neutral’ are ignored
from training and evaluation. The two positive labels (very positive, positive) are considered as the
same label, and similarly for the two negative labels. As a result 98,794/872/1,821 data samples
are used in training/validation/test, and the task is considered as a binary classification problem.
In SST-5, all 318,582/1,101/2,210 data samples are used and the task is a 5-class classification
problem.

Since the task is a single-sentence classification problem, we use the sentence representation
itself as input to the classifier. We use 300D GloVe vectors, 2-layer 150D or 300D encoders, and a
300D MLP classifier for the models, however unlike previous experiments we tune the word embed-
dings during training. The results on SST are listed in Table 4. Our models clearly outperform plain
LSTM- and BiLSTM-based models, and are competitive to other state-of-the-art models, without
utilizing parse tree information.
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4.4. Machine Translation

We use the IWSLT 2014 machine evaluation campaign dataset (Cettolo et al., 2014) in machine
translation experiments. We used the fairseq library3 (Gehring et al., 2017) for experiments. Moses
tokenizer4 is used for word tokenization and the byte pair encoding (Sennrich et al., 2016) is applied
to confine the size of the vocabulary set up to 10,000.

Similar to Wiseman and Rush (2016), a 2-layer 256D sequence-to-sequence LSTM model with
the attentional decoder is used as baseline, and we replace the encoder and the decoder network
with the proposed architecture for the evaluation of performance improvement. For decoding, beam
search with B = 10 is used. For fair comparison, we tune hyperparameters for all models based
on the performance on the validation dataset and train the same model for five times with different
random seeds. Also, to cancel out the increased number of parameters, we experiment with the
247D CAS-LSTM model which has the roughly same number of parameters as the baseline model
(8.2M).

From Table 5, we can see that the CAS-LSTM models bring significant performance gains over
the baseline model.

4.5. Forget Gate Analysis

To inspect the effect of the additional forget gate, we investigate how the values of vertical forget
gates are distributed. We sample 1,000 random sentences from the development set of the SNLI
dataset, and use the 3-layer CAS-LSTM model trained on the SNLI dataset to compute gate values.

If all values from a vertical forget gate gl
t were to be 0, this would mean that the introduction of

the additional forget gate is meaningless and the model would reduce to a plain stacked LSTM. On
the contrary if all values were 1, meaning that the vertical forget gates were always open, it would
be impossible to say that the information is modulated effectively.

Fig. 4a and 4b represent histograms of the vertical forget gate values from the second and the
third layer. From the figures we can validate that the trained model does not fall into the degenerate
case where vertical forget gates are ignored. Also the figures show that the values are right-skewed,
which we conjecture to be a result of focusing more on a strong interaction between adjacent layers.

To further verify that the gate values are diverse enough within each time step, we compute
the distribution of the range of values per time step, R(gl

t) = maxi g
l
t,i − mini g

l
t,i, where gl

t =

[glt,1, · · · , glt,dl ]
>. We plot the histograms in Fig. 4c and 4d. From the figures we see that the

vertical forget gate controls the amount of information flow effectively, making diverse decisions of
retaining or discarding signals across dimensions.

Finally, to investigate the argument presented in §3 that the additional forget gate helps the
previous output gate with reducing the burden of extracting all needed information, we inspect the
distribution of the values from |gl

t − ol−1t |. This distribution indicates how differently the vertical
forget gate and the previous output gate select information from cl−1t . From Fig. 4e and 4f we can
see that the two gates make fairly different decisions, from which we demonstrate that the direct
path between cl−1t and clt enables a model to utilize signals overlooked by ol−1t .

3. https://github.com/pytorch/fairseq
4. https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl
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Figure 4: (a) g2i , (b) g3i , (c) R(g2
· ), (d) R(g3

· ), (e) |g2i − o1i |, (f ) |g3i − o2i |. (a), (b): Histograms of
vertical forget gate values. (c), (d): Histograms of the ranges of vertical forget gate per time step.
(e), (f ): Histograms of the absolute difference between the previous output gate and the current
vertical forget gate values.

4.6. Model Variations

In this subsection, we see the influence of each component of a model on performance by removing
or replacing its components. the SNLI dataset is used for experiments, and the best performing
configuration is used as a baseline for modifications. We consider the following variants: (i) models
with different λ, (ii) models without λ, and (iii) models that integrate lower contexts via peephole
connections.

Variant (iii) calculates and applies the forget gate gl
t which takes charge of integrating lower

contexts via the equations below, following the work of Zhang et al. (2016):

gl
t = σ(Wl

gh
l−1
t + pl

g1 � clt−1 + pl
g2 � cl−1t + bl

g) (17)

clt = ilt � c̃lt + f lt � clt−1 + gl
t � cl−1t , (18)

where pl
· ∈ Rdl represent peephole weight vectors that take cell states into account. We can see

that the computation formulae of f lt and gl
t are not consistent, in that hl

t−1 does not participate in
computing gl

t−1, and that the left and the below context are reflected in gl
t−1 only via element-wise
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Model Acc. (%) ∆

Bi-CAS-LSTM (baseline) 87.0
(i) Diverse λ

(a) λi = 0.25 86.8 -0.2
(b) λi = 0.75 86.8 -0.2
(c) Trainable λ 86.9 -0.1

(ii) No λ 86.6 -0.4
(iii) Integration through peepholes 86.5 -0.5

Table 6: Results of model variants.

multiplications which do not consider the interaction among dimensions. By contrast, ours uses the
analogous formulae in calculating f lt and gl

t, considers hl
t−1 in calculating gl

t, and introduces the
scaling factor λ.

Table 6 summarizes the results of model variants. From the results of baseline and (i), we vali-
date that the selection of λ does not significantly affect performance but introducing λ is beneficial
(baseline vs. (ii)) possibly due to its effect on normalizing information from multiple sources, as
mentioned in §3. Also, from the comparison between baseline and (iii), we show that the proposed
way of combining the left and the lower contexts leads to better modeling of sentence representa-
tions than that of Zhang et al. (2016).

5. Conclusion

In this paper, we proposed a method of stacking multiple LSTM layers for modeling sentences,
dubbed CAS-LSTM. It uses not only hidden states but also cell states from the previous layer, for
the purpose of controlling the vertical information flow in a more elaborate way. We evaluated
the proposed method on various benchmark tasks: natural language inference, paraphrase identi-
fication, and sentiment classification. Our models outperformed plain LSTM-based models in all
experiments and were competitive other state-of-the-art models. The proposed architecture can re-
place any stacked LSTM only under one weak restriction—the size of states should be identical
across all layers.

For future work we plan to apply the CAS-LSTM architecture beyond sentence modeling tasks.
Various problems such as sequence labeling and language modeling might benefit from sophisti-
cated modulation on context integration. Aggregating diverse contexts from sequential data, e.g.
those from forward and backward reading of text, could also be an intriguing research direction.
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