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Abstract

Due to the efficiency of exploring multiple views of the real-word data, Multi-View Clus-
tering (MVC) has attracted extensive attention from the scholars and researches based on
it have made significant progress. However, multi-view data with numerous complemen-
tary information is vulnerable to various factors (such as noise). So it is an important
and challenging task to discover the intrinsic characteristics hidden deeply in the data. In
this paper, we present a novel MVC algorithm based on deep matrix factorization, named
Self-Weighted Multi-view Clustering with Deep Matrix Factorization (SMDMF). By per-
forming the deep decomposition structure, SMDMF can eliminate interference and reveal
semantic information of the multi-view data. To properly integrate the complementary in-
formation among views, it assigns an automatic weight for each view without introducing
supernumerary parameters. We also analyze the convergence of the algorithm and discuss
the hierarchical parameters. The experimental results on four datasets show our algorithm
is superior to other comparisons in all aspects.

Keywords: Multi-view Clustering, Deep Matrix Factorization, Self-Weighted.

1. Introduction

Real-world datasets are always obtained from multiple sources with abundant feature repre-
sentations, which means these source data describe various information of the same dataset
(Zhao et al., 2017; Huang et al.). For example, a webpage has both text and image in-
formation, which is depicted from different perspectives (i.e. views or modalities). And
each picture can be specified by different features, e.g. LBP (Ojala et al., 2000), SIFT
(Lowe, 2004) and HOG (Dalal and Triggs, 2005). These different views composed of multi-
ple features constitute a huge data network, which provide more comprehensive and useful
information. MVC is a typical unsupervised classification method dealing with the het-
erogeneous data information. It divides the data into a set of disjoint subsets with high
intra-cluster similarity and low inter-cluster similarity (Liu et al., 2013; Gao et al., 2016;
Xu et al., 2017).

Recently, lots of researches on MVC has emerged, which are devoted to the development
of effective MVC algorithms. To fully use the complementary information, most of them
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are based on single-view clustering algorithms with carefully fusion of views (Bruno and
Marchand-Maillet, 2009). By using the common regularizing constraints, co-regularized
multi-view spectral clustering makes the clustering results of different views agree with
each other (Kumar et al., 2011b). Another multi-view spectral clustering method based on
the co-training idea learns clustering of one view, and then alternately modifies the graphical
structure of others with the help of marks (Kumar and Iii, 2011a). Cai et al. extended the
traditional K-means algorithm into the multi-view case with a structured sparse induction
norm (Cai et al., 2013). Yu et al. normalized the consistent subspace representation by
adding proper regular terms (Yu et al., 2018). Guo et al. proved the correlation between
the spectral clustering algorithm and the kernel matrix learning process theoretically, so
that the method can determine kernel weights and clustering simultaneously (Guo et al.,
2014) .

As one of the most popular high-dimensional data processing tools, non-negative matrix
factorization (NMF) has received more and more attention. And it has been used to improve
the correctness and effectiveness of clustering (Du and Swamy, 2010; Liu et al., 2013; Leng
et al., 2018). Although these algorithms have improved the clustering performance to a
large extent, they can only explore the shallow information limited by structure, which also
reduces their application scopes. The Deep Semi-NMF structure can not only retain the
interpretability of single-layer NMF, but also eliminate the interference in multi-view data,
which is helpful to extract the best common clustering features. H. Zhao et al. used this
deep structure to capture the hidden information and generate a valid consensus at the last
level (Zhao et al., 2017). Cai Xu et al. also utilized this hierarchical model to learn the
semantic structure of the multi-view data, and they particularly took the consistent and
complementary information among different views into account (Xu et al., 2018).

While operating multiple views of data, most existing algorithms choose a manual pa-
rameter to control the distribution of their weights, which is easy to implement. However,
the hyper-parameters will also inevitably reduce the convenience of execution and the sim-
plicity of program (Nie et al., 2017b).Yang Liu et al. designed a proper updating rule for
parameters. Their parameter-free model can automatically learn and update the weight
of each view with clustering performance improved (Liu et al., 2018). This idea can also
apply to multiple kernel learning frameworks. It enables algorithms to automatically assign
appropriate weights to kernels without adding additional parameters (Kang et al., 2018).

Based on this, we extend the semi-NMF with deep hierarchical framework, and initia-
tively apply the self-weighted strategy to this structure. In addition, there exists some
similarities between the deep semi-NMF structure and the multi-layer neural network of
deep learning (Hinton and Salakhutdinov, 2006; Bengio et al., 2009; Trigeorgis et al., 2014).
Fig.1 shows a schematic diagram of SMDMF. The deep model decomposes and filters the
multi-view data matrices (X(v)) layer by layer. Cooperating with weight parameters (α),
our model extracts the underlying complementary information and finally automatically
obtains the common representation matrix Gm shared by all the views in the highest ab-
straction layer.

In short, our major contributions are organized in three sections:

• A new deep semi-NMF method is designed for a consensus representation of the multi-
view data. The hierarchical structure captures the implicit and valid information
of data without interference, such as outliers and noise, and finally gains a unified
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Figure 1: Framework of SMDMF. For the sake of brevity, we take two views as an example.
While the data in each view is decomposed by the deep factorization structure,
an automatic weight is updated correspondingly. SMDMF combines the repre-
sentation matrices of the multi-view data in the highest abstraction layer. And
finally we obtain a consensus for future operation.

representation matrix of all the views. The consensus matrix can be considered as a
proper approximation of the original data to improve the performance of MVC.

• Except the necessary hierarchical parameters (layer size and single-layer dimensions),
our model does not use hyper-parameters to control the combination of complementary
information like these previous. It can automatically allocate an appropriate weight
to each view for information fusion, which greatly simplifies the whole structure and
reduces the complexity of operation.

• Furthermore, We also evaluate SMDMF on four real-world datasets. The proposed
algorithm achieves superior results and high performance in comparison with some
state-of-art ones.

Notations. Throughout the paper, matrices are written as uppercase. Given a matrix
X, its ij-th element is denoted by Xij . The Frobenius norm of matrix X is denoted by
||X||F . The transpose of matrix X is denoted by XT . X† refers to the Moore-Penrose
pseudo inverse of matrix X.

2. Related work

In this section, we will introduce a brief review of semi-NMF, and then extend it to form
a deep structure. Finally we elaborate the structure in the setting of multi-view data with
weight coefficient and trade-off parameter.
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2.1. A Review of semi-NMF

Semi-NMF extends NMF in which the elements of partial matrices are relaxed to real
values in the formulation, so that it can retain the characteristics of NMF with enough
interpretability of semantic representation, and gain more general range of applications in
the real world (Du and Swamy, 2010). Due to the consistency of the objective function form,
we can intuitively understand Semi-NMF from the perspective of the K-means algorithm.
In other words, Semi-NMF is also known as the relaxed version of the K-means clustering
(Chris et al., 2010; Liu et al., 2013; Zhao et al., 2017). Its objective function can be written
as follows:

min
F,G≥0

||X − FGT ||2F (1)

where the input data set X = [x1,x2, · · · ,xn] ∈ Rd×n has n samples with d-dimensional
features, F ∈ Rd×K/G ∈ Rn×K is called the basis/encoding matrix of K clusters (Xu et al.,
2018). For clustering, F can be approximated to the cluster centroid matrix. G is the “soft”
cluster indicator matrix in the hidden space (Zhao et al., 2017), which carries more effective
information than the sparse indicator matrix.

2.2. The Deep Semi-NMF structure

However, the simple single-layer semi-NMF ignores the deep intrinsic information existing
in the multi-view data, which adversely affects the clustering effect (Georghiades et al.,
2002). Inspired by the work in Xu et al. (2018), we utilize the pattern of the Deep Semi-
NMF model (Trigeorgis et al., 2014). It looks for a low-dimensional hidden representation
embedded in all the views. The deep model decomposes dataset X hierarchically, and the
process can be formulated as:

X ≈ F1F2 · · ·FmGTm (2)

where F1 ∈ Rd×p1 , F2 ∈ Rp1×p2 , · · · , Fm ∈ Rpm−1×pm denote a series of basic mapping
matrices, pi denotes the dimension of the i-th layer and m represents the total number of
layers, Gm ∈ Rn×pm denotes the final common latent representation (Trigeorgis et al., 2014).
Actually, the whole step of the deep structure can be translated as Gi, the representation
matrix of layer i, is decomposed into a new basis matrix Fi+1 and a more general consensus
matrix Gi+1 of the next layer.

While preserving the interpretability of the original single-layer NMF, the deep model
can also eliminate the negative interference in the multi-source data through layer-wise
decomposition. It effectively extracts the clustering-friendly feature of each attribute in the
single layer, and then outputs the consensus representation at the abstraction level (Zhao
et al., 2017; Xu et al., 2018).

2.3. Multi-view Combination

Some related work focus on the fusion of views in the multi-view scenario (Cai et al.,
2013; Guo et al., 2014). A multi-view dataset X is represented by different modalities
X(1), · · · , X(v), · · · , X(V ), where V denotes the number of views. After introducing a proper
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weight parameter ω(v)(v = 1, 2, · · · , V ) to integrate different views, we can obtain the Deep
Semi-NMF model in the multi-view setting (Nie et al., 2017a). The formulation can be
written as

min
F

(v)
i ,G

(v)
i ,

ω(v),Gm

V∑
v=1

(ω(v))
γ ||X(v) − F (v)

1 · · ·F (v)
m GTm||2F (3)

s.t. G
(v)
i ≥ 0, Gm ≥ 0,

V∑
v=1

ω(v) = 1, ω(v) ≥ 0

where X is the given multi-view dataset, and for each view X(v) ∈ Rd(v)×n, d(v) repre-
sents the dimension of data in view v. The adding parameter γ is necessary to smooth

the distribution of ω(v) (Zhao et al., 2017). F
(v)
i and G

(v)
i denote basis and encoding ma-

trices, respectively. And in the highest layer, all views with homology share a common
representation matrix Gm.

The introduction of weight hyper-parameter is to consider the significance of different
views, and make full use of the complementary information of the multi-view data. However,
in order to have satisfactory performance of the algorithm , it is usually essential to adjust
the parameter γ within a large range, which increases the runtime challenge drastically. In
consideration of this, we propose a parameter-free framework to tackle such problem (Nie
et al., 2017a,b).

3. Our Proposal: Self-Weighted Multi-View Clustering with Deep
Matrix Factorization

In this section, we present our novel parameter-free framework. In order to omit the weight
hyper-parameter, we used an ingenious strategy to generate the objective function of our
SMDMF framework, and it can be expressed as

min
F

(v)
i ,G

(v)
i ,Gm

V∑
v=1

||X(v) − F (v)
1 · · ·F (v)

m GTm||F (4)

s.t. G
(v)
i ≥ 0, Gm ≥ 0

and the Lagrange function of Eq.(4) is

V∑
v=1

||X(v) − F (v)
1 · · ·F (v)

m GTm||F + G(Λ, A) (5)

where G(Λ, A) denotes the linear combination of the Lagrange multipliers Λ (a vector) and
the constraints in Eq.(4). For simplicity, Matrix A represents all relevant basis and encoding

matrices (F
(v)
i , G

(v)
i , Gm). By setting to be 0, the derivative of Eq.(5) w.r.t. Gm is equal to

V∑
v=1

α(v)∂||X(v) − F (v)
1 · · ·F (v)

m GTm||2F
∂Gm

+
∂G(Λ, A)

∂Gm
= 0. (6)
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where

α(v) =
1

2||X(v) − F (v)
1 F

(v)
2 · · ·F (v)

m GTm||F
(7)

Since all the relevant matrices in Eq.(7) are known during a complete optimization, α(v)

can be considered fixed to some extent. After substituting Eq.(7), Eq.(4) is equivalent to
the final objective function

min
F

(v)
i ,G

(v)
i ,Gm

V∑
v=1

α(v)||X(v) − F (v)
1 · · ·F (v)

m GTm||2F (8)

s.t. G
(v)
i ≥ 0, Gm ≥ 0

An intuitive comprehension of α(v), our new parameter-free “weight”, is that if the
original data in a view is closer to the decomposed matrices, the obtained representation
from the view will extract better data information, so the view should gain a larger weight
(Nie et al., 2017a; Kang et al., 2018), which is also consistent with the meaning conveyed
by Eq.(7). Besides, by comparison to Eq.(3), α(v) plays the same “role” with ω(v) according
to the position. However, ours can be adjusted without human intervention. Specifically,
when getting the value of matrices by solving Eq.(8), we can obtain a new weight by Eq.(7),
which can be used to calculate a series of new matrices in the next iteration. By repeating
this process until convergence, we can acquire the local optimal solution of all parameters
corresponding to each other.

Because there is only an automatic weight parameter for each view, SMDMF is more
concise and efficient without the process of adjusting hyper-parameters. It can succinctly
grasp the hierarchical semantic and complementary information of the multi-view data, and
discover a more universal feature representation for MVC algorithm.

4. Optimization

To promote the efficiency of our algorithm, we borrow the idea of layer-wise pre-training
in deep leaning of Hinton and Salakhutdinov (2006) to initialize the model variables. We
set α(v) = 1

V to balance the importance of different views before clustering. According to
Trigeorgis et al. (2014), we use semi-NMF to decompose the data matrices of every view as

X(v) = F
(v)
1 G

(v)T
1 , and then G

(v)
1 is treated as the new data matrix to perform decomposition

in the layer 2 until all the layers have been pre-trained. We minimize our final objective by
an alternative and iterative algorithm, which optimizes the function value w.r.t. one part
of parameters while fixing the remaining ones.

4.1. Updating F
(v)
i (i = 1 · · ·m)

The cost function is denoted as C =
∑V

v=1 α
(v)||X(v) − F

(v)
1 · · ·F (v)

m GTm||2F . By setting

∂C/∂F (v)
i = 0, we have

F
(v)
i = (ξi

T ξi)
−1ξi

TX(v)G̃
(v)
i (G̃

(v)T
i G̃

(v)
i )−1. (9)
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where G̃ =
∏m
j=i+1 F

(v)
j Gm denotes the reconstruction of the encoding matrix in this layer,

and ξi =
∏i−1
j=1 F

(v)
j . Utilizing the pseudo-inverse notation, the final update rule of F

(v)
i is

F
(v)
i = ξi

†X(v)G̃
(v)T †
i . (10)

4.2. Updating G
(v)
i (i = 1 · · ·m− 1)

Similar to Chris et al. (2010), we firstly derive the solution of G
(v)
i (i = 1 · · ·m−1), followed

by the convergence proof. That is

G
(v)
i ← G

(v)
i

√√√√ [X(v)T ξi+1]+ + [G
(v)
i ξi+1

T ξi+1]−

[X(v)T ξi+1]− + [G
(v)
i ξi+1

T ξi+1]+
(11)

where [A]+ and [A]− denote the positive and negative parts of matrix A, separately. Their
elements are

[A]+ij = (|Aij |+Aij)/2, [A]−ij = (|Aij | −Aij)/2 (12)

Owing to the space limitation, we only give a concise proof process, please refer to Chris
et al. (2010) for specific definition of Z(G, G̃) and more details.
Theorem 1. The solution with restrictions of the update rule in Eq.(11) satisfies the KKT
condition.
Proof.The Lagrange function is

L(G
(v)
i ) =

V∑
v=1

α(v)Tr(−2X(v)T ξi+1G
(v)T
i +G

(v)
i ξTi+1ξi+1G

(v)T
i − λG(v)T

i ) (13)

where the Lagrangian multiplier λ imposes the constraints, G
(v)
i ≥ 0. The zero gradient

condition offers ∂L
∂G

(v)
i

= −2X(v)T ξi+1 + 2G
(v)
i ξTi+1ξi+1 − λ = 0. By the complementary

slackness condition, the solution must satisfy a fixed point equation at convergence as

(−2X(v)T ξi+1 + 2G
(v)
i ξTi+1ξi+1)kj(G

(v)
i )kj = λ(G

(v)
i )kj = 0 (14)

When reaching convergence, the limited solution of Eq.(11) meets G
(v)t
i = G

(v)t+1
i =

G
(v)∞
i = G

(v)
i , i.e.,

(G
(v)
i )kj = (G

(v)
i )kj

√√√√ [X(v)T ξi+1]
+
kj + [G

(v)
i ξi+1

T ξi+1]
−
kj

[X(v)T ξi+1]
−
kj + [G

(v)
i ξi+1

T ξi+1]
+
kj

(15)

Since A = [A]+ − [A]−, Eq.(15) reduces to(
−2X(v)T ξi+1 + 2G

(v)
i ξTi+1ξi+1

)
kj

(G
(v)
i )2kj = 0 (16)

Obviously, Eq.(14) is equivalent to Eq.(16) (Chris et al., 2010; Zhao et al., 2017). Theorem
1. proves the correctness of the update strategy.
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Theorem 2. The residual of C is monotonically decreasing (non-increasing) under the
update rule given in Eq.(11) by fixing others.
Proof. We construct an auxiliary function Z(G, G̃) to convert the problem,which satisfies

Z(G, G̃) ≥ L(G), Z(G,G) = L(G) (17)

For any G, G̃, define
G(t+1) = arg min

G
Z(G,G(t)) (18)

We have L(G(t)) = Z(G(t), G(t)) ≥ Z(G(t+1), G(t)) ≥ L(G(t+1)), Thus, L(G) is monotoni-

cally decreasing, i.e. the update rule of G
(v)
i (i = 1 · · ·m− 1) can converge normally.

4.3. Updating Gm

The Lagrange function is

L(Gm) =

V∑
v=1

α(v)Tr(−2X(v)T ξm+1G
T
m +Gmξ

T
m+1ξm+1G

T
m − ϕGTm) (19)

where ϕ is the Lagrangian multiplier. Taking derivative of L(Gm) w.r.t. to Gm, we can get

∂L
∂Gm

=

V∑
v=1

2α(v)(−X(v)T ξm+1 +Gmξ
T
m+1ξm+1)− ϕ

V∑
v=1

α(v) = 0 (20)

According to the updating strategy of G
(v)
i (i = 1 · · ·m− 1), Gm can be updated as follows

Gm ← Gm

√∑V
v=1 α

(v)([X(v)T ξm+1]+ + [Gmξm+1
T ξm+1]−)∑V

v=1 α
(v)([X(v)T ξm+1]− + [Gmξm+1

T ξm+1]+)
(21)

The complete procedure is depicted in Algorithm 1. We iteratively repeat all the update
rules orderly until convergence. At the highest level, we can obtain the consensus represen-
tation of all the views used for clustering (Zhao et al., 2017). For visualization, we exploit
spectral clustering (Ng et al., 2001) to process the graph established on Gm by the k-NN
algorithm.

Algorithm 1 The algorithm of SMDMF

Input: Multi-view data {X(v)}Vv=1; layer parameter [p1, · · · , pm].

Output: Basis matrices {F (v)
i }, ∀v, i and the consensus matrix Gm.

1 Initialization:
for i = 1 to m, v = 1 to V do

2 (F
(v)
i , G

(v)
i )← Semi-NMF (G

(v)
i−1, p

i). α(v) ← 1
V .

3 end
4 while not converge do

5 Update the weight of each view α(v) by Eq. (7).

6 Update the basis matrices F
(v)
i (i = 1 · · ·m) by Eq. (10).

7 Update the encoding matrices G
(v)
i (i = 1 · · ·m− 1) by Eq. (11).

8 Update the common representation matrix Gm by Eq. (21).

9 end
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5. Experiments

5.1. Datasets and Experiment Setup

We select four datasets for evaluation. The important statistics are summarized in Table 1
and a brief introduction of these datasets is as follows.

Table 1: Description of the datasets
# instances # views # classes

Handwritten 2000 3 10

Yale 165 3 15

Sources 169 3 6

C101-7 1474 3 7

• Handwritten: The handwritten number (within 0 to 9 digits) dataset comes from the
UCI. Three selected components for the test datasets are: Fourier coefficients of the
shape, pixel averages in windows, and profile correlations.

• Yale: It consists of 165 original pixel images for 15 subjects, each of which has 11
images with different conditions, e.g. lighting conditions, with/without glasses, etc.
Three of these views are chosen for experiments, they are Intensity, LBP, and Gabor.

• Sources: The multi-view text dataset was collected from three well-known online news
sources: Guardian, BBC and Reuters. We selected 169 articles that were reported by
all of them.

• C101-7 : Caltech101 is a digital image dataset created by California Institute of Tech-
nology. We commonly used 1474 images with 7 categories and three views: HOG,
GIST, and LBP.

Before operation, we preprocess all datasets in accordance with the method mentioned in
Cao et al. (2015). To show the strong adaptability of the deep structure algorithms, we set
the number of layers with 1, 2, 3 and 4 respectively when applied to these four datasets.

For comparison , we select 7 classical baselines and state-of-art algorithms. The param-
eters involved in all algorithms are adjusted to the optimal to ensure comparability. The
details are summarized below.

• BestSV (Kumar et al., 2011b) is the result of selecting the optimal performance after
performing standard spectral clustering on the attributes in each view.

• ConcatFea (Kumar et al., 2011b) firstly connects all the features of all views, and
then performs standard spectral clustering on the Laplacian operator derived from
the joint view representation.

• Co-reg(P) (Kumar et al., 2011b) adjusts the clustering hypothesis (Pairwise) among
multiple views, aiming at implicitly combining the graphs of multi-view data for better
clustering performance.
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• Co-reg(C) (Kumar et al., 2011b) is similar to Co-reg(P), which is unique in con-
verging the feature vectors of each view into a common centroid to achieve mutual
recognition among views.

• Co-trained (Kumar and Iii, 2011a) learns clustering result of one view, and then
alternately modifies the graph structure of others with the help of a “tag” information.

• Multi-NMF (Liu et al., 2013) applies NMF to project each view data into a common
potential subspace. This is equivalent to the single-layer version of our structure.

• DMSNMF (Zhao et al., 2017) seeks a valid consensus representation at the last level
by deep matrix factorization structure. In order to guarantee comparability, the same
number of layer is selected and other parameters are adjusted to the optimal when
performing DMSNMF and ours.

We use six different evaluation criteria:ACC, NMI, AR, Precision, Recall, and
F-score. Their ranges are between 0 and 1, with larger values mean better clustering
performance. For algorithms involving graph similarity, we follow the strategy in Kumar
and Iii (2011a). We repeat every algorithms for 10 times and record the results in the
combination of mean and standard deviation.

Table 2: Clustering performance on Handwritten dataset (Mean and Sta Dev,%).

Method Values ACC NMI AR F-core Precision Recall

BestSV
Mean 0.6871 0.6432 0.5446 0.5907 0.5810 0.6008
Sta Dev 0.0154 0.0069 0.0128 0.0115 0.0119 0.0114

ConcatFea
Mean 0.6146 0.6238 0.4940 0.5467 0.5227 0.5731
Sta Dev 0.0079 0.0042 0.0072 0.0065 0.0066 0.0065

Co-reg(P)
Mean 0.8064 0.7582 0.6909 0.7224 0.7088 0.7372
Sta Dev 0.0188 0.0077 0.0138 0.0122 0.0163 0.0080

Co-reg(C)
Mean 0.7974 0.7636 0.6965 0.7277 0.7090 0.7481
Sta Dev 0.0199 0.0084 0.0159 0.0141 0.0175 0.0109

Co-trained
Mean 0.8044 0.7722 0.7081 0.7377 0.7276 0.7501
Sta Dev 0.0068 0.0038 0.0065 0.0058 0.0061 0.0049

Multi-NMF
Mean 0.8771 0.7984 0.7534 0.7781 0.7828 0.7734
Sta Dev 0.0132 0.0138 0.0224 0.0202 0.0202 0.0203

DMSNMF
Mean 0.8090 0.8604 0.7791 0.8028 0.7450 0.8702
Sta Dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SMDMF
Mean 0.8130 0.8614 0.7794 0.8032 0.7437 0.8730
Sta Dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3: Clustering performance on Yale dataset (Mean and Sta Dev,%).

Method Values ACC NMI AR F-core Precision Recall

BestSV
Mean 0.6059 0.6444 0.4221 0.4590 0.4384 0.4822
Sta Dev 0.0144 0.0086 0.0122 0.0113 0.0122 0.0106

ConcatFea
Mean 0.5475 0.5986 0.3611 0.4021 0.3826 0.4241
Sta Dev 0.0058 0.0052 0.0057 0.0054 0.0052 0.0058

Co-reg(P)
Mean 0.5752 0.6306 0.4063 0.4444 0.4233 0.4682
Sta Dev 0.0132 0.0082 0.0123 0.0115 0.0121 0.0112

Co-reg(C)
Mean 0.6081 0.6606 0.4482 0.4840 0.4567 0.5155
Sta Dev 0.0170 0.0115 0.0139 0.0131 0.0127 0.0151

Co-trained
Mean 0.6340 0.6690 0.4614 0.4958 0.4735 0.5225
Sta Dev 0.0123 0.0094 0.0118 0.0111 0.0108 0.0112

Multi-NMF
Mean 0.6006 0.6225 0.3944 0.4335 0.4091 0.4615
Sta Dev 0.0318 0.0249 0.0246 0.0229 0.0240 0.0257

DMSNMF
Mean 0.7625 0.7496 0.5722 0.5989 0.5838 0.6149
Sta Dev 0.0021 0.0013 0.0143 0.0133 0.0155 0.0109

SMDMF
Mean 0.7896 0.7552 0.5852 0.6111 0.5967 0.6263
Sta Dev 0.0023 0.0024 0.0037 0.0035 0.0034 0.0037

5.2. Results

Table 2, Table 3, Table 4 and Table 5 list the experimental results on four datasets. As
shown, the methods based on the deep NMF structure (DMSNMF and our SMDMF) out-
perform almost all the competitors. It shows that these baseline methods based on original
data are difficult to process these experimental datasets containing complex information.
Nonetheless, the deep structure is forceful to obtain an abstract consensus through deep
data mining, which enormously improves the final performance of algorithms.

For Yale dataset in Table 3 and C101-7 dataset in Table 5, our SMDMF model occupies
an absolute advantage over all the other algorithms. Table 2 and Table 4 show some slight
outliers. However, our parameter-free model simplifies the complexity of operation as well as
ensuring effectiveness. Especially, it achieves convergence in about 5 iterations when applied
to the Handwritten dataset. We can also conservatively conclude that SMDMF attains
better performance than the others, considering the stability (small standard deviation)
and efficiency on this two datasets. In brief, results show SMDMF outperforms all the
baseline algorithms.

5.3. Analysis

In this part, we will evaluate our SMDMF from the perspective of robustness and sensitivity,
i.e. parameter analysis and convergence property. Firstly, we introduce the parameter in
our model with optimality analysis. The convergence is discussed later with the help of the
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Table 4: Clustering performance on Sources dataset (Mean and Sta Dev,%).

Method Values ACC NMI AR F-core Precision Recall

BestSV
Mean 0.5698 0.4679 0.3583 0.5015 0.5228 0.4848
Sta Dev 0.0086 0.0083 0.0129 0.0087 0.0151 0.0117

ConcatFea
Mean 0.5572 0.5191 0.3478 0.4901 0.5253 0.4612
Sta Dev 0.0058 0.0056 0.0103 0.0075 0.0104 0.0062

Co-reg(P)
Mean 0.5401 0.4656 0.2985 0.4491 0.4881 0.4177
Sta Dev 0.0093 0.0064 0.0052 0.0033 0.0069 0.0031

Co-reg(C)
Mean 0.5588 0.5029 0.3431 0.4842 0.5257 0.4513
Sta Dev 0.0110 0.0072 0.0079 0.0065 0.0107 0.0113

Co-trained
Mean 0.6034 0.5707 0.4360 0.5564 0.6070 0.5175
Sta Dev 0.0084 0.0126 0.0121 0.0102 0.0103 0.0121

Multi-NMF
Mean 0.4858 0.4854 0.2355 0.4200 0.4048 0.4366
Sta Dev 0.0139 0.0174 0.0193 0.0124 0.0170 0.0083

DMSNMF
Mean 0.7101 0.6271 0.5388 0.6452 0.6500 0.6405
Sta Dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SMDMF
Mean 0.7515 0.6245 0.5734 0.6711 0.6810 0.6614
Sta Dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

objective value and NMI. To greatly reflects the dimensional reduction effect of our model,
we select Yale dataset with high dimensional feature as experimental one.

Parameter analysis. The parameter k of the k-NN algorithm is fixed as 5. As a
result, parameters in SMDMF only include the layer settings, i.e. the layer number m and
the dimensions of single layer pi, introduced by the deep NMF process. Lots of pervious
work has discovered the significance of the last layer’s size, pm, which directly determines
the quality of the consensus matrix (Zhao et al., 2017; Xu et al., 2018). Therefore, we
change pm in settings with different layer numbers, while fixing the other dimensions by
trial and error. Fig.2 explores the ACC results of SMDMF on Yale dataset varying pm in
four different layer settings, i.e.{[100 pm], [200 100 pm], [300 200 100 pm]}. As we can see,
[100 pm] is the most competitive layer setting among them. Although [200 100 pm] and
[300 200 100 pm] are deeper than the best one, they still do not obtain a better clustering
performance, which maybe results from the over-fitting problem or the dimensions of the
remaining layers. In experiments on Yale dataset, we choose [100 50] as the default layer
parameters.

Convergence analysis. We also analyze the convergence property of SMDMF by
means of the objective and ACC values. Consistent with the foregoing, the relevant layer
parameters are set as [100 50]. Fig.3 shows the objective value in Eq.(8) and ACC result
against iteration times for SMDMF on Yale dataset. We observe the ACC value rises rapidly
in the initial iterations, and then increases slowly until achieving the stable value, finally
oscillates nearby it. At the same time, the objective value of our model decreases drastically
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Figure 2: The ACC results curves of SMDMF with four different layer settings on Yale
dataset.
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Figure 3: The Objective Value and ACC performance of SMDMF with respect to the iter-
ation times on Yale dataset.
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Table 5: Clustering performance on C101-7 dataset (Mean and Sta Dev,%).

Method Values ACC NMI AR F-core Precision Recall

BestSV
Mean 0.4280 0.4222 0.2735 0.4353 0.7524 0.3063
Sta Dev 0.0092 0.0099 0.0078 0.0069 0.0085 0.0055

ConcatFea
Mean 0.4120 0.4874 0.2973 0.4506 0.7961 0.3143
Sta Dev 0.0057 0.0041 0.0042 0.0034 0.0066 0.0026

Co-reg(P)
Mean 0.4282 0.4906 0.3092 0.4610 0.8076 0.3227
Sta Dev 0.0185 0.0046 0.0081 0.0080 0.0056 0.0070

Co-reg(C)
Mean 0.4402 0.4861 0.3153 0.4683 0.8062 0.3303
Sta Dev 0.0069 0.0046 0.0071 0.0059 0.0087 0.0045

Co-trained
Mean 0.4487 0.5295 0.3376 0.4838 0.8427 0.3401
Sta Dev 0.0110 0.0056 0.0051 0.0048 0.0049 0.0039

Multi-NMF
Mean 0.4864 0.4988 0.3418 0.4976 0.8099 0.3592
Sta Dev 0.0206 0.0179 0.0173 0.0153 0.0147 0.0130

DMSNMF
Mean 0.5611 0.5436 0.4102 0.5756 0.7913 0.4523
Sta Dev 0.0000 0.0022 0.0022 0.0018 0.0015 0.0017

SMDMF
Mean 0.6592 0.5876 0.5037 0.6419 0.8886 0.5025
Sta Dev 0.0018 0.0006 0.0018 0.0016 0.0004 0.0018

and reaches the convergence value generally in 60 iterations, which is consistent with the
conclusions of our proof.

6. Conclusion

In this paper, we propose a Self-Weighted Multi-view Clustering with Deep Matrix Fac-
torization (SMDMF) method. Benefitting from the hierarchical framework, it can exclude
adverse interference from other factors and capture the semantic structure of the multi-
view data, which is instrumental in obtaining the consensus representation. For balancing
the parameter quantities and performance, we utilize a self-weighted strategy to construct
our parameter-free formulation, which can automatically assign a proper weight to each
view and fully consider the complementarity among views. An iterative optimization al-
gorithm is developed to deal with the SMDMF objective. Experiments on four datasets
and performance analysis revealed the effectiveness of SMDMF compared with other seven
algorithms.
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